EXISTENCE OF POSITIVE RADIAL SOLUTIONS TO A *p*-LAPLACIAN KIRCHHOFF TYPE PROBLEM ON THE EXTERIOR OF A BALL

John R. Graef, Doudja Hebboul, and Toufik Moussaoui

Communicated by Vicentiu D. Rădulescu

Abstract. In this paper the authors study the existence of positive radial solutions to the Kirchhoff type problem involving the *p*-Laplacian

$$-\Big(a+b\int\limits_{\Omega_e}|\nabla u|^pdx\Big)\Delta_p u=\lambda f\left(|x|,u\right),\ x\in\Omega_e,\quad u=0\ \text{on}\ \partial\Omega_e,$$

where $\lambda > 0$ is a parameter, $\Omega_e = \{x \in \mathbb{R}^N : |x| > r_0\}, r_0 > 0, N > p > 1, \Delta_p$ is the *p*-Laplacian operator, and $f \in C([r_0, +\infty) \times [0, +\infty), \mathbb{R})$ is a non-decreasing function with respect to its second variable. By using the Mountain Pass Theorem, they prove the existence of positive radial solutions for small values of λ .

Keywords: Kirchhoff problem, *p*-Laplacian, positive radial solution, variational methods.

Mathematics Subject Classification: 35A01, 35A15, 35B38, 35D30, 35J92.

1. INTRODUCTION

The aim of this work is to prove the existence of positive radial solutions on the exterior of a ball to the Kirchhoff type problem

$$\begin{cases} -\left(a+b\int\limits_{\Omega_e}|\nabla u|^p dx\right)\Delta_p u = \lambda f\left(|x|,u\right), & x \in \Omega_e, \\ u(x) = 0, & |x| = r_0, \\ u(x) \to 0, & |x| \to \infty, \end{cases}$$
(1.1)

where a and b are positive constants, $\lambda > 0$ is a parameter, $\Omega_e = \{x \in \mathbb{R}^N : |x| > r_0\}, r_0 > 0, N > p > 1, \Delta_p$ is the p-Laplacian operator $(\Delta_p u = \operatorname{div}(|\nabla u|^{p-2}\nabla u))$, and $f : [r_0, +\infty) \times [0, +\infty) \to \mathbb{R}$ is continuous and is non-decreasing in its second variable.

Note that Kirchhoff type problems are nonlinear, and as such present several interesting challenges; see, for instance, the recent work in [1, 2, 12-15, 18, 21, 24] for various issues and applications. Additional work on *p*-Laplacian problems can be found in [6-10, 17, 20, 23] and other related results in [16, 22].

In [7, 8, 17, 23], the equations considered are of the form

$$\Delta_p u = \lambda f(u) \quad \text{in } \Omega$$

with Dirichlet boundary conditions, where Ω is a bounded domain in \mathbb{R}^N . Concerning the existence of positive radial solutions to a class of *p*-Laplacian problems on the exterior of a ball, we mention the papers [9] for p = 2 and [20] for any p > 1. In these articles the equation is of the form $-\Delta_p u = \lambda K(|x|) f(u)$ and the authors appeal to the Mountain Pass Theorem (MPT).

Notice that our problem (1.1) can be written as

$$\begin{cases} -M\Big(\int\limits_{\Omega_e} |\nabla u|^p dx\Big) \Delta_p u = \lambda f\left(|x|, u\right), & x \in \Omega_e, \\ u(x) = 0, & |x| = r_0, \\ u(x) \to 0, & |x| \to \infty, \end{cases}$$

where $M(\zeta) = a + b\zeta$.

In the case where p = 2 and M is any positive function defined on \mathbb{R}^+ (with some additional conditions), problems of the type

$$\begin{cases} -M\Big(\int\limits_{\Omega}|\nabla u|^{2}dx\Big)\Delta u=f\left(x,u\right), & \text{in }\Omega,\\ u=0, & \text{on }\partial\Omega, \end{cases}$$

where Ω a bounded domain in \mathbb{R}^N , have physical motivations. For example, the Kirchhoff operator $M(\int_{\Omega} |\nabla u|^2 dx) \Delta u$ appears in nonlinear vibration equations such as

$$\begin{cases} u_{tt} - M\Big(\int\limits_{\Omega} |\nabla u|^2 dx\Big) \Delta u = f(x, u), & \text{in } \Omega \times (0, T), \\ u = 0, & \text{on } \partial \Omega \times (0, T), \\ u(x, 0) = u_0(x), \ u_t(x, 0) = u_1(x). \end{cases}$$

Such equations generalize to higher dimensions the equation studied by Kirchhoff [19],

$$\rho \frac{\partial^2 u}{\partial t^2} - \left(\frac{P_0}{h} + \frac{E}{2L} \int_0^L \left|\frac{\partial u}{\partial x}\right|^2 dx\right) \frac{\partial^2 u}{\partial x^2} = 0$$

as an extension of the classical D'Alembert wave equation for free vibrations of elastic strings.

Kirchhoff type problems have been treated in many papers. For example, in [2], by using truncations and the MPT, the authors proved the existence of solutions to the problem

$$\begin{cases} -M\Big(\int\limits_{\Omega}|\nabla u|^{2}dx\Big)\Delta u = f\left(x,u\right), & \text{in }\Omega,\\ u = 0, & \text{on }\partial\Omega. \end{cases}$$

where Ω is a bounded smooth domain in \mathbb{R}^N . In [18], He *et al.* considered a similar problem where Ω is a bounded domain in \mathbb{R}^3 or is all of \mathbb{R}^3 , and instead of f(t, u), they had f(u) + h with $h \ge 0$ and $h \in L^2(\Omega)$. In [24], Wang et al. also took Ω to also be a bounded and smooth domain in \mathbb{R}^N and used the MPT to prove the existence of solutions to the problem

$$\begin{cases} -M\Big(\int\limits_{\Omega} |\nabla u|^p dx\Big)\Delta_p u = \lambda f(x,u) + |u|^{p^*-2}u, & \text{in } \Omega, \\ u = 0, & \text{on } \partial\Omega, \end{cases}$$

for all λ greater than some $\lambda^* > 0$, where $p^* = \frac{Np}{N-p}$. An important feature of that study is that M could be zero at zero. Additional recent results on Kirchhoff type problems can be found in [1,12–15,21].

Extending the ideas in [9,20], instead of $\Delta_p u$, we consider a Kirchhoff type operator and generalize the term K(|x|)f(u) to f(|x|, u), where $f: [r_0, +\infty) \times [0, +\infty) \to \mathbb{R}$ is continuous, non-decreasing in its second variable, and satisfies:

(F1) there exist continuous functions $A, B: [r_0, +\infty) \to (0, +\infty)$ with q > 2p-1 and $\mu \in \left(0, \frac{N-p}{p-1}\right)$ such that

$$A(\xi)(t^q - 1) \le f(\xi, t) \le B(\xi)(t^q + 1)$$
 for all $(\xi, t) \in [r_0, +\infty) \times [0, +\infty)$

where $A(\xi)$, $B(\xi) \leq \frac{1}{\xi^{N+\mu}}$ for $\xi \gg 1$,

- (F2) for all $\xi \in [r_0, +\infty), f(\xi, 0) < 0$,
- (F3) (Ambrosetti-Rabinowitz condition) There exists $\theta > 2p$ such that, for all sufficiently large t,

$$tf(\xi, t) > \theta F(\xi, t)$$
 for all $\xi \ge r_0$,

where $F(\xi, t) = \int_0^t f(\xi, \sigma) d\sigma$.

Applying the change of variables r = |x| and $s = \left(\frac{r}{r_0}\right)^{\frac{p-N}{p-1}}$ transforms (1.1) into the boundary-value problem (see, for example, [6])

$$\begin{cases} -\left(a+\alpha \int_{0}^{1} |u'|^{p} d\sigma\right)(\phi_{p}(u'))' = \lambda h(s)f(r_{0}s^{\frac{p-1}{p-N}}, u(s)), \quad s \in (0,1), \\ u(0) = u(1) = 0, \end{cases}$$
(1.2)

where

$$\alpha = bN\omega_N r_0^{N-p} \left(\frac{N-p}{p-1}\right)^{p-1}, \quad \phi_p(\zeta) = |\zeta|^{p-2}\zeta, \quad h(s) = \left(r_0 \frac{(p-1)}{(N-p)}\right)^p s^{\frac{-p(N-1)}{N-p}},$$

and ω_N is the volume of the unit ball in \mathbb{R}^N .

Remark 1.1. If in (F1) we assume that $\mu \geq \frac{N-p}{p-1}$, this would imply that the functions defined by $h(s)B(r_0s^{\frac{p-1}{p-N}})$ or $h(s)A(r_0s^{\frac{p-1}{p-N}})$ are dominated in neighborhoods of zero by a continuous function on [0, 1], and in fact, we would have a simpler situation. But $\mu \in \left(0, \frac{N-p}{p-1}\right)$ implies the singularity of these functions at s = 0, but they would still belong to $L^1(0, 1)$.

Remark 1.2. Consider the function

$$f(\xi, t) = \frac{1}{2\xi^{\frac{7}{2}}}(2t^4 - 1).$$

Then f satisfies all of the above conditions for N = 3, p = 2, q = 4, $\mu = \frac{1}{2}$, and $\theta = \frac{9}{2}$.

As a second example, we have the following.

Remark 1.3. Take N = 4, p = 2, and q = 4 > 2p - 1 = 3. We need $\mu \in (0, 2)$ so choose $\mu = 1$. Let

$$A(\xi) = \frac{2 + \sin \xi}{\xi^5}$$
 and $B(\xi) = \frac{(4 - \cos \xi)(\xi^2 + 1)}{\xi^7}$.

Then

$$f(\xi,t) = \frac{3(\xi^2+1)}{\xi^7} \frac{(e^{t^2}-2)(t^4+1)}{e^{t^2}}$$

satisfies all of the above conditions for some $\theta > 4$.

Next, we define what is meant by a solution of our problem.

Definition 1.4. We say that $u \in W_0^{1,p}(0,1)$ is a weak solution of problem (1.2) if

$$(a + \alpha ||u||_{1,p}^{p}) \int_{0}^{1} |u'(s)|^{p-2} u'(s)v'(s)ds = \lambda \int_{0}^{1} h(s)f(r_{0}s^{\frac{p-1}{p-N}}, u(s))v(s)ds$$

for all $v \in W_0^{1,p}(0,1)$.

We will establish the following theorem, which is our main result in this paper.

Theorem 1.5. Assume that (F1)–(F3) hold. Then (1.2) admits a positive weak solution for $\lambda \approx 0$.

2. PRELIMINARIES

In order to apply variational techniques such as the MPT, we extend the function f to $[r_0, +\infty) \times \mathbb{R}$ by setting $f(\xi, t) = f(\xi, 0)$ for $(\xi, t) \in [r_0, +\infty) \times (-\infty, 0)$. We also need the Banach spaces $W_0^{1,p}(0,1)$, C[0,1], and $L^r(0,1)$ equipped their respective norms $\|\cdot\|_{1,p}$, $\|\cdot\|_{\infty}$, and $\|\cdot\|_r$. We recall that $W_0^{1,p}(0,1)$ is compactly embedded in C[0,1], and this implies that $\|u\|_{\infty} \leq k \|u\|_{1,p}$ for every u in $W_0^{1,p}(0,1)$, where k is a fixed positive constant (see [5]).

Remark 2.1. Let

$$D = \{(\xi, t) \in [r_0, +\infty) \times \mathbb{R} : f(\xi, t) \ge 0\}$$

and

$$D^{c} = \{ (\xi, t) \in [r_{0}, +\infty) \times \mathbb{R} : f(\xi, t) < 0 \}.$$

On D, we have

$$|f(\xi, t)| = f(\xi, t) \le B(\xi)(t^q + 1),$$

and on D^c ,

$$|f(\xi, t)| \le A(\xi).$$

Hence, for all $(\xi, t) \in [r_0, +\infty) \times \mathbb{R}$,

$$|f(\xi, t)| \le \max(A(\xi), B(\xi))(|t|^q + 1),$$

and for every compact interval $I \subset \mathbb{R}$, there exists a constant M_I such that

 $|f(\xi, t)| \le M_I \max(A(\xi), B(\xi))$ for all $\xi \ge r_0$ and all $t \in I$.

Remark 2.2. If f satisfies (F1) and (F3), then:

(F4) There exists a continuous function $\theta_1 : [r_0, +\infty) \to (0, +\infty)$ and a constant C > 0 such that

$$\theta_1(\xi) \le \frac{C}{\xi^{N+\mu}}$$

and

 $tf(\xi,t) > \theta F(\xi,t) - \theta_1(\xi)$ for all $(\xi,t) \in [r_0,+\infty) \times [0,+\infty)$.

Remark 2.3. We note that (F1) implies that there exist continuous functions $A_1, B_1: [r_0, +\infty) \to (0, +\infty)$ and a positive constant C_1 such that

$$F(\xi, t) \le B_1(\xi)(|t|^{q+1} + 1)$$
 for all $(\xi, t) \in [r_0, +\infty) \times \mathbb{R}$,

and

$$F(\xi, t) \ge A_1(\xi)(t^{q+1} - C_1)$$
 for all $(\xi, t) \in [r_0, +\infty) \times [0, +\infty)$.

Furthermore, $A_1(\xi)$, $B_1(\xi) \leq \frac{1}{\xi^{N+\mu}}$ for $\xi \gg 1$, where μ is given in (F1). Notice that the second inequality above follows from the fact that $\frac{t^{q+1}}{q+1} - t \geq \frac{t^{q+1}}{2(q+1)}$ for all $t \geq (2(q+1))^{\frac{1}{q}}$.

Lemma 2.4. Let $J: W_0^{1,p}(0,1) \to \mathbb{R}$ be defined by

$$J(u) = \frac{1}{p}\hat{M}(\|u\|_{1,p}^{p}) - \lambda K(u)$$

where

$$K(u) = \int_{0}^{1} h(s)F(r_0 s^{\frac{p-1}{p-N}}, u(s))ds$$

and

$$\hat{M}(t) = \int_{0}^{t} M(\sigma) d\sigma \quad with \quad M(t) = a + \alpha t.$$

Then J is well defined, continuously differentiable, and for all $v \in W_0^{1,p}(0,1)$, its Gâteaux derivative is given by

$$J'(u)(v) = M(||u||_{1,p}^p) \int_0^1 |u'(s)|^{p-2} u'(s)v'(s)ds - \lambda \int_0^1 h(s)f(r_0 s^{\frac{p-1}{p-N}}, u(s))v(s)ds.$$

Proof. It is clear that $\hat{M}(\|u\|_{1,p}^p)$ is finite, and since $W_0^{1,p}(0,1) \hookrightarrow C[0,1]$, by Remark 2.1, for $I = [-\|u\|_{\infty}, \|u\|_{\infty}]$, there exists $M_I > 0$ such that

$$|f(r_0 s^{\frac{p-1}{p-N}}, \sigma)| \le M_I \max(A(r_0 s^{\frac{p-1}{p-N}}), B(r_0 s^{\frac{p-1}{p-N}}))$$
 for all $\sigma \in I$

Therefore,

$$\int_{0}^{1} |h(s)| |F(r_0 s^{\frac{p-1}{p-N}}, u(s))| ds \le M_I ||u||_{\infty} \int_{0}^{1} \max(A(r_0 s^{\frac{p-1}{p-N}}), B(r_0 s^{\frac{p-1}{p-N}}))|h(s)| ds < \infty.$$

The functional J is continuous. Moreover, if we set $L(u) = ||u||_{1,p}^p$, then $\hat{M} \circ L$ is differentiable, and for all $v \in W_0^{1,p}(0,1)$,

$$\frac{1}{p}(\hat{M} \circ L)'(u)(v) = M(||u||_{1,p}^p) \int_0^1 |u'(s)|^{p-2} u'(s)v'(s)ds.$$

On the other hand, from the continuity of f, we see that K is Gâteaux differentiable and its Gâteaux derivative is continuous. Hence, K is continuously differentiable and

$$K'(u)(v) = \int_{0}^{1} h(s)f(r_0 s^{\frac{p-1}{p-N}}, u(s))v(s)ds \quad \text{for all } v \in W_0^{1,p}(0,1).$$

Therefore, J is continuously differentiable, and for all $v \in W_0^{1,p}(0,1)$,

$$J'(u)(v) = M(||u||_{1,p}^p) \int_0^1 |u'(s)|^{p-2} u'(s)v'(s) - \lambda \int_0^1 h(s)f(r_0 s^{\frac{p-1}{p-N}}, u(s))v(s)ds$$

as we wished to show.

In order to prove our main result, Theorem 1.5 above, we will apply the Mountain Pass Theorem stated below.

Theorem 2.5 (Mountain Pass Theorem [3]). Let X be a Banach space and let $J \in C^1(X; \mathbb{R})$ satisfy:

- (i) (Palais-Smale condition) any sequence $(u_n) \subset X$ such that $(J(u_n))$ is bounded and $J'(u_n) \to 0$ as $n \to \infty$ possesses a convergent subsequence,
- (ii) J(0) = 0,
- (iii) there exist ν , R > 0 such that $J(u) \ge \nu$ for all u with $||u||_X = R$,

(iv) there exists $e \in X$ such that $||e||_X > R$ and J(e) < 0.

In addition, let

$$\Gamma := \{ \gamma \in C([0,1], X) : \gamma(0) = 0, \gamma(1) = e \}$$

and

$$\hat{c} := \inf_{\gamma \in \Gamma} \max_{t \in [0,1]} J(\gamma(t)).$$

Then \hat{c} is a critical value of the functional J.

3. PROOF OF THEOREM 1.5

In this section, we construct the proof of our main result. We begin by recalling that proving Theorem 1.5 is equivalent to proving that the functional J defined above admits a positive critical point for $\lambda \approx 0$ (see[4]). As was seen in Lemma 2.4, the functional J is in $C^1(W_0^{1,p}(0,1),\mathbb{R})$, so we need to prove that J satisfies the conditions of the MPT.

In the following, for all $s \in (0,1]$, we denote by $\tilde{A}(s)$, $\tilde{B}(s)$, $\tilde{A}_1(s)$, $\tilde{B}_1(s)$, and $\tilde{\theta}_1(s)$ the quantities $A(r_0 s^{\frac{p-1}{p-N}})$, $B(r_0 s^{\frac{p-1}{p-N}})$, $A_1(r_0 s^{\frac{p-1}{p-N}})$, $B_1(r_0 s^{\frac{p-1}{p-N}})$, and $\theta_1(r_0 s^{\frac{p-1}{p-N}})$, respectively.

3.1. THE PALAIS–SMALE CONDITION

In order to show that our functional J satisfies the Palais–Smale condition, we first recall the following proposition.

Proposition 3.1 ([11]). Let $\psi : W^{1,p}(0,1) \to [0,+\infty)$ be defined by

$$\psi(u) = \frac{1}{p} \int_{0}^{1} |u'(s)|^{p} ds.$$

Then $\psi^{'}$ exists and

$$\langle \psi^{'}(u),v
angle = \int\limits_{0}^{1} |u^{'}(s)|^{p-2} u^{'}(s)v^{'}(s)ds.$$

In addition, if $u_n \rightharpoonup u$ and $\limsup_{n \to +\infty} \langle \psi'(u_n), u_n - u \rangle \leq 0$, then $u_n \rightarrow u$ strongly in $W^{1,p}(0,1)$.

Lemma 3.2. The functional J satisfies the Palais-Smale condition.

Proof. Let $(u_n)_n \subset W_0^{1,p}(0,1)$ such that $(J(u_n))_n$ is bounded and $J'(u_n) \to 0$ as $n \to \infty$. First, we will prove that $(u_n)_n$ is bounded in $W_0^{1,p}(0,1)$. Assume to contrary that $(u_n)_n$ is such that $J'(u_n) \to 0$ as $n \to \infty$, there exists M > 0 such that $|J(u_n)| \leq M$ for all $n \geq 1$, but $||u_n||_{1,p} \to \infty$ as $n \to \infty$.

We consider the quantity

$$\frac{\theta J(u_n) - \langle J'(u_n), u_n \rangle}{\|u_n\|_{1,p}},$$

where $\theta > 2p$ is chosen as in (F3). Since $J(u_n)$ is bounded and $J'(u_n) \to 0$ as $n \to \infty$,

$$\lim_{n \to \infty} \frac{\theta J(u_n) - \langle J'(u_n), u_n \rangle}{\|u_n\|_{1,p}} = 0.$$

However, we have

$$\begin{aligned} \theta J(u_n) - \langle J'(u_n), u_n \rangle &= a \Big(\frac{\theta}{p} - 1\Big) \|u_n\|_{1,p}^p + \alpha \Big(\frac{\theta}{2p} - 1\Big) \|u_n\|_{1,p}^{2p} \\ &- \lambda \int_0^1 h(s) \left(\theta F(r_0 s^{\frac{p-1}{p-N}}, u_n(s)) - f(r_0 s^{\frac{p-1}{p-N}}, u_n(s)) u_n(s) ds\right) \\ &= a \Big(\frac{\theta}{p} - 1\Big) \|u_n\|_{1,p}^p + \alpha \Big(\frac{\theta}{2p} - 1\Big) \|u_n\|_{1,p}^{2p} - \lambda (I_1 + I_2), \end{aligned}$$

where

$$I_{1} = \int_{\{u_{n} \ge 0\}} h(s) \left(\theta F(r_{0}s^{\frac{p-1}{p-N}}, u_{n}(s)) - f(r_{0}s^{\frac{p-1}{p-N}}, u_{n}(s))u_{n}(s) \right) ds$$

and

$$I_{2} = \int_{\{u_{n} < 0\}} h(s) \left(\theta F(r_{0}s^{\frac{p-1}{p-N}}, u_{n}(s)) - f(r_{0}s^{\frac{p-1}{p-N}}, u_{n}(s))u_{n}(s) \right) ds,$$

with

$$\{u_n \ge 0\} = \{s \in [0, 1] : u_n(s) \ge 0\}$$

and

$$\{u_n < 0\} = \{s \in [0,1] : u_n(s) < 0\}$$

Using (F4), we can write

Ì

$$I_{1} \leq \int_{\{u_{n} \geq 0\}} h(s)\theta_{1}(r_{0}s^{\frac{p-1}{p-N}})ds \leq \int_{[0,1]} h(s)\theta_{1}(r_{0}s^{\frac{p-1}{p-N}})ds \leq \|h\tilde{\theta_{1}}\|_{1},$$

and on $\{u_n < 0\}$,

$$\begin{aligned} \theta F(r_0 s^{\frac{p-1}{p-N}}, u_n(s)) - f(r_0 s^{\frac{p-1}{p-N}}, u_n(s)) u_n(s) &= (\theta - 1) f(r_0 s^{\frac{p-1}{p-N}}, 0) u_n(s) \\ &\leq (\theta - 1) A(r_0 s^{\frac{p-1}{p-N}}) \|u_n\|_{\infty} \\ &\leq k(\theta - 1) A(r_0 s^{\frac{p-1}{p-N}}) \|u_n\|_{1,p}, \end{aligned}$$

so that

$$\frac{\theta J(u_n) - \langle J'(u_n), u_n \rangle}{\|u_n\|_{1,p}} \ge a \left(\frac{\theta}{p} - 1\right) \|u_n\|_{1,p}^{p-1} + \alpha \left(\frac{\theta}{2p} - 1\right) \|u_n\|_{1,p}^{2p-1} - \lambda \frac{\|h\tilde{\theta_1}\|_{L^1}}{\|u_n\|_{1,p}} - k\lambda(\theta - 1) \|h\tilde{A}\|_1.$$

Taking the limit as $n \to +\infty$, we obtain a contradiction. Thus, (u_n) is bounded in $W_0^{1,p}(0,1)$ and this implies that there exists a subsequence, again calling it (u_n) , that converges weakly in $W_0^{1,p}(0,1)$ and strongly in C[0,1]. We want to show that $u_n \to u$ strongly in $W_0^{1,p}(0,1)$. Since for all $v \in W_0^{1,p}(0,1)$,

$$J'(u_{n})(v) = M(||u_{n}||_{1,p}^{p}) \int_{0}^{1} |u_{n}'(s)|^{p-2} u_{n}'(s)v'(s)ds - \lambda \int_{0}^{1} h(s)f(r_{0}s^{\frac{p-1}{p-N}}, u_{n}(s))v(s)ds,$$

we have

$$\Big|\int_{0}^{1} |u_{n}'|^{p-2}u_{n}'(u_{n}'-u')\Big| \leq \frac{|J'(u_{n})(u_{n}-u)| + \lambda|\int_{0}^{1} h(s)f(r_{0}s^{\frac{p-1}{p-N}}, u_{n}(s))(u_{n}-u)ds|}{a}.$$

Since $J'(u_n) \to 0$ and (u_n) is bounded in $W_0^{1,p}(0,1)$, we have $J'(u_n)(u_n-u) \to 0$ as $n \to +\infty$. On the other hand, since $u_n \to u$ strongly in C[0,1] and since (u_n) is bounded in the same space, we have (see Remark 2.1)

$$\left|\int_{0}^{1} h(s)f(r_{0}s^{\frac{p-1}{p-N}}, u_{n}(s))(u_{n}(s)-u(s))ds\right| \leq M_{I}\|u_{n}-u\|_{\infty}\|h\max(\tilde{A}, \tilde{B})\|_{1} \to 0,$$
(3.1)

where I = [-M, M] is such that $u, u_n \in [-M, M]$ for $s \in [0, 1]$. This implies that

$$\Big|\int_{0}^{1} |u_{n}^{'}(s)|^{p-2}u_{n}^{'}(s)(u_{n}^{'}(s)-u^{'}(s))ds\Big| \to 0$$

as $n \to \infty$. By Proposition 3.1, $u_n \to u$ strongly in $W_0^{1,p}(0,1)$, which completes the proof of the lemma.

3.2. THE GEOMETRY OF J

We begin by pointing out that J(0) = 0. Next, we prove two lemmas that will be needed to complete the proof that J satisfies the Mountain Pass Theorem.

Lemma 3.3. For any positive function w in $W_0^{1,p}(0,1)$ satisfying $||w||_{1,p} = 1$, we have $\lim_{\sigma \to +\infty} J(\sigma w) = -\infty$ for any $\sigma > 0$.

Proof. Let $w \in W_0^{1,p}(0,1)$ be such that w is positive with $||w||_{1,p} = 1$, and let $\sigma > 0$ be a parameter. We have

$$J(\sigma w) = \frac{1}{p} \hat{M}(\|\sigma w\|_{1,p}^{p}) - \lambda \int_{0}^{1} h(s) F(r_{0}s^{\frac{p-1}{p-N}}, \sigma w(s)) ds$$

with

$$\hat{M}(\|\sigma w\|_{1,p}^p) = a\sigma^p + \frac{\alpha}{2}\sigma^{2p}.$$

By (F1) and an integration,

$$\int_{0}^{1} h(s)F(r_0 s^{\frac{p-1}{p-N}}, \sigma w(s))ds \ge \int_{0}^{1} h(s)A(r_0 s^{\frac{p-1}{p-N}})\left(\frac{(\sigma w(s))^{q+1}}{q+1} - \sigma w(s)\right)ds.$$
(3.2)

Then,

$$J(\sigma w) \leq \frac{a}{p} \sigma^p + \frac{\alpha}{2p} \sigma^{2p} - \lambda \frac{\sigma^{q+1}}{q+1} \int_0^1 h(s) A(r_0 s^{\frac{p-1}{p-N}}) (w(s))^{q+1} ds$$
$$+ \lambda \sigma \int_0^1 h(s) A(r_0 s^{\frac{p-1}{p-N}}) w(s) ds.$$

But

$$0 < \int_{0}^{1} h(s)A(r_0 s^{\frac{p-1}{p-N}})(w(s))^{q+1} ds \le k^{q+1} \|h\tilde{A}\|_1 \|w\|_{1,p}^{q+1} < \infty$$

and

$$0 < \int_{0}^{1} h(s)A(r_0 s^{\frac{p-1}{p-N}})w(s)ds \le k \|h\tilde{A}\|_1 \|w\|_{1,p} < \infty,$$

so $\lim_{\sigma \to +\infty} J(\sigma w) = -\infty$ since q > 2p - 1. This proves the lemma.

Lemma 3.4. There exists $\lambda_0 > 0$ such that for all $\lambda \in (0, \lambda_0)$ and $u \in W_0^{1,p}(0, 1)$ be such that $\|u\|_{1,p} = \lambda^{\frac{-1}{2(q+1-2p)}}$, we have $J(u) \geq \frac{\alpha}{4p} \lambda^{\frac{-p}{q+1-2p}}$.

Proof. Let $\lambda > 0$ and $u \in W_0^{1,p}(0,1)$ be such that

$$||u||_{1,p} = \lambda^{\frac{-1}{2(q+1-2p)}}.$$

We have

$$J(u) \geq \frac{a}{p} \lambda^{\frac{-p}{q(q+1-2p)}} + \frac{\alpha}{2p} \lambda^{\frac{-p}{q+1-2p}} - \lambda \int_{0}^{1} h(s) B_{1}(r_{0}s^{\frac{p-1}{p-N}}) (|u(s)|^{q+1} + 1) ds$$

$$\geq \frac{a}{p} \lambda^{\frac{-p}{2(q+1-2p)}} + \frac{\alpha}{2p} \lambda^{\frac{-p}{q+1-2p}} - \lambda ||u||_{\infty}^{q+1} ||h\tilde{B}_{1}||_{1} - \lambda ||h\tilde{B}_{1}||_{1}$$

$$\geq \frac{a}{p} \lambda^{\frac{-p}{2(q+1-2p)}} + \frac{\alpha}{2p} \lambda^{\frac{-p}{q+1-2p}} - k\lambda \lambda^{\frac{-(q+1)}{2(q+1-2p)}} - \lambda ||h\tilde{B}_{1}||_{1}$$

$$\geq \lambda^{\frac{-p}{q+1-2p}} \left(\frac{\alpha}{2p} + \frac{a}{p} \lambda^{\frac{p}{2(q+1-2p)}} - k ||h\tilde{B}_{1}||_{1} \lambda^{\frac{1}{2}} - ||h\tilde{B}_{1}||_{1} \lambda^{\frac{q+1-p}{q+1-2p}} \right).$$

Since

$$\lim_{\lambda \to 0} \frac{a}{p} \lambda^{\frac{p}{2(q+1-2p)}} - k \|h\tilde{B}_1\|_1 \lambda^{\frac{1}{2}} - \|h\tilde{B}_1\|_1 \lambda^{\frac{q+1-p}{q+1-2p}} = 0,$$

there exists $\lambda_0 > 0$ such that for all $\lambda \in (0, \lambda_0)$,

$$J(u) \ge \frac{\alpha}{4p} \lambda^{\frac{-p}{q+1-2p}},$$

which proves the lemma.

From Lemma 3.3 and Lemma 3.4, we can deduce that conditions (iii) and (iv) of Theorem 2.5 are satisfied. We have then proved that the functional J admits a critical value for $\lambda \approx 0$. We need to show that this critical point is positive.

3.3. POSITIVITY OF THE MPT SOLUTION

Let $r = \frac{1}{q+1-2p}$. We start with two lemmas.

Lemma 3.5. Let u_{λ} be a mountain pass solution to (1.1). Then there exists $M_0 > 0$ and $\lambda_1 > 0$ such that

$$||u_{\lambda}||_{\infty} \ge M_0 \lambda^{-r\frac{p}{q+1}}$$

for all $\lambda \in (0, \lambda_1)$.

Proof. Since u_{λ} is a mountain pass solution, we have

$$\begin{split} \lambda \int_{0}^{1} h(s) f(r_0 s^{\frac{p-1}{p-N}}, u_{\lambda}(s)) u_{\lambda}(s) ds &= a \|u_{\lambda}\|_{1,p}^p + \alpha \|u_{\lambda}\|_{1,p}^{2p} \\ &= pJ(u_{\lambda}) + \frac{\alpha}{2} \|u_{\lambda}\|_{1,p}^{2p} + p\lambda \int_{0}^{1} h(s) F(r_0 s^{\frac{p-1}{p-N}}, u_{\lambda}) ds \\ &\geq pJ(u_{\lambda}) + p\lambda \int_{\{u_{\lambda} \geq 0\}} h(s) F(r_0 s^{\frac{p-1}{p-N}}, u_{\lambda}(s)) ds \\ &+ p\lambda \int_{\{u_{\lambda} \geq 0\}} h(s) F(r_0 s^{\frac{p-1}{p-N}}, u_{\lambda}(s)) ds \\ &\geq pJ(u_{\lambda}) + p\lambda \int_{\{u_{\lambda} \geq 0\}} h(s) F(r_0 s^{\frac{p-1}{p-N}}, u_{\lambda}(s)) ds. \end{split}$$

In view of Remark 2.3 and the fact that u_{λ} satisfies

$$J(u_{\lambda}) \ge \frac{\alpha}{4p} \lambda^{-rp}$$
 for all $\lambda \in (0, \lambda_0)$,

we see that

$$\begin{split} \lambda \int_{0}^{1} h(s) f(r_0 s^{\frac{p-1}{p-N}}, u_{\lambda}) u_{\lambda} ds &\geq \frac{\alpha}{4} \lambda^{-rp} + p\lambda \int_{\{u_{\lambda} \geq 0\}} h(s) A_1(r_0 s^{\frac{p-1}{p-N}}) u_{\lambda}^{q+1} ds \\ &- C_1 p\lambda \int_{\{u_{\lambda} \geq 0\}} h(s) A_1(r_0 s^{\frac{p-1}{p-N}}) ds \\ &\geq \frac{\alpha}{4} \lambda^{-rp} - C_1 p\lambda \|h\tilde{A}_1\|_1 \geq \frac{\alpha}{8} \lambda^{-rp}, \end{split}$$

for all $\lambda \in \left(0, \min\left(\lambda_0, \left(\frac{\alpha}{8p\|h\tilde{A}_1\|_1}\right)^{\frac{1}{rp+1}}\right)\right)$. By Remark 2.1, for all

$$\lambda \in \left(0, \min\left(\lambda_0, \left(\frac{\alpha}{8p\|h\tilde{A}_1\|_1}\right)^{\frac{1}{rp+1}}, 1\right)\right),$$

we have

$$\|u_{\lambda}\|_{\infty}^{q+1} + \|u_{\lambda}\|_{\infty} \ge \frac{\alpha}{8\|h\max(\tilde{A}, \tilde{B})\|_1} \lambda^{-rp}.$$

Then, for all

$$\lambda \in \left(0, \min\left(\lambda_0, \left(\frac{\alpha}{8p\|h\tilde{A}_1\|_1}\right)^{\frac{1}{rp+1}}, 1, \left(\frac{\alpha}{16\|h\max(\tilde{A}, \tilde{B})\|_1}\right)^{\frac{1}{rp}}\right)\right),$$

we have $||u_{\lambda}||_{\infty} \geq 1$, so

$$\|u_{\lambda}\|_{\infty}^{q+1} \ge \frac{\alpha}{16\|h\max(\tilde{A},\tilde{B})\|_{1}}\lambda^{-rp},$$

or

$$\|u_{\lambda}\|_{\infty} \ge \left(\frac{\alpha}{16\|h\max(\tilde{A},\tilde{B})\|_{1}}\right)^{\frac{1}{q+1}} \lambda^{-r\frac{p}{q+1}}.$$

Taking

$$M_0 = \left(\frac{\alpha}{16\|h\max(\tilde{A}, \tilde{B})\|_1}\right)^{\frac{1}{q+1}}$$

and

$$\lambda_1 = \min\left(\lambda_0, \left(\frac{\alpha}{8p\|h\tilde{A}_1\|_1}\right)^{\frac{1}{rp+1}}, 1, \left(\frac{\alpha}{16\|h\max(\tilde{A}, \tilde{B})\|_1}\right)^{\frac{1}{rp}}\right)$$

completes the proof of the lemma.

Lemma 3.6. Let u_{λ} be a mountain pass solution of (1.2). Then there exists $C_0 > 0$ and $\lambda_2 > 0$ such that

$$||u_{\lambda}||_{1,p} \le C_0 \lambda^{-r},$$

for all $\lambda \in (0, \lambda_2)$.

Proof. Since u_{λ} is a solution of (1.2), by Remark 2.2, we have

$$\begin{split} a\|u_{\lambda}\|_{1,p}^{p} &+ \frac{\alpha}{2}\|u_{\lambda}\|_{1,p}^{2p} = pJ(u_{\lambda}) + p\lambda \int_{0}^{1} h(s)F(r_{0}s^{\frac{p-1}{p-N}}, u_{\lambda}(s))ds \\ &= pJ(u_{\lambda}) + p\lambda \int_{\{u_{\lambda} < 0\}} h(s)F(r_{0}s^{\frac{p-1}{p-N}}, u_{\lambda}(s))ds \\ &+ p\lambda \int_{\{u_{\lambda} < 0\}} h(s)F(r_{0}s^{\frac{p-1}{p-N}}, u_{\lambda}(s))ds \\ &\leq pJ(u_{\lambda}) + p\lambda \int_{\{u_{\lambda} < 0\}} h(s)u_{\lambda}(s)f(r_{0}s^{\frac{p-1}{p-N}}, 0)ds \\ &+ p\lambda \int_{\{u_{\lambda} \geq 0\}} \frac{h(s)}{\theta} \left(u_{\lambda}(s)f(r_{0}s^{\frac{p-1}{p-N}}, u_{\lambda}(s)) + \theta_{1}(r_{0}s^{\frac{p-1}{p-N}}) \right) ds \\ &\leq pJ(u_{\lambda}) + p\lambda \int_{\{u_{\lambda} < 0\}} h(s)u_{\lambda}(s)f(r_{0}s^{\frac{p-1}{p-N}}, 0)ds \\ &+ \frac{p}{\theta}\lambda \int_{0}^{1} h(s) \left(u_{\lambda}(s)f(r_{0}s^{\frac{p-1}{p-N}}, u_{\lambda}(s)) + \theta_{1}(r_{0}s^{\frac{p-1}{p-N}}) \right) ds \\ &= pJ(u_{\lambda}) + p\lambda \int_{\{u_{\lambda} < 0\}} h(s)u_{\lambda}(s)f(r_{0}s^{\frac{p-1}{p-N}}, 0)ds \\ &+ \frac{p}{\theta}\lambda \int_{0}^{1} h(s) \left(u_{\lambda}(s)f(r_{0}s^{\frac{p-1}{p-N}}, 0) + \theta_{1}(r_{0}s^{\frac{p-1}{p-N}}) \right) ds \\ &\leq pJ(u_{\lambda}) + \frac{p}{\theta}\lambda \int_{0}^{1} h(s)u_{\lambda}(s)f(r_{0}s^{\frac{p-1}{p-N}}, 0) + \theta_{1}(r_{0}s^{\frac{p-1}{p-N}}) ds \\ &\leq pJ(u_{\lambda}) + \frac{p}{\theta}\lambda \int_{0}^{1} h(s)u_{\lambda}(s)f(r_{0}s^{\frac{p-1}{p-N}}, 0) + \theta_{1}(r_{0}s^{\frac{p-1}{p-N}}) ds \\ &\leq pJ(u_{\lambda}) + \frac{p}{\theta}\lambda \int_{0}^{1} h(s)u_{\lambda}(s)f(r_{0}s^{\frac{p-1}{p-N}}, 0) + \theta_{1}(r_{0}s^{\frac{p-1}{p-N}}) ds \\ &\leq pJ(u_{\lambda}) + \frac{p}{\theta}(a\|u_{\lambda}\|_{1,p}^{p} + \alpha\|u_{\lambda}\|_{1,p}^{2p}) \\ &+ \frac{p}{\theta}\lambda\|h\tilde{\theta}_{1}\|_{1} + p\lambda(1 - \frac{1}{\theta}) \int_{\{u_{\lambda} < 0\}} h(s)u_{\lambda}(s)f(r_{0}s^{\frac{p-1}{p-N}}, 0) ds \\ &\leq pJ(u_{\lambda}) + \frac{p}{\theta}(a\|u_{\lambda}\|_{1,p}^{p} + \alpha\|u_{\lambda}\|_{1,p}^{2p}) \\ &+ \frac{p}{\theta}\lambda\|h\tilde{\theta}_{1}\|_{1} + p\lambda \|u_{\lambda}\|_{1,p}\|hmx(\tilde{A}, \tilde{B})\|_{1}. \end{split}$$

Then,

$$a\left(1-\frac{p}{\theta}\right)\|u_{\lambda}\|_{1,p}^{p}+\left(\frac{\alpha}{2}-\frac{p\alpha}{\theta}\right)\|u_{\lambda}\|_{1,p}^{2p} \le pJ(u_{\lambda})+\frac{p}{\theta}\lambda\|h\tilde{\theta}_{1}\|_{1}+p\lambda k'\|u_{\lambda}\|_{1,p}, \quad (3.3)$$

where $k' = k \|h \max(\tilde{A}, \tilde{B})\|_1$. On the other hand, since u_{λ} is a mountain pass solution, we have $J(u_{\lambda}) \leq \max_{\sigma \geq 0} J(\sigma w)$ where w > 0 is such that $\|w\|_{1,p} = 1$, and so

in view of Remark 2.3,

$$J(u_{\lambda}) \leq \max_{\sigma \geq 0} \frac{a}{p} \sigma^p + \frac{\alpha}{2p} \sigma^{2p} - \frac{\lambda}{q+1} D_1 \sigma^{q+1} + C_1 \lambda \|h\tilde{A}_1\|_1,$$

where

$$0 < D_1 := \int_0^1 hA_1(r_0 s^{\frac{p-1}{p-N}}) w(s)^{q+1} ds \le k^{q+1} \|h\tilde{A}_1\|_1 \|w\|_{1,p}^{q+1} < \infty.$$

Let

$$P(\sigma) = \frac{\alpha}{2p}\sigma^{2p} + \frac{a}{p}\sigma^p - \frac{C\lambda}{q+1}\sigma^{q+1} + C_1\lambda \|h\tilde{A}_1\|_1,$$

$$P_1(\sigma) = \left(\frac{a}{p} + \frac{\alpha}{2p}\right)\sigma^p - \frac{C\lambda}{q+1}\sigma^{q+1} + C_1\lambda \|h\tilde{A}_1\|_1$$

and

$$P_2(\sigma) = \left(\frac{a}{p} + \frac{\alpha}{2p}\right)\sigma^{2p} - \frac{C\lambda}{q+1}\sigma^{q+1} + C_1\lambda \|h\tilde{A}_1\|_1$$

On [0,1], $P(\sigma) \leq P_1(\sigma)$ and on $(1,+\infty)$, $P(\sigma) \leq P_2(\sigma)$. Also, $P_1(\sigma)$ is maximized for $\sigma_1 = \tilde{K}_1^{\frac{1}{q+1-p}} \lambda^{\frac{-1}{q+1-p}}$ and $P_2(\sigma)$ is maximized for $\sigma_2 = \tilde{K}_2^r \lambda^{-r}$, where $\tilde{K}_1 = \frac{2a+\alpha}{2C}$ and $\tilde{K}_2 = \frac{2a+\alpha}{C}$. Note that if $\lambda \leq 1$, then $\lambda \leq \lambda^{-2pr}$, $\lambda \leq \lambda^{\frac{-p}{q+1-p}}$ and $\lambda^{\frac{-p}{q+1-p}} \leq \lambda^{-2pr}$. Therefore,

$$pP_{1}(\sigma) + \frac{p}{\theta}\lambda \|h\tilde{\theta}_{1}\|_{1} \leq \left(a + \frac{\alpha}{2}\right)\tilde{K}_{1}^{\frac{p}{q+1-p}}\lambda^{\frac{-p}{q+1-p}} + \lambda p\left(C_{1}\|h\tilde{A}_{1}\|_{1} + \frac{\|h\tilde{\theta}_{1}\|_{1}}{\theta}\right)$$
$$\leq \lambda^{\frac{-p}{q+1-p}}\left(\left(a + \frac{\alpha}{2}\right)\tilde{K}_{1}^{\frac{p}{q+1-p}} + p\left(C_{1}\|h\tilde{A}_{1}\|_{1} + \frac{\|h\tilde{\theta}_{1}\|_{1}}{\theta}\right)\right)$$
$$\leq \lambda^{-2pr}\left(\left(a + \frac{\alpha}{2}\right)\tilde{K}_{1}^{\frac{p}{q+1-p}} + p\left(C_{1}\|h\tilde{A}_{1}\|_{1} + \frac{\|h\tilde{\theta}_{1}\|_{1}}{\theta}\right)\right)$$
$$= \tilde{C}_{1}\lambda^{-2pr}$$

and

$$pP_2(\sigma) + \frac{p}{\theta}\lambda \|h\tilde{\theta}_1\|_1 \le \left(a + \frac{\alpha}{2}\right)\tilde{K}_2^{2pr}\lambda^{-2pr} + \lambda p\left(C_1\|h\tilde{A}_1\|_1 + \frac{\|h\tilde{\theta}_1\|_1}{\theta}\right)$$
$$\le \lambda^{-2pr}\left(\left(a + \frac{\alpha}{2}\right)\tilde{K}_2^{2pr} + p\left(C_1\|h\tilde{A}_1\|_1 + \frac{\|h\tilde{\theta}_1\|_1}{\theta}\right)\right)$$
$$= \tilde{C}_2\lambda^{-2pr}.$$

Setting $\tilde{C}_3 = \max(\tilde{C}_1, \tilde{C}_2)$ gives

$$pJ(u_{\lambda}) + \frac{p}{\theta}\lambda \|h\tilde{\theta}_1\|_1 \le \tilde{C}_3\lambda^{-2pr},$$

and from (3.3), we have

$$\left(\frac{\alpha}{2} - \frac{p\alpha}{\theta}\right) \|u_{\lambda}\|_{1,p}^{2p} \le \tilde{C}_{3}\lambda^{-2pr} + p\lambda k' \|u_{\lambda}\|_{1,p}.$$

By Lemma 3.5, for all $\lambda \in (0, \lambda_1)$,

$$||u_{\lambda}||_{1,p} \ge \frac{1}{k} ||u_{\lambda}||_{\infty} \ge \frac{M_0}{k} \lambda^{-r \frac{p}{q+1}}$$

Then for all $\lambda \in \left(0, \min(\lambda_1, \left(\frac{M_0}{k}\right)^{\frac{q+1}{rp}}\right)$, we have $\|u_\lambda\|_{1,p} \ge 1$, so $\left(\frac{\alpha}{2} - \frac{p\alpha}{\theta}\right) \|u_\lambda\|_{1,p}^{2p} \le \tilde{C}_3 \lambda^{-2pr} + p\lambda k' \|u_\lambda\|_{1,p}^{2p}.$

This implies

$$\left(\frac{\alpha}{2} - \frac{p\alpha}{\theta} - p\lambda k'\right) \|u_{\lambda}\|_{1,p}^{2p} \leq \tilde{C}_{3}\lambda^{-2pr}.$$

Hence, for all $\lambda \in \left(0, \min\left(\lambda_{1}, \left(\frac{M_{0}}{k}\right)^{\frac{q+1}{rp}}, \frac{\alpha(\theta-2p)}{4\theta pk'}\right)\right)$, we have
$$\frac{\alpha(\theta-2p)}{4\theta} \|u_{\lambda}\|_{1,p}^{2p} \leq \tilde{C}_{3}\lambda^{-2pr}.$$

10

Taking $C_0 = \frac{4\theta \tilde{C}_3}{\alpha(\theta-p)}$ and $\lambda_2 = \min(\lambda_1, \left(\frac{M_0}{k}\right)^{\frac{q+1}{r_p}}, \frac{\alpha(\theta-2p)}{4\theta pk'})$, we see that the lemma is proved.

To prove the positivity of the mountain pass solution, assume to the contrary, that there exists a sequence $\{(\lambda_i, u_{\lambda_i})\}_{i=1}^{\infty} \subset (0, 1) \times C([0, 1])$ of mountain pass solutions to (1.2) such that $\lambda_i \to 0$ as $i \to \infty$ and $m(\{x \in (0, 1) : u_{\lambda_i}(x) \leq 0\}) > 0$. Let $w_i = \frac{u_{\lambda_i}}{\|u_{\lambda_i}\|_{\infty}}$. Since

$$-(\phi_p(u'_{\lambda_i}))' = \frac{\lambda_i h(s) f(r_0 s^{\frac{p-1}{p-N}}, u_{\lambda_i})}{a + \alpha \|u_{\lambda_i}\|_{1,p}^p},$$

we have

$$-(\phi_p(w_i'))' = \frac{\lambda_i h(s) f(r_0 s^{\frac{p-1}{p-N}}, u_{\lambda_i})}{a + \alpha \|u_{\lambda_i}\|_{1,p}^p} \|u_{\lambda_i}\|_{\infty}^{1-p}$$

From Remark 2.1 and Lemmas 3.5 and 3.6, we obtain

$$\begin{aligned} \left| \frac{\lambda_i f(r_0 s^{\frac{p-1}{p-N}}, u_{\lambda_i})}{a + \alpha \| u_{\lambda_i} \|_{1,p}^p} \| u_{\lambda_i} \|_{\infty}^{1-p} \right| &\leq \left(\frac{\lambda_i \| u_{\lambda_i} \|_{\infty}^{q+1-p}}{\alpha \| u_{\lambda_i} \|_{1,p}^p} + \frac{\lambda_i}{a} M_0^{1-p} \lambda_i^{\frac{-r_p(1-p)}{q+1}} \right) \max(\tilde{A}, \tilde{B}) \\ &\leq \left(\frac{\lambda_i}{\alpha} k^{q+1-p} \| u_{\lambda_i} \|_{1,p}^{\frac{1}{r}} + \frac{M_0^{1-p}}{a} \right) \max(\tilde{A}, \tilde{B}) \\ &\leq \left(\frac{\lambda_i}{\alpha} k^{q+1-p} C_0^{\frac{1}{r}} \lambda_i^{-1} + \frac{M_0^{1-p}}{a} \right) \max(\tilde{A}, \tilde{B}) \\ &\leq D_2 \max(\tilde{A}(s), \tilde{B}(s)), \end{aligned}$$

where

$$D_2 = \frac{k^{q+1-p}C_0^{\frac{1}{r}}}{\alpha} + \frac{M_0^{1-p}}{a}.$$

So for all $s \in (0, 1)$, the sequence $\left\{\frac{\lambda_i f(r_0 s^{\frac{p-1}{p-N}}, u_{\lambda_i})}{a+\alpha \|u_{\lambda_i}\|_{1,p}^p} \|u_{\lambda_i}\|_{\infty}^{1-p}\right\}$ is bounded. Thus, there exists a subsequence (named the same) that converges to a limit $z_1(s)$. Moreover, $z_1(s) \ge 0$ since

$$z_1(s) = \lim_{i \to \infty} \frac{\lambda_i f(r_0 s^{\frac{p-1}{p-N}}, u_{\lambda_i})}{a + \alpha \|u_{\lambda_i}\|_{1,p}^p} \|u_{\lambda_i}\|_{\infty}^{1-p} \ge \lim_{i \to \infty} \frac{\lambda_i f(r_0 s^{\frac{p-1}{p-N}}, 0)}{a + \alpha \|u_{\lambda_i}\|_{1,p}^p} \|u_{\lambda_i}\|_{\infty}^{1-p} = 0.$$

Hence, for all $s \in (0,1)$, the sequence $\left\{\frac{\lambda_i h(s)f(r_0 s^{\frac{p-1}{p-N}}, u_{\lambda_i})}{a+\alpha \|u_{\lambda_i}\|_{1,p}^p} \|u_{\lambda_i}\|_{\infty}^{1-p}\right\}$ converges to $z(s) = h(s)z_1(s) \ge 0.$

Let $s_i \in (0, 1)$ be a maximum of w_i . Then,

$$\phi_p(w_i'(s)) = \int_{s}^{s_i} (-\phi_p(w_i'(\sigma)))' d\sigma = \int_{s}^{s_i} \frac{\lambda_i h(\sigma) f(r_0 \sigma^{\frac{p-1}{p-N}}, u_{\lambda_i}(\sigma))}{a + \alpha \|u_{\lambda_i}\|_{1,p}^p} \|u_{\lambda_i}\|_{\infty}^{1-p} d\sigma.$$

From (3.4),

$$|w_{i}^{'}(s)|^{p-1} = |\phi_{p}(w_{i}^{'}(s))| \leq \int_{s}^{s_{i}} C \max(\tilde{A}(\sigma), \tilde{B}(\sigma))h(\sigma)d\sigma \leq C \|\max(\tilde{A}, \tilde{B})h\|_{1},$$

so $|w'_i(s)| \leq \|\max(\tilde{A}, \tilde{B})h\|_1^{\frac{1}{p-1}}$ for all $s \in [0, 1]$. By the Arzelà-Ascoli theorem, there exists $w \in C([0, 1])$ such that $w_i \to w$ in C([0, 1]).

Since (s_i) is bounded, there exists a subsequence (again denote by (s_i)) that converges to some s_0 . Again by (3.4), we have

$$\left|\frac{\lambda_i f(r_0 s^{\frac{p-1}{p-N}}, u_{\lambda_i})}{a+\alpha \|u_{\lambda_i}\|_{1,p}^p}\right| \|u_{\lambda_i}\|_{\infty}^{1-p} \le C \max(\tilde{A}(s), \tilde{B}(s))h(s).$$

Since $\max(\tilde{A}, \tilde{B})h \in L^1(0, 1)$, by the Lebesgue dominated convergence theorem,

$$\int_{s}^{s_{i}} \frac{\lambda_{i}h(\sigma)f(r_{0}\sigma^{\frac{p-1}{p-N}}, u_{\lambda_{i}}(\sigma))}{a+\alpha \|u_{\lambda_{i}}\|_{1,p}^{p}} \|u_{\lambda_{i}}\|_{\infty}^{1-p} d\sigma \to \int_{s}^{s_{0}} z(\sigma)d\sigma.$$

Therefore,

$$\phi_p^{-1}\left(\int\limits_s^{s_i} \frac{\lambda_i h(\sigma) f(r_0 \sigma^{\frac{p-1}{p-N}}, u_{\lambda_i}(\sigma))}{a + \alpha \|u_{\lambda_i}\|_{1,p}^p} \|u_{\lambda_i}\|_{\infty}^{1-p} d\sigma\right) \to \phi_p^{-1}\left(\int\limits_s^{s_0} z(\sigma) d\sigma\right),$$

so we get

$$\int_{0}^{\tau} \phi_p^{-1} \left(\int_{s}^{s_i} \frac{\lambda_i h(\sigma) f(r_0 \sigma^{\frac{p-1}{p-N}}, u_{\lambda_i}(\sigma))}{a + \alpha \|u_{\lambda_i}\|_{1,p}^p} \|u_{\lambda_i}\|_{\infty}^{1-p} d\sigma \right) ds \to \int_{0}^{\tau} \phi_p^{-1} \left(\int_{s}^{s_0} z(\sigma) d\sigma \right) ds.$$

We see that

$$w_i(\tau) \to \int_0^\tau \phi_p^{-1}\left(\int_s^{s_0} z(\sigma)d\sigma\right) ds = w(\sigma),$$

and so

$$w_i'(\tau) = \phi_p^{-1} \left(\int_{\tau}^{s_i} \frac{\lambda_i h(\sigma) f(r_0 \sigma^{\frac{p-1}{p-N}}, u_{\lambda_i}(\sigma))}{a + \alpha \|u_{\lambda_i}\|_{1,p}^p} \|u_{\lambda_i}\|_{\infty}^{1-p} d\sigma \right)$$

converges to $\phi_p^{-1}\left(\int_{\tau}^{s_0} z(\sigma) d\sigma\right) = w'(\tau)$ for all $\tau \in [0, 1]$. Hence, $-(\phi_p(w'))' = z \ge 0$ with w(0) = 0 = w(1). Since $||w||_{\infty} = 1$, clearly $w \ne 0$. Then, since w is concave, w > 0in (0, 1), w'(0) > 0, and w'(1) < 0. Because $w_i \to w$ in C([0, 1]), we conclude that $w_i(s) > 0$ for all $s \in (0, 1)$ for i sufficiently large. Hence, $u_{\lambda_i}(s) > 0$ for all $s \in (0, 1)$ for i sufficiently large. This contradicts $m(\{x \in (0, 1) : u_{\lambda_i}(x) \le 0\}) > 0$ for all sufficiently large i.

Thus, the mountain pass solution is positive, and this completes the proof of Theorem 1.5.

REFERENCES

- N. Aissaoui, W. Long, Positive solutions for a Kirchhoff equation with perturbed source terms, Acta Math. Scientia 42 (2022), 1817–1830.
- [2] C.O. Alves, F.J.S.A. Corrêa, T.F. Ma, Positive solutions for a quasilinear elliptic equation of Kirchhoff type, Comput. Math. Appl. 49 (2005), 85–93.
- [3] A. Ambrosetti, P.H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal. 14 (1973), 349–381.
- [4] M. Badiale, E. Serra, Semilinear Elliptic Equations for Beginners. Existence Results via the Variational Approach, Universitext, Springer, London, 2011.
- [5] H. Brézis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Springer, New York, 2010.
- [6] D. Butler, E. Ko, E.K. Lee, R. Shivaji, Positive radial solutions for elliptic equations on exterior domains with nonlinear boundary conditions, Comm. Pure Appl. Anal. 13 (2014), 2713–2731.
- [7] A. Castro, R. Shivaji, Nonnegative solutions for a class of nonpositone problems, Proc. Roy. Soc. Edinburgh Sect. A 108 (1988), 291–302.
- [8] A. Castro, D.G. de Figueiredo, E. Lopera, Existence of positive solutions for a semipositone p-Laplacian problem, Proc. Roy. Soc. Edinburgh Sect. A 146 (2016), 475–482.

- [9] R. Dhanya, Q. Morris, R. Shivaji, Existence of positive radial solutions for superlinear semipositone problems on the exterior of a ball, J. Math. Anal. Appl. 434 (2016), 1533–1548.
- [10] M. Ding, C. Zhang, S. Zhou, Local boundedness and Hölder continuity for the parabolic fractional p-Laplace equations, Calc. Var. Partial Differential Equations 60 (2021), Article no. 38.
- [11] L. Gasinski, N.S. Papageorgiou, Nonsmooth Critical Point Theory and Nonlinear Boundary Value Problems, Series in Mathematical Analysis and Applications, vol. 8, Chapman & Hall/CRC, Boca Raton, 2005.
- [12] J.R. Graef, S. Heidarkhani, L. Kong, A variational approach to a Kirchhoff-type problem involving two parameters, Results Math. 63 (2013), 877–889.
- [13] J.R. Graef, S. Heidarkhani, L. Kong, Variational-hemivariational inequalities of Kirchhoff-type with small perturbations of nonhomogeneous Neumann boundary conditions, Math. Eng. Sci. Aero. 8 (2017), 345–357.
- [14] J.R. Graef, S. Heidarkhani, L. Kong, S. Moradi, On an anisotropic discrete boundary value problem of Kirchhoff type, J. Difference Equ. Appl. 27 (2021), 1103–1119.
- [15] J.R. Graef, S. Heidarkhani, L. Kong, A. Ghobadi, Existence of multiple solutions to a P-Kirchhoff problem, Differ. Equ. Appl. 14 (2022), 227–237.
- [16] L. Guo, Y. Sun, G. Shi, Ground states for fractional nonlocal equations with logarithmic nonlinearity, Opuscula Math. 42 (2022), 157–178.
- [17] D.D. Hai, Positive radial solutions for singular quasilinear elliptic equations in a ball, Publ. Res. Inst. Math. Sci. 50 (2014), 341–362.
- [18] W. He, D. Qin, Q. Wu, Existence, multiplicity and nonexistence results for Kirchhoff type equations, Adv. Nonlinear Anal. 10 (2021), 616–635.
- [19] G. Kirchhoff, *Mechanik*, Teubner, Leipzig, 1883.
- [20] Q. Morris, R. Shivaji, I. Sim, Existence of positive radial solutions for a superlinear semipositone p-Laplacian problem on the exterior of a ball, Proc. Roy. Soc. Edinburgh Sect. A 148 (2018), 409–428.
- [21] H. Pi, Y. Zeng, Existence results for the Kirchhoff type equation with a general nonlinear term, Acta Math. Scientia 42 (2022), 2063–2077.
- [22] D. Qin, V.D. Radulescu, X. Tang, Ground states and geometrically distinct solutions for periodic Choquard–Pekar equations, J. Differential Equations 275 (2021), 652–683.
- [23] J. Smoller, A. Wasserman, Existence of positive solutions for semilinear elliptic equations in general domains, Arch. Ration. Mech. Anal. 98 (1987), 229–249.
- [24] L. Wang, K. Xie, B. Zhang, Existence and multiplicity of solutions for critical Kirchhoff-type p-Laplacian problems, J. Math. Anal. Appl. 458 (2018), 361–378.

John R. Graef (corresponding author) john-graef@utc.edu bhttps://orcid.org/0000-0002-8149-4633

University of Tennessee at Chattanooga Department of Mathematics Chattanooga, TN 37403, USA

Doudja Hebboul doudja.hebboul@g.ens-kouba.dz

Ecole Normale Supérieure Laboratory of Partial Differential Equations and History of Mathematics Kouba, Algiers, Algeria

Toufik Moussaoui toufik.moussaoui@g.ens-kouba.dz

Ecole Normale Supérieure Laboratory of Fixed Point Theory and Applications Kouba, Algiers, Algeria

Received: August 17, 2022. Revised: November 7, 2022. Accepted: November 8, 2022.