# EXISTENCE OF POSITIVE RADIAL SOLUTIONS TO A p-LAPLACIAN KIRCHHOFF TYPE PROBLEM ON THE EXTERIOR OF A BALL 

John R. Graef, Doudja Hebboul, and Toufik Moussaoui<br>Communicated by Vicentiu D. Rădulescu

Abstract. In this paper the authors study the existence of positive radial solutions to the Kirchhoff type problem involving the $p$-Laplacian

$$
-\left(a+b \int_{\Omega_{e}}|\nabla u|^{p} d x\right) \Delta_{p} u=\lambda f(|x|, u), x \in \Omega_{e}, \quad u=0 \text { on } \partial \Omega_{e}
$$

where $\lambda>0$ is a parameter, $\Omega_{e}=\left\{x \in \mathbb{R}^{N}:|x|>r_{0}\right\}, r_{0}>0, N>p>1, \Delta_{p}$ is the $p$-Laplacian operator, and $f \in C\left(\left[r_{0},+\infty\right) \times[0,+\infty), \mathbb{R}\right)$ is a non-decreasing function with respect to its second variable. By using the Mountain Pass Theorem, they prove the existence of positive radial solutions for small values of $\lambda$.

Keywords: Kirchhoff problem, p-Laplacian, positive radial solution, variational methods.

Mathematics Subject Classification: 35A01, 35A15, 35B38, 35D30, 35J92.

## 1. INTRODUCTION

The aim of this work is to prove the existence of positive radial solutions on the exterior of a ball to the Kirchhoff type problem

$$
\begin{cases}-\left(a+b \int_{\Omega_{e}}|\nabla u|^{p} d x\right) \Delta_{p} u=\lambda f(|x|, u), & x \in \Omega_{e}  \tag{1.1}\\ u(x)=0, & |x|=r_{0} \\ u(x) \rightarrow 0, & |x| \rightarrow \infty\end{cases}
$$

where $a$ and $b$ are positive constants, $\lambda>0$ is a parameter, $\Omega_{e}=\left\{x \in \mathbb{R}^{N}:|x|>r_{0}\right\}$, $r_{0}>0, N>p>1, \Delta_{p}$ is the $p$-Laplacian operator $\left(\Delta_{p} u=\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right)\right)$, and $f:\left[r_{0},+\infty\right) \times[0,+\infty) \rightarrow \mathbb{R}$ is continuous and is non-decreasing in its second variable.

Note that Kirchhoff type problems are nonlinear, and as such present several interesting challenges; see, for instance, the recent work in $[1,2,12-15,18,21,24]$ for various issues and applications. Additional work on $p$-Laplacian problems can be found in $[6-10,17,20,23]$ and other related results in $[16,22]$.

In $[7,8,17,23]$, the equations considered are of the form

$$
\Delta_{p} u=\lambda f(u) \quad \text { in } \Omega
$$

with Dirichlet boundary conditions, where $\Omega$ is a bounded domain in $\mathbb{R}^{N}$. Concerning the existence of positive radial solutions to a class of $p$-Laplacian problems on the exterior of a ball, we mention the papers [9] for $p=2$ and [20] for any $p>1$. In these articles the equation is of the form $-\Delta_{p} u=\lambda K(|x|) f(u)$ and the authors appeal to the Mountain Pass Theorem (MPT).

Notice that our problem (1.1) can be written as

$$
\begin{cases}-M\left(\int_{\Omega_{e}}|\nabla u|^{p} d x\right) \Delta_{p} u=\lambda f(|x|, u), & x \in \Omega_{e} \\ u(x)=0, & |x|=r_{0} \\ u(x) \rightarrow 0, & |x| \rightarrow \infty\end{cases}
$$

where $M(\zeta)=a+b \zeta$.
In the case where $p=2$ and $M$ is any positive function defined on $\mathbb{R}^{+}$(with some additional conditions), problems of the type

$$
\begin{cases}-M\left(\int_{\Omega}|\nabla u|^{2} d x\right) \Delta u=f(x, u), & \text { in } \Omega \\ u=0, & \text { on } \partial \Omega\end{cases}
$$

where $\Omega$ a bounded domain in $\mathbb{R}^{N}$, have physical motivations. For example, the Kirchhoff operator $M\left(\int_{\Omega}|\nabla u|^{2} d x\right) \Delta u$ appears in nonlinear vibration equations such as

$$
\begin{cases}u_{t t}-M\left(\int_{\Omega}|\nabla u|^{2} d x\right) \Delta u=f(x, u), & \text { in } \Omega \times(0, T) \\ u=0, & \text { on } \partial \Omega \times(0, T) \\ u(x, 0)=u_{0}(x), u_{t}(x, 0)=u_{1}(x) & \end{cases}
$$

Such equations generalize to higher dimensions the equation studied by Kirchhoff [19],

$$
\rho \frac{\partial^{2} u}{\partial t^{2}}-\left(\frac{P_{0}}{h}+\frac{E}{2 L} \int_{0}^{L}\left|\frac{\partial u}{\partial x}\right|^{2} d x\right) \frac{\partial^{2} u}{\partial x^{2}}=0
$$

as an extension of the classical D'Alembert wave equation for free vibrations of elastic strings.

Kirchhoff type problems have been treated in many papers. For example, in [2], by using truncations and the MPT, the authors proved the existence of solutions to the problem

$$
\begin{cases}-M\left(\int_{\Omega}|\nabla u|^{2} d x\right) \Delta u=f(x, u), & \text { in } \Omega \\ u=0, & \text { on } \partial \Omega\end{cases}
$$

where $\Omega$ is a bounded smooth domain in $\mathbb{R}^{N}$. In [18], He et al. considered a similar problem where $\Omega$ is a bounded domain in $\mathbb{R}^{3}$ or is all of $\mathbb{R}^{3}$, and instead of $f(t, u)$, they had $f(u)+h$ with $h \geq 0$ and $h \in L^{2}(\Omega)$. In [24], Wang et al. also took $\Omega$ to also be a bounded and smooth domain in $\mathbb{R}^{N}$ and used the MPT to prove the existence of solutions to the problem

$$
\left\{\begin{aligned}
-M\left(\int_{\Omega}|\nabla u|^{p} d x\right) \Delta_{p} u=\lambda f(x, u)+|u|^{p^{\star}-2} u, & \text { in } \Omega \\
u=0, & \text { on } \partial \Omega
\end{aligned}\right.
$$

for all $\lambda$ greater than some $\lambda^{\star}>0$, where $p^{\star}=\frac{N p}{N-p}$. An important feature of that study is that $M$ could be zero at zero. Additional recent results on Kirchhoff type problems can be found in $[1,12-15,21]$.

Extending the ideas in $[9,20]$, instead of $\Delta_{p} u$, we consider a Kirchhoff type operator and generalize the term $K(|x|) f(u)$ to $f(|x|, u)$, where $f:\left[r_{0},+\infty\right) \times[0,+\infty) \rightarrow \mathbb{R}$ is continuous, non-decreasing in its second variable, and satisfies:
(F1) there exist continuous functions $A, B:\left[r_{0},+\infty\right) \rightarrow(0,+\infty)$ with $q>2 p-1$ and $\mu \in\left(0, \frac{N-p}{p-1}\right)$ such that

$$
A(\xi)\left(t^{q}-1\right) \leq f(\xi, t) \leq B(\xi)\left(t^{q}+1\right) \quad \text { for all }(\xi, t) \in\left[r_{0},+\infty\right) \times[0,+\infty)
$$

where $A(\xi), B(\xi) \leq \frac{1}{\xi^{N+\mu}}$ for $\xi \gg 1$,
(F2) for all $\xi \in\left[r_{0},+\infty\right), f(\xi, 0)<0$,
(F3) (Ambrosetti-Rabinowitz condition) There exists $\theta>2 p$ such that, for all sufficiently large $t$,

$$
t f(\xi, t)>\theta F(\xi, t) \quad \text { for all } \xi \geq r_{0}
$$

where $F(\xi, t)=\int_{0}^{t} f(\xi, \sigma) d \sigma$.
Applying the change of variables $r=|x|$ and $s=\left(\frac{r}{r_{0}}\right)^{\frac{p-N}{p-1}}$ transforms (1.1) into the boundary-value problem (see, for example, [6])

$$
\left\{\begin{array}{l}
-\left(a+\alpha \int_{0}^{1}\left|u^{\prime}\right|^{p} d \sigma\right)\left(\phi_{p}\left(u^{\prime}\right)\right)^{\prime}=\lambda h(s) f\left(r_{0} s^{\frac{p-1}{p-N}}, u(s)\right), \quad s \in(0,1)  \tag{1.2}\\
u(0)=u(1)=0
\end{array}\right.
$$

where

$$
\alpha=b N \omega_{N} r_{0}^{N-p}\left(\frac{N-p}{p-1}\right)^{p-1}, \quad \phi_{p}(\zeta)=|\zeta|^{p-2} \zeta, \quad h(s)=\left(r_{0} \frac{(p-1)}{(N-p)}\right)^{p} s^{\frac{-p(N-1)}{N-p}}
$$

and $\omega_{N}$ is the volume of the unit ball in $\mathbb{R}^{N}$.
Remark 1.1. If in (F1) we assume that $\mu \geq \frac{N-p}{p-1}$, this would imply that the functions defined by $h(s) B\left(r_{0} s^{\frac{p-1}{p-N}}\right)$ or $h(s) A\left(r_{0} s^{\frac{p-1}{p-N}}\right)$ are dominated in neighborhoods of zero by a continuous function on $[0,1]$, and in fact, we would have a simpler situation. But $\mu \in\left(0, \frac{N-p}{p-1}\right)$ implies the singularity of these functions at $s=0$, but they would still belong to $L^{1}(0,1)$.

Remark 1.2. Consider the function

$$
f(\xi, t)=\frac{1}{2 \xi^{\frac{7}{2}}}\left(2 t^{4}-1\right) .
$$

Then $f$ satisfies all of the above conditions for $N=3, p=2, q=4, \mu=\frac{1}{2}$, and $\theta=\frac{9}{2}$.
As a second example, we have the following.
Remark 1.3. Take $N=4, p=2$, and $q=4>2 p-1=3$. We need $\mu \in(0,2)$ so choose $\mu=1$. Let

$$
A(\xi)=\frac{2+\sin \xi}{\xi^{5}} \quad \text { and } \quad B(\xi)=\frac{(4-\cos \xi)\left(\xi^{2}+1\right)}{\xi^{7}}
$$

Then

$$
f(\xi, t)=\frac{3\left(\xi^{2}+1\right)}{\xi^{7}} \frac{\left(e^{t^{2}}-2\right)\left(t^{4}+1\right)}{e^{t^{2}}}
$$

satisfies all of the above conditions for some $\theta>4$.
Next, we define what is meant by a solution of our problem.
Definition 1.4. We say that $u \in W_{0}^{1, p}(0,1)$ is a weak solution of problem (1.2) if

$$
\left(a+\alpha\|u\|_{1, p}^{p}\right) \int_{0}^{1}\left|u^{\prime}(s)\right|^{p-2} u^{\prime}(s) v^{\prime}(s) d s=\lambda \int_{0}^{1} h(s) f\left(r_{0} s^{\frac{p-1}{p-N}}, u(s)\right) v(s) d s
$$

for all $v \in W_{0}^{1, p}(0,1)$.
We will establish the following theorem, which is our main result in this paper.
Theorem 1.5. Assume that (F1)-(F3) hold. Then (1.2) admits a positive weak solution for $\lambda \approx 0$.

## 2. PRELIMINARIES

In order to apply variational techniques such as the MPT, we extend the function $f$ to $\left[r_{0},+\infty\right) \times \mathbb{R}$ by setting $f(\xi, t)=f(\xi, 0)$ for $(\xi, t) \in\left[r_{0},+\infty\right) \times(-\infty, 0)$. We also need the Banach spaces $W_{0}^{1, p}(0,1), C[0,1]$, and $L^{r}(0,1)$ equipped their respective norms $\|\cdot\|_{1, p},\|\cdot\|_{\infty}$, and $\|\cdot\|_{r}$. We recall that $W_{0}^{1, p}(0,1)$ is compactly embedded in $C[0,1]$, and this implies that $\|u\|_{\infty} \leq k\|u\|_{1, p}$ for every $u$ in $W_{0}^{1, p}(0,1)$, where $k$ is a fixed positive constant (see [5]).
Remark 2.1. Let

$$
D=\left\{(\xi, t) \in\left[r_{0},+\infty\right) \times \mathbb{R}: f(\xi, t) \geq 0\right\}
$$

and

$$
D^{c}=\left\{(\xi, t) \in\left[r_{0},+\infty\right) \times \mathbb{R}: f(\xi, t)<0\right\}
$$

On $D$, we have

$$
|f(\xi, t)|=f(\xi, t) \leq B(\xi)\left(t^{q}+1\right)
$$

and on $D^{c}$,

$$
|f(\xi, t)| \leq A(\xi)
$$

Hence, for all $(\xi, t) \in\left[r_{0},+\infty\right) \times \mathbb{R}$,

$$
|f(\xi, t)| \leq \max (A(\xi), B(\xi))\left(|t|^{q}+1\right)
$$

and for every compact interval $I \subset \mathbb{R}$, there exists a constant $M_{I}$ such that

$$
|f(\xi, t)| \leq M_{I} \max (A(\xi), B(\xi)) \quad \text { for all } \xi \geq r_{0} \text { and all } t \in I
$$

Remark 2.2. If $f$ satisfies (F1) and (F3), then:
(F4) There exists a continuous function $\theta_{1}:\left[r_{0},+\infty\right) \rightarrow(0,+\infty)$ and a constant $C>0$ such that

$$
\theta_{1}(\xi) \leq \frac{C}{\xi^{N+\mu}}
$$

and

$$
t f(\xi, t)>\theta F(\xi, t)-\theta_{1}(\xi) \quad \text { for all }(\xi, t) \in\left[r_{0},+\infty\right) \times[0,+\infty)
$$

Remark 2.3. We note that (F1) implies that there exist continuous functions $A_{1}, B_{1}:\left[r_{0},+\infty\right) \rightarrow(0,+\infty)$ and a positive constant $C_{1}$ such that

$$
F(\xi, t) \leq B_{1}(\xi)\left(|t|^{q+1}+1\right) \text { for all }(\xi, t) \in\left[r_{0},+\infty\right) \times \mathbb{R}
$$

and

$$
F(\xi, t) \geq A_{1}(\xi)\left(t^{q+1}-C_{1}\right) \text { for all }(\xi, t) \in\left[r_{0},+\infty\right) \times[0,+\infty)
$$

Furthermore, $A_{1}(\xi), B_{1}(\xi) \leq \frac{1}{\xi^{N+\mu}}$ for $\xi \gg 1$, where $\mu$ is given in (F1). Notice that the second inequality above follows from the fact that $\frac{t^{q+1}}{q+1}-t \geq \frac{t^{q+1}}{2(q+1)}$ for all $t \geq(2(q+1))^{\frac{1}{q}}$.

Lemma 2.4. Let $J: W_{0}^{1, p}(0,1) \rightarrow \mathbb{R}$ be defined by

$$
J(u)=\frac{1}{p} \hat{M}\left(\|u\|_{1, p}^{p}\right)-\lambda K(u)
$$

where

$$
K(u)=\int_{0}^{1} h(s) F\left(r_{0} s^{\frac{p-1}{p-N}}, u(s)\right) d s
$$

and

$$
\hat{M}(t)=\int_{0}^{t} M(\sigma) d \sigma \quad \text { with } \quad M(t)=a+\alpha t
$$

Then $J$ is well defined, continuously differentiable, and for all $v \in W_{0}^{1, p}(0,1)$, its Gâteaux derivative is given by

$$
J^{\prime}(u)(v)=M\left(\|u\|_{1, p}^{p}\right) \int_{0}^{1}\left|u^{\prime}(s)\right|^{p-2} u^{\prime}(s) v^{\prime}(s) d s-\lambda \int_{0}^{1} h(s) f\left(r_{0} s^{\frac{p-1}{p-N}}, u(s)\right) v(s) d s .
$$

Proof. It is clear that $\hat{M}\left(\|u\|_{1, p}^{p}\right)$ is finite, and since $W_{0}^{1, p}(0,1) \hookrightarrow C[0,1]$, by Remark 2.1, for $I=\left[-\|u\|_{\infty},\|u\|_{\infty}\right]$, there exists $M_{I}>0$ such that

$$
\left|f\left(r_{0} s^{\frac{p-1}{p-N}}, \sigma\right)\right| \leq M_{I} \max \left(A\left(r_{0} s^{\frac{p-1}{p-N}}\right), B\left(r_{0} s^{\frac{p-1}{p-N}}\right)\right) \quad \text { for all } \sigma \in I
$$

Therefore,
$\int_{0}^{1}\left|h(s)\left\|\left.F\left(r_{0} s^{\frac{p-1}{p-N}}, u(s)\right)\left|d s \leq M_{I}\|u\|_{\infty} \int_{0}^{1} \max \left(A\left(r_{0} s^{\frac{p-1}{p-N}}\right), B\left(r_{0} s^{\frac{p-1}{p-N}}\right)\right)\right| h(s) \right\rvert\, d s<\infty\right.\right.$.
The functional $J$ is continuous. Moreover, if we set $L(u)=\|u\|_{1, p}^{p}$, then $\hat{M} \circ L$ is differentiable, and for all $v \in W_{0}^{1, p}(0,1)$,

$$
\frac{1}{p}(\hat{M} \circ L)^{\prime}(u)(v)=M\left(\|u\|_{1, p}^{p}\right) \int_{0}^{1}\left|u^{\prime}(s)\right|^{p-2} u^{\prime}(s) v^{\prime}(s) d s
$$

On the other hand, from the continuity of $f$, we see that $K$ is Gâteaux differentiable and its Gâteaux derivative is continuous. Hence, $K$ is continuously differentiable and

$$
K^{\prime}(u)(v)=\int_{0}^{1} h(s) f\left(r_{0} s^{\frac{p-1}{p-N}}, u(s)\right) v(s) d s \quad \text { for all } v \in W_{0}^{1, p}(0,1) .
$$

Therefore, $J$ is continuously differentiable, and for all $v \in W_{0}^{1, p}(0,1)$,

$$
J^{\prime}(u)(v)=M\left(\|u\|_{1, p}^{p}\right) \int_{0}^{1}\left|u^{\prime}(s)\right|^{p-2} u^{\prime}(s) v^{\prime}(s)-\lambda \int_{0}^{1} h(s) f\left(r_{0} s^{\frac{p-1}{p-N}}, u(s)\right) v(s) d s
$$

as we wished to show.
In order to prove our main result, Theorem 1.5 above, we will apply the Mountain Pass Theorem stated below.

Theorem 2.5 (Mountain Pass Theorem [3]). Let $X$ be a Banach space and let $J \in C^{1}(X ; \mathbb{R})$ satisfy:
(i) (Palais-Smale condition) any sequence $\left(u_{n}\right) \subset X$ such that $\left(J\left(u_{n}\right)\right)$ is bounded and $J^{\prime}\left(u_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$ possesses a convergent subsequence,
(ii) $J(0)=0$,
(iii) there exist $\nu, R>0$ such that $J(u) \geq \nu$ for all $u$ with $\|u\|_{X}=R$,
(iv) there exists $e \in X$ such that $\|e\|_{X}>R$ and $J(e)<0$.

In addition, let

$$
\Gamma:=\{\gamma \in C([0,1], X): \gamma(0)=0, \gamma(1)=e\}
$$

and

$$
\hat{c}:=\inf _{\gamma \in \Gamma} \max _{t \in[0,1]} J(\gamma(t)) .
$$

Then $\hat{c}$ is a critical value of the functional $J$.

## 3. PROOF OF THEOREM 1.5

In this section, we construct the proof of our main result. We begin by recalling that proving Theorem 1.5 is equivalent to proving that the functional $J$ defined above admits a positive critical point for $\lambda \approx 0$ (see[4]). As was seen in Lemma 2.4, the functional $J$ is in $C^{1}\left(W_{0}^{1, p}(0,1), \mathbb{R}\right)$, so we need to prove that $J$ satisfies the conditions of the MPT.

In the following, for all $s \in(0,1]$, we denote by $\tilde{A}(s), \tilde{B}(s), \tilde{A}_{1}(s), \tilde{B}_{1}(s)$, and $\tilde{\theta}_{1}(s)$ the quantities $A\left(r_{0} s^{\frac{p-1}{p-N}}\right), B\left(r_{0} s^{\frac{p-1}{p-N}}\right), A_{1}\left(r_{0} s^{\frac{p-1}{p-N}}\right), B_{1}\left(r_{0} s^{\frac{p-1}{p-N}}\right)$, and $\theta_{1}\left(r_{0} s^{\frac{p-1}{p-N}}\right)$, respectively.

### 3.1. THE PALAIS-SMALE CONDITION

In order to show that our functional $J$ satisfies the Palais-Smale condition, we first recall the following proposition.
Proposition 3.1 ([11]). Let $\psi: W^{1, p}(0,1) \rightarrow[0,+\infty)$ be defined by

$$
\psi(u)=\frac{1}{p} \int_{0}^{1}\left|u^{\prime}(s)\right|^{p} d s
$$

Then $\psi^{\prime}$ exists and

$$
\left\langle\psi^{\prime}(u), v\right\rangle=\int_{0}^{1}\left|u^{\prime}(s)\right|^{p-2} u^{\prime}(s) v^{\prime}(s) d s
$$

In addition, if $u_{n} \rightharpoonup u$ and $\lim \sup _{n \rightarrow+\infty}\left\langle\psi^{\prime}\left(u_{n}\right), u_{n}-u\right\rangle \leq 0$, then $u_{n} \rightarrow u$ strongly in $W^{1, p}(0,1)$.
Lemma 3.2. The functional $J$ satisfies the Palais-Smale condition.
Proof. Let $\left(u_{n}\right)_{n} \subset W_{0}^{1, p}(0,1)$ such that $\left(J\left(u_{n}\right)\right)_{n}$ is bounded and $J^{\prime}\left(u_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$. First, we will prove that $\left(u_{n}\right)_{n}$ is bounded in $W_{0}^{1, p}(0,1)$. Assume to contrary that $\left(u_{n}\right)_{n}$ is such that $J^{\prime}\left(u_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$, there exists $M>0$ such that $\left|J\left(u_{n}\right)\right| \leq M$ for all $n \geq 1$, but $\left\|u_{n}\right\|_{1, p} \rightarrow \infty$ as $n \rightarrow \infty$.

We consider the quantity

$$
\frac{\theta J\left(u_{n}\right)-\left\langle J^{\prime}\left(u_{n}\right), u_{n}\right\rangle}{\left\|u_{n}\right\|_{1, p}}
$$

where $\theta>2 p$ is chosen as in (F3). Since $J\left(u_{n}\right)$ is bounded and $J^{\prime}\left(u_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$,

$$
\lim _{n \rightarrow \infty} \frac{\theta J\left(u_{n}\right)-\left\langle J^{\prime}\left(u_{n}\right), u_{n}\right\rangle}{\left\|u_{n}\right\|_{1, p}}=0
$$

However, we have

$$
\begin{aligned}
\theta J\left(u_{n}\right)-\left\langle J^{\prime}\left(u_{n}\right), u_{n}\right\rangle= & a\left(\frac{\theta}{p}-1\right)\left\|u_{n}\right\|_{1, p}^{p}+\alpha\left(\frac{\theta}{2 p}-1\right)\left\|u_{n}\right\|_{1, p}^{2 p} \\
& -\lambda \int_{0}^{1} h(s)\left(\theta F\left(r_{0} s^{\frac{p-1}{p-N}}, u_{n}(s)\right)-f\left(r_{0} s^{\frac{p-1}{p-N}}, u_{n}(s)\right) u_{n}(s) d s\right) \\
= & a\left(\frac{\theta}{p}-1\right)\left\|u_{n}\right\|_{1, p}^{p}+\alpha\left(\frac{\theta}{2 p}-1\right)\left\|u_{n}\right\|_{1, p}^{2 p}-\lambda\left(I_{1}+I_{2}\right)
\end{aligned}
$$

where

$$
I_{1}=\int_{\left\{u_{n} \geq 0\right\}} h(s)\left(\theta F\left(r_{0} s^{\frac{p-1}{p-N}}, u_{n}(s)\right)-f\left(r_{0} s^{\frac{p-1}{p-N}}, u_{n}(s)\right) u_{n}(s)\right) d s
$$

and

$$
I_{2}=\int_{\left\{u_{n}<0\right\}} h(s)\left(\theta F\left(r_{0} s^{\frac{p-1}{p-N}}, u_{n}(s)\right)-f\left(r_{0} s^{\frac{p-1}{p-N}}, u_{n}(s)\right) u_{n}(s)\right) d s
$$

with

$$
\left\{u_{n} \geq 0\right\}=\left\{s \in[0,1]: u_{n}(s) \geq 0\right\}
$$

and

$$
\left\{u_{n}<0\right\}=\left\{s \in[0,1]: u_{n}(s)<0\right\} .
$$

Using (F4), we can write

$$
I_{1} \leq \int_{\left\{u_{n} \geq 0\right\}} h(s) \theta_{1}\left(r_{0} s^{\frac{p-1}{p-N}}\right) d s \leq \int_{[0,1]} h(s) \theta_{1}\left(r_{0} s^{\frac{p-1}{p-N}}\right) d s \leq\left\|h \tilde{\theta}_{1}\right\|_{1}
$$

and on $\left\{u_{n}<0\right\}$,

$$
\begin{aligned}
\theta F\left(r_{0} s^{\frac{p-1}{p-N}}, u_{n}(s)\right)-f\left(r_{0} s^{\frac{p-1}{p-N}}, u_{n}(s)\right) u_{n}(s) & =(\theta-1) f\left(r_{0} s^{\frac{p-1}{p-N}}, 0\right) u_{n}(s) \\
& \leq(\theta-1) A\left(r_{0} s^{\frac{p-1}{p-N}}\right)\left\|u_{n}\right\|_{\infty} \\
& \leq k(\theta-1) A\left(r_{0} s^{\frac{p-1}{p-N}}\right)\left\|u_{n}\right\|_{1, p}
\end{aligned}
$$

so that

$$
\begin{aligned}
& \frac{\theta J\left(u_{n}\right)-\left\langle J^{\prime}\left(u_{n}\right), u_{n}\right\rangle}{\left\|u_{n}\right\|_{1, p}} \geq a\left(\frac{\theta}{p}-1\right)\left\|u_{n}\right\|_{1, p}^{p-1}+\alpha\left(\frac{\theta}{2 p}-1\right)\left\|u_{n}\right\|_{1, p}^{2 p-1} \\
&-\lambda \frac{\left\|h \tilde{\theta_{1}}\right\|_{L^{1}}}{\left\|u_{n}\right\|_{1, p}}-k \lambda(\theta-1)\|h \tilde{A}\|_{1}
\end{aligned}
$$

Taking the limit as $n \rightarrow+\infty$, we obtain a contradiction. Thus, $\left(u_{n}\right)$ is bounded in $W_{0}^{1, p}(0,1)$ and this implies that there exists a subsequence, again calling it $\left(u_{n}\right)$, that converges weakly in $W_{0}^{1, p}(0,1)$ and strongly in $C[0,1]$.

We want to show that $u_{n} \rightarrow u$ strongly in $W_{0}^{1, p}(0,1)$. Since for all $v \in W_{0}^{1, p}(0,1)$,

$$
J^{\prime}\left(u_{n}\right)(v)=M\left(\left\|u_{n}\right\|_{1, p}^{p}\right) \int_{0}^{1}\left|u_{n}^{\prime}(s)\right|^{p-2} u_{n}^{\prime}(s) v^{\prime}(s) d s-\lambda \int_{0}^{1} h(s) f\left(r_{0} s^{\frac{p-1}{p-N}}, u_{n}(s)\right) v(s) d s
$$

we have

$$
\left.\left|\int_{0}^{1}\right| u_{n}^{\prime}\right|^{p-2} u_{n}^{\prime}\left(u_{n}^{\prime}-u^{\prime}\right) \left\lvert\, \leq \frac{\left|J^{\prime}\left(u_{n}\right)\left(u_{n}-u\right)\right|+\lambda\left|\int_{0}^{1} h(s) f\left(r_{0} s^{\frac{p-1}{p-N}}, u_{n}(s)\right)\left(u_{n}-u\right) d s\right|}{a}\right.
$$

Since $J^{\prime}\left(u_{n}\right) \rightarrow 0$ and $\left(u_{n}\right)$ is bounded in $W_{0}^{1, p}(0,1)$, we have $J^{\prime}\left(u_{n}\right)\left(u_{n}-u\right) \rightarrow 0$ as $n \rightarrow+\infty$. On the other hand, since $u_{n} \rightarrow u$ strongly in $C[0,1]$ and since $\left(u_{n}\right)$ is bounded in the same space, we have (see Remark 2.1)

$$
\begin{equation*}
\left|\int_{0}^{1} h(s) f\left(r_{0} s^{\frac{p-1}{p-N}}, u_{n}(s)\right)\left(u_{n}(s)-u(s)\right) d s\right| \leq M_{I}\left\|u_{n}-u\right\|_{\infty}\|h \max (\tilde{A}, \tilde{B})\|_{1} \rightarrow 0 \tag{3.1}
\end{equation*}
$$

where $I=[-M, M]$ is such that $u, u_{n} \in[-M, M]$ for $s \in[0,1]$. This implies that

$$
\left.\left|\int_{0}^{1}\right| u_{n}^{\prime}(s)\right|^{p-2} u_{n}^{\prime}(s)\left(u_{n}^{\prime}(s)-u^{\prime}(s)\right) d s \mid \rightarrow 0
$$

as $n \rightarrow \infty$. By Proposition 3.1, $u_{n} \rightarrow u$ strongly in $W_{0}^{1, p}(0,1)$, which completes the proof of the lemma.

### 3.2. THE GEOMETRY OF $J$

We begin by pointing out that $J(0)=0$. Next, we prove two lemmas that will be needed to complete the proof that $J$ satisfies the Mountain Pass Theorem.

Lemma 3.3. For any positive function $w$ in $W_{0}^{1, p}(0,1)$ satisfying $\|w\|_{1, p}=1$, we have $\lim _{\sigma \rightarrow+\infty} J(\sigma w)=-\infty$ for any $\sigma>0$.

Proof. Let $w \in W_{0}^{1, p}(0,1)$ be such that $w$ is positive with $\|w\|_{1, p}=1$, and let $\sigma>0$ be a parameter. We have

$$
J(\sigma w)=\frac{1}{p} \hat{M}\left(\|\sigma w\|_{1, p}^{p}\right)-\lambda \int_{0}^{1} h(s) F\left(r_{0} s^{\frac{p-1}{p-N}}, \sigma w(s)\right) d s
$$

with

$$
\hat{M}\left(\|\sigma w\|_{1, p}^{p}\right)=a \sigma^{p}+\frac{\alpha}{2} \sigma^{2 p} .
$$

By (F1) and an integration,

$$
\begin{equation*}
\int_{0}^{1} h(s) F\left(r_{0} s^{\frac{p-1}{p-N}}, \sigma w(s)\right) d s \geq \int_{0}^{1} h(s) A\left(r_{0} s^{\frac{p-1}{p-N}}\right)\left(\frac{(\sigma w(s))^{q+1}}{q+1}-\sigma w(s)\right) d s \tag{3.2}
\end{equation*}
$$

Then,

$$
\begin{aligned}
J(\sigma w) \leq & \frac{a}{p} \sigma^{p}+\frac{\alpha}{2 p} \sigma^{2 p}-\lambda \frac{\sigma^{q+1}}{q+1} \int_{0}^{1} h(s) A\left(r_{0} s^{\frac{p-1}{p-N}}\right)(w(s))^{q+1} d s \\
& +\lambda \sigma \int_{0}^{1} h(s) A\left(r_{0} s^{\frac{p-1}{p-N}}\right) w(s) d s
\end{aligned}
$$

But

$$
0<\int_{0}^{1} h(s) A\left(r_{0} s^{\frac{p-1}{p-N}}\right)(w(s))^{q+1} d s \leq k^{q+1}\|h \tilde{A}\|_{1}\|w\|_{1, p}^{q+1}<\infty
$$

and

$$
0<\int_{0}^{1} h(s) A\left(r_{0} s^{\frac{p-1}{p-N}}\right) w(s) d s \leq k\|h \tilde{A}\|_{1}\|w\|_{1, p}<\infty
$$

so $\lim _{\sigma \rightarrow+\infty} J(\sigma w)=-\infty$ since $q>2 p-1$. This proves the lemma.

Lemma 3.4. There exists $\lambda_{0}>0$ such that for all $\lambda \in\left(0, \lambda_{0}\right)$ and $u \in W_{0}^{1, p}(0,1)$ be such that $\|u\|_{1, p}=\lambda^{\frac{-1}{2(q+1-2 p)}}$, we have $J(u) \geq \frac{\alpha}{4 p} \lambda^{\frac{-p}{q+1-2 p}}$.

Proof. Let $\lambda>0$ and $u \in W_{0}^{1, p}(0,1)$ be such that

$$
\|u\|_{1, p}=\lambda^{\frac{-1}{2(q+1-2 p)}} .
$$

We have

$$
\begin{aligned}
J(u) & \geq \frac{a}{p} \lambda^{\frac{-p}{2(q+1-2 p)}}+\frac{\alpha}{2 p} \lambda^{\frac{-p}{q+1-2 p}}-\lambda \int_{0}^{1} h(s) B_{1}\left(r_{0} s^{\frac{p-1}{p-N}}\right)\left(|u(s)|^{q+1}+1\right) d s \\
& \geq \frac{a}{p} \lambda^{\frac{-p}{2(q+1-2 p)}}+\frac{\alpha}{2 p} \lambda^{\frac{-p}{q+1-2 p}}-\lambda\|u\|_{\infty}^{q+1}\left\|h \tilde{B}_{1}\right\|_{1}-\lambda\left\|h \tilde{B}_{1}\right\|_{1} \\
& \geq \frac{a}{p} \lambda^{\frac{-p}{2(q+1-2 p)}}+\frac{\alpha}{2 p} \lambda^{\frac{-p}{q-1-2 p}}-k \lambda \lambda^{\frac{-(q+1)}{2(q+1-2 p)}}-\lambda\left\|h \tilde{B}_{1}\right\|_{1} \\
& \geq \lambda^{\frac{-p}{q+1-2 p}}\left(\frac{\alpha}{2 p}+\frac{a}{p} \lambda^{\frac{p}{2(q+1-2 p)}}-k\left\|h \tilde{B}_{1}\right\|_{1} \lambda^{\frac{1}{2}}-\left\|h \tilde{B}_{1}\right\|_{1} \lambda^{\frac{q+1-p}{q+1-2 p}}\right) .
\end{aligned}
$$

Since

$$
\lim _{\lambda \rightarrow 0} \frac{a}{p} \lambda^{\frac{p}{2(q+1-2 p)}}-k\left\|h \tilde{B}_{1}\right\|_{1} \lambda^{\frac{1}{2}}-\left\|h \tilde{B}_{1}\right\|_{1} \lambda^{\frac{q+1-p}{q+1-2 p}}=0
$$

there exists $\lambda_{0}>0$ such that for all $\lambda \in\left(0, \lambda_{0}\right)$,

$$
J(u) \geq \frac{\alpha}{4 p} \lambda^{\frac{-p}{q+1-2 p}},
$$

which proves the lemma.

From Lemma 3.3 and Lemma 3.4, we can deduce that conditions (iii) and (iv) of Theorem 2.5 are satisfied. We have then proved that the functional $J$ admits a critical value for $\lambda \approx 0$. We need to show that this critical point is positive.

### 3.3. POSITIVITY OF THE MPT SOLUTION

Let $r=\frac{1}{q+1-2 p}$. We start with two lemmas.
Lemma 3.5. Let $u_{\lambda}$ be a mountain pass solution to (1.1). Then there exists $M_{0}>0$ and $\lambda_{1}>0$ such that

$$
\left\|u_{\lambda}\right\|_{\infty} \geq M_{0} \lambda^{-r \frac{p}{q+1}}
$$

for all $\lambda \in\left(0, \lambda_{1}\right)$.

Proof. Since $u_{\lambda}$ is a mountain pass solution, we have

$$
\begin{aligned}
& \lambda \int_{0}^{1} h(s) f\left(r_{0} s^{\frac{p-1}{p-N}},\right.\left.u_{\lambda}(s)\right) u_{\lambda}(s) d s=a\left\|u_{\lambda}\right\|_{1, p}^{p}+\alpha\left\|u_{\lambda}\right\|_{1, p}^{2 p} \\
&= p J\left(u_{\lambda}\right)+\frac{\alpha}{2}\left\|u_{\lambda}\right\|_{1, p}^{2 p}+p \lambda \int_{0}^{1} h(s) F\left(r_{0} s^{\frac{p-1}{p-N}}, u_{\lambda}\right) d s \\
& \geq p J\left(u_{\lambda}\right)+p \lambda \int_{\left\{u_{\lambda}<0\right\}} h(s) F\left(r_{0} s^{\frac{p-1}{p-N}}, u_{\lambda}(s)\right) d s \\
&+p \lambda \int_{\left\{u_{\lambda} \geq 0\right\}} h(s) F\left(r_{0} s^{\frac{p-1}{p-N}}, u_{\lambda}(s)\right) d s \\
& \geq p J\left(u_{\lambda}\right)+p \lambda \int_{\left\{u_{\lambda} \geq 0\right\}} h(s) F\left(r_{0} s^{\frac{p-1}{p-N}}, u_{\lambda}(s)\right) d s
\end{aligned}
$$

In view of Remark 2.3 and the fact that $u_{\lambda}$ satisfies

$$
J\left(u_{\lambda}\right) \geq \frac{\alpha}{4 p} \lambda^{-r p} \quad \text { for all } \lambda \in\left(0, \lambda_{0}\right)
$$

we see that

$$
\begin{aligned}
\lambda \int_{0}^{1} h(s) f\left(r_{0} s^{\frac{p-1}{p-N}}, u_{\lambda}\right) u_{\lambda} d s \geq & \frac{\alpha}{4} \lambda^{-r p}+p \lambda \int_{\left\{u_{\lambda} \geq 0\right\}} h(s) A_{1}\left(r_{0} s^{\frac{p-1}{p-N}}\right) u_{\lambda}^{q+1} d s \\
& -C_{1} p \lambda \int_{\left\{u_{\lambda} \geq 0\right\}} h(s) A_{1}\left(r_{0} s^{\frac{p-1}{p-N}}\right) d s \\
\geq & \frac{\alpha}{4} \lambda^{-r p}-C_{1} p \lambda\left\|h \tilde{A}_{1}\right\|_{1} \geq \frac{\alpha}{8} \lambda^{-r p},
\end{aligned}
$$

for all $\lambda \in\left(0, \min \left(\lambda_{0},\left(\frac{\alpha}{8 p\left\|h \tilde{A}_{1}\right\|_{1}}\right)^{\frac{1}{r_{p+1}}}\right)\right)$. By Remark 2.1, for all

$$
\lambda \in\left(0, \min \left(\lambda_{0},\left(\frac{\alpha}{8 p\left\|h \tilde{A}_{1}\right\|_{1}}\right)^{\frac{1}{r p+1}}, 1\right)\right),
$$

we have

$$
\left\|u_{\lambda}\right\|_{\infty}^{q+1}+\left\|u_{\lambda}\right\|_{\infty} \geq \frac{\alpha}{8\|h \max (\tilde{A}, \tilde{B})\|_{1}} \lambda^{-r p} .
$$

Then, for all

$$
\lambda \in\left(0, \min \left(\lambda_{0},\left(\frac{\alpha}{8 p\left\|h \tilde{A}_{1}\right\|_{1}}\right)^{\frac{1}{r_{p+1}}}, 1,\left(\frac{\alpha}{16\|h \max (\tilde{A}, \tilde{B})\|_{1}}\right)^{\frac{1}{r_{p}}}\right)\right)
$$

we have $\left\|u_{\lambda}\right\|_{\infty} \geq 1$, so

$$
\left\|u_{\lambda}\right\|_{\infty}^{q+1} \geq \frac{\alpha}{16\|h \max (\tilde{A}, \tilde{B})\|_{1}} \lambda^{-r p}
$$

or

$$
\left\|u_{\lambda}\right\|_{\infty} \geq\left(\frac{\alpha}{16\|h \max (\tilde{A}, \tilde{B})\|_{1}}\right)^{\frac{1}{q+1}} \lambda^{-r \frac{p}{q+1}} .
$$

Taking

$$
M_{0}=\left(\frac{\alpha}{16\|h \max (\tilde{A}, \tilde{B})\|_{1}}\right)^{\frac{1}{q+1}}
$$

and

$$
\lambda_{1}=\min \left(\lambda_{0},\left(\frac{\alpha}{8 p\left\|h \tilde{A}_{1}\right\|_{1}}\right)^{\frac{1}{r_{p+1}}}, 1,\left(\frac{\alpha}{16\|h \max (\tilde{A}, \tilde{B})\|_{1}}\right)^{\frac{1}{r_{p}}}\right)
$$

completes the proof of the lemma.

Lemma 3.6. Let $u_{\lambda}$ be a mountain pass solution of (1.2). Then there exists $C_{0}>0$ and $\lambda_{2}>0$ such that

$$
\left\|u_{\lambda}\right\|_{1, p} \leq C_{0} \lambda^{-r}
$$

for all $\lambda \in\left(0, \lambda_{2}\right)$.

Proof. Since $u_{\lambda}$ is a solution of (1.2), by Remark 2.2, we have

$$
\begin{aligned}
a\left\|u_{\lambda}\right\|_{1, p}^{p}+\frac{\alpha}{2}\left\|u_{\lambda}\right\|_{1, p}^{2 p}= & p J\left(u_{\lambda}\right)+p \lambda \int_{0}^{1} h(s) F\left(r_{0} s^{\frac{p-1}{p-N}}, u_{\lambda}(s)\right) d s \\
= & p J\left(u_{\lambda}\right)+p \lambda \int_{\left\{u_{\lambda}<0\right\}} h(s) u_{\lambda}(s) f\left(r_{0} s^{\frac{p-1}{p-N}}, 0\right) d s \\
& +p \lambda \int_{\left\{u_{\lambda} \geq 0\right\}} h(s) F\left(r_{0} s^{\frac{p-1}{p-N}}, u_{\lambda}(s)\right) d s \\
\leq & p J\left(u_{\lambda}\right)+p \lambda \int_{\left\{u_{\lambda}<0\right\}} h(s) u_{\lambda}(s) f\left(r_{0} s^{\frac{p-1}{p-N}}, 0\right) d s \\
& +p \lambda \int_{\left\{u_{\lambda} \geq 0\right\}} \frac{h(s)}{\theta}\left(u_{\lambda}(s) f\left(r_{0} s^{\frac{p-1}{p-N}}, u_{\lambda}(s)\right)+\theta_{1}\left(r_{0} s^{\frac{p-1}{p-N}}\right)\right) d s \\
\leq & p J\left(u_{\lambda}\right)+p \lambda \int_{\left\{u_{\lambda}<0\right\}} h(s) u_{\lambda}(s) f\left(r_{0} s^{\frac{p-1}{p-N}}, 0\right) d s \\
& +\frac{p}{\theta} \lambda \int_{0}^{1} h(s)\left(u_{\lambda}(s) f\left(r_{0} s^{\frac{p-1}{p-N}}, u_{\lambda}(s)\right)+\theta_{1}\left(r_{0} s^{\frac{p-1}{p-N}}\right)\right) d s \\
& -\frac{p}{\theta} \lambda \int_{\left\{u_{\lambda}<0\right\}} h(s)\left(u_{\lambda}(s) f\left(r_{0} s^{\frac{p-1}{p-N}}, 0\right)+\theta_{1}\left(r_{0} s^{\frac{p-1}{p-N}}\right)\right) d s \\
\leq & p J\left(u_{\lambda}\right)+\frac{p}{\theta} \lambda \int_{0}^{1} h(s) u_{\lambda}(s) f\left(r_{0} s^{\frac{p-1}{p-N}}, u_{\lambda}(s)\right) d s \\
& +\frac{p}{\theta} \lambda\left\|h \tilde{\theta}_{1}\right\|_{1}+p \lambda\left(1-\frac{1}{\theta}\right) \int_{\left\{u_{\lambda}<0\right\}} h(s) u_{\lambda}(s) f\left(r_{0} s^{\frac{p-1}{p-N}}, 0\right) d s \\
\leq & p J\left(u_{\lambda}\right)+\frac{p}{\theta}\left(a\left\|u_{\lambda}\right\|_{1, p}^{p}+\alpha\left\|u_{\lambda}\right\|_{1, p}^{2 p}\right) \\
& +\frac{p}{\theta} \lambda\left\|h \tilde{\theta}_{1}\right\|_{1}+p \lambda k\left\|u_{\lambda}\right\|_{1, p}\left\|h \max ^{2}(\tilde{A}, \tilde{B})\right\|_{1} .
\end{aligned}
$$

Then,

$$
\begin{equation*}
a\left(1-\frac{p}{\theta}\right)\left\|u_{\lambda}\right\|_{1, p}^{p}+\left(\frac{\alpha}{2}-\frac{p \alpha}{\theta}\right)\left\|u_{\lambda}\right\|_{1, p}^{2 p} \leq p J\left(u_{\lambda}\right)+\frac{p}{\theta} \lambda\left\|h \tilde{\theta}_{1}\right\|_{1}+p \lambda k^{\prime}\left\|u_{\lambda}\right\|_{1, p} \tag{3.3}
\end{equation*}
$$

where $k^{\prime}=k\|h \max (\tilde{A}, \tilde{B})\|_{1}$. On the other hand, since $u_{\lambda}$ is a mountain pass solution, we have $J\left(u_{\lambda}\right) \leq \max _{\sigma \geq 0} J(\sigma w)$ where $w>0$ is such that $\|w\|_{1, p}=1$, and so
in view of Remark 2.3,

$$
J\left(u_{\lambda}\right) \leq \max _{\sigma \geq 0} \frac{a}{p} \sigma^{p}+\frac{\alpha}{2 p} \sigma^{2 p}-\frac{\lambda}{q+1} D_{1} \sigma^{q+1}+C_{1} \lambda\left\|h \tilde{A}_{1}\right\|_{1},
$$

where

$$
0<D_{1}:=\int_{0}^{1} h A_{1}\left(r_{0} s^{\frac{p-1}{p-N}}\right) w(s)^{q+1} d s \leq k^{q+1}\left\|h \tilde{A}_{1}\right\|_{1}\|w\|_{1, p}^{q+1}<\infty .
$$

Let

$$
\begin{aligned}
P(\sigma) & =\frac{\alpha}{2 p} \sigma^{2 p}+\frac{a}{p} \sigma^{p}-\frac{C \lambda}{q+1} \sigma^{q+1}+C_{1} \lambda\left\|h \tilde{A}_{1}\right\|_{1}, \\
P_{1}(\sigma) & =\left(\frac{a}{p}+\frac{\alpha}{2 p}\right) \sigma^{p}-\frac{C \lambda}{q+1} \sigma^{q+1}+C_{1} \lambda\left\|h \tilde{A}_{1}\right\|_{1}
\end{aligned}
$$

and

$$
P_{2}(\sigma)=\left(\frac{a}{p}+\frac{\alpha}{2 p}\right) \sigma^{2 p}-\frac{C \lambda}{q+1} \sigma^{q+1}+C_{1} \lambda\left\|h \tilde{A}_{1}\right\|_{1} .
$$

On $[0,1], P(\sigma) \leq P_{1}(\sigma)$ and on $(1,+\infty), P(\sigma) \leq P_{2}(\sigma)$. Also, $P_{1}(\sigma)$ is maximized for $\sigma_{1}=\tilde{K}_{1}^{\frac{1}{q+1-p}} \lambda^{\frac{-1}{q+1-p}}$ and $P_{2}(\sigma)$ is maximized for $\sigma_{2}=\tilde{K}_{2}^{r} \lambda^{-r}$, where $\tilde{K}_{1}=\frac{2 a+\alpha}{2 C}$ and $\tilde{K}_{2}=\frac{2 a+\alpha}{C}$. Note that if $\lambda \leq 1$, then $\lambda \leq \lambda^{-2 p r}, \lambda \leq \lambda^{\frac{-p}{q+1-p}}$ and $\lambda^{\frac{-p}{q+1-p}} \leq \lambda^{-2 p r}$. Therefore,

$$
\begin{aligned}
p P_{1}(\sigma)+\frac{p}{\theta} \lambda\left\|h \tilde{\theta}_{1}\right\|_{1} & \leq\left(a+\frac{\alpha}{2}\right) \tilde{K}_{1}^{\frac{p}{q+1-p}} \lambda^{\frac{-p}{q+1-p}}+\lambda p\left(C_{1}\left\|h \tilde{A}_{1}\right\|_{1}+\frac{\left\|h \tilde{\theta}_{1}\right\|_{1}}{\theta}\right) \\
& \leq \lambda^{\frac{-p}{q+1-p}}\left(\left(a+\frac{\alpha}{2}\right) \tilde{K}_{1}^{\frac{p}{q+1-p}}+p\left(C_{1}\left\|h \tilde{A}_{1}\right\|_{1}+\frac{\left\|h \tilde{\theta}_{1}\right\|_{1}}{\theta}\right)\right) \\
& \leq \lambda^{-2 p r}\left(\left(a+\frac{\alpha}{2}\right) \tilde{K}_{1}^{\frac{p}{q+1-p}}+p\left(C_{1}\left\|h \tilde{A}_{1}\right\|_{1}+\frac{\left\|h \tilde{\theta}_{1}\right\|_{1}}{\theta}\right)\right) \\
& =\tilde{C}_{1} \lambda^{-2 p r}
\end{aligned}
$$

and

$$
\begin{aligned}
p P_{2}(\sigma)+\frac{p}{\theta} \lambda\left\|h \tilde{\theta}_{1}\right\|_{1} & \leq\left(a+\frac{\alpha}{2}\right) \tilde{K}_{2}^{2 p r} \lambda^{-2 p r}+\lambda p\left(C_{1}\left\|h \tilde{A}_{1}\right\|_{1}+\frac{\left\|h \tilde{\theta}_{1}\right\|_{1}}{\theta}\right) \\
& \leq \lambda^{-2 p r}\left(\left(a+\frac{\alpha}{2}\right) \tilde{K}_{2}^{2 p r}+p\left(C_{1}\left\|h \tilde{A}_{1}\right\|_{1}+\frac{\left\|h \tilde{\theta}_{1}\right\|_{1}}{\theta}\right)\right) \\
& =\tilde{C}_{2} \lambda^{-2 p r}
\end{aligned}
$$

Setting $\tilde{C}_{3}=\max \left(\tilde{C}_{1}, \tilde{C}_{2}\right)$ gives

$$
p J\left(u_{\lambda}\right)+\frac{p}{\theta} \lambda\left\|h \tilde{\theta}_{1}\right\|_{1} \leq \tilde{C}_{3} \lambda^{-2 p r}
$$

and from (3.3), we have

$$
\left(\frac{\alpha}{2}-\frac{p \alpha}{\theta}\right)\left\|u_{\lambda}\right\|_{1, p}^{2 p} \leq \tilde{C}_{3} \lambda^{-2 p r}+p \lambda k^{\prime}\left\|u_{\lambda}\right\|_{1, p}
$$

By Lemma 3.5, for all $\lambda \in\left(0, \lambda_{1}\right)$,

$$
\left\|u_{\lambda}\right\|_{1, p} \geq \frac{1}{k}\left\|u_{\lambda}\right\|_{\infty} \geq \frac{M_{0}}{k} \lambda^{-r \frac{p}{q+1}} .
$$

Then for all $\lambda \in\left(0, \min \left(\lambda_{1},\left(\frac{M_{0}}{k}\right)^{\frac{q+1}{r_{p}}}\right)\right.$, we have $\left\|u_{\lambda}\right\|_{1, p} \geq 1$, so

$$
\left(\frac{\alpha}{2}-\frac{p \alpha}{\theta}\right)\left\|u_{\lambda}\right\|_{1, p}^{2 p} \leq \tilde{C}_{3} \lambda^{-2 p r}+p \lambda k^{\prime}\left\|u_{\lambda}\right\|_{1, p}^{2 p} .
$$

This implies

$$
\left(\frac{\alpha}{2}-\frac{p \alpha}{\theta}-p \lambda k^{\prime}\right)\left\|u_{\lambda}\right\|_{1, p}^{2 p} \leq \tilde{C}_{3} \lambda^{-2 p r}
$$

Hence, for all $\lambda \in\left(0, \min \left(\lambda_{1},\left(\frac{M_{0}}{k}\right)^{\frac{q+1}{r p}}, \frac{\alpha(\theta-2 p)}{4 \theta p k^{\prime}}\right)\right)$, we have

$$
\frac{\alpha(\theta-2 p)}{4 \theta}\left\|u_{\lambda}\right\|_{1, p}^{2 p} \leq \tilde{C}_{3} \lambda^{-2 p r} .
$$

Taking $C_{0}=\frac{4 \theta \tilde{C}_{3}}{\alpha(\theta-p)}$ and $\lambda_{2}=\min \left(\lambda_{1},\left(\frac{M_{0}}{k}\right)^{\frac{q+1}{r p}}, \frac{\alpha(\theta-2 p)}{4 \theta p k^{\prime}}\right)$, we see that the lemma is proved.

To prove the positivity of the mountain pass solution, assume to the contrary, that there exists a sequence $\left\{\left(\lambda_{i}, u_{\lambda_{i}}\right)\right\}_{i=1}^{\infty} \subset(0,1) \times C([0,1])$ of mountain pass solutions to (1.2) such that $\lambda_{i} \rightarrow 0$ as $i \rightarrow \infty$ and $m\left(\left\{x \in(0,1): u_{\lambda_{i}}(x) \leq 0\right\}\right)>0$. Let $w_{i}=\frac{u_{\lambda_{i}}}{\left\|u_{\lambda_{i}}\right\|_{\infty}}$. Since

$$
-\left(\phi_{p}\left(u_{\lambda_{i}}^{\prime}\right)\right)^{\prime}=\frac{\lambda_{i} h(s) f\left(r_{0} s^{\frac{p-1}{p-N}}, u_{\lambda_{i}}\right)}{a+\alpha\left\|u_{\lambda_{i}}\right\|_{1, p}^{p}}
$$

we have

$$
-\left(\phi_{p}\left(w_{i}^{\prime}\right)\right)^{\prime}=\frac{\lambda_{i} h(s) f\left(r_{0} s^{\frac{p-1}{p-N}}, u_{\lambda_{i}}\right)}{a+\alpha\left\|u_{\lambda_{i}}\right\|_{1, p}^{p}}\left\|u_{\lambda_{i}}\right\|_{\infty}^{1-p}
$$

From Remark 2.1 and Lemmas 3.5 and 3.6, we obtain

$$
\begin{aligned}
\left|\frac{\lambda_{i} f\left(r_{0} s^{\frac{p-1}{p-N}}, u_{\lambda_{i}}\right)}{a+\alpha\left\|u_{\lambda_{i}}\right\|_{1, p}^{p}}\left\|u_{\lambda_{i}}\right\|_{\infty}^{1-p}\right| & \leq\left(\frac{\lambda_{i}\left\|u_{\lambda_{i}}\right\|_{\infty}^{q+1-p}}{\alpha\left\|u_{\lambda_{i}}\right\|_{1, p}^{p}}+\frac{\lambda_{i}}{a} M_{0}^{1-p} \lambda_{i}^{\frac{-r p(1-p)}{q+1}}\right) \max (\tilde{A}, \tilde{B}) \\
& \leq\left(\frac{\lambda_{i}}{\alpha} k^{q+1-p}\left\|u_{\lambda_{i}}\right\|_{1, p}^{\frac{1}{r}}+\frac{M_{0}^{1-p}}{a}\right) \max (\tilde{A}, \tilde{B}) \\
& \leq\left(\frac{\lambda_{i}}{\alpha} k^{q+1-p} C_{0}^{\frac{1}{r}} \lambda_{i}^{-1}+\frac{M_{0}^{1-p}}{a}\right) \max (\tilde{A}, \tilde{B}) \\
& \leq D_{2} \max (\tilde{A}(s), \tilde{B}(s))
\end{aligned}
$$

where

$$
D_{2}=\frac{k^{q+1-p} C_{0}^{\frac{1}{r}}}{\alpha}+\frac{M_{0}^{1-p}}{a}
$$

So for all $s \in(0,1)$, the sequence $\left\{\frac{\lambda_{i} f\left(r_{0} s^{\frac{p-1}{p-N}}, u_{\lambda_{i}}\right)}{a+\alpha\left\|u_{\lambda_{i}}\right\|_{1, p}^{\rho}}\left\|u_{\lambda_{i}}\right\|_{\infty}^{1-p}\right\}$ is bounded. Thus, there exists a subsequence (named the same) that converges to a limit $z_{1}(s)$. Moreover, $z_{1}(s) \geq 0$ since

$$
z_{1}(s)=\lim _{i \rightarrow \infty} \frac{\lambda_{i} f\left(r_{0} s^{\frac{p-1}{p-N}}, u_{\lambda_{i}}\right)}{a+\alpha\left\|u_{\lambda_{i}}\right\|_{1, p}^{p}}\left\|u_{\lambda_{i}}\right\|_{\infty}^{1-p} \geq \lim _{i \rightarrow \infty} \frac{\lambda_{i} f\left(r_{0} s^{\frac{p-1}{p-N}}, 0\right)}{a+\alpha\left\|u_{\lambda_{i}}\right\|_{1, p}^{p}}\left\|u_{\lambda_{i}}\right\|_{\infty}^{1-p}=0
$$

Hence, for all $s \in(0,1)$, the sequence $\left\{\frac{\lambda_{i} h(s) f\left(r_{0} s^{\frac{p-1}{p-N}}, u_{\lambda_{i}}\right)}{a+\alpha\left\|u_{\lambda_{i}}\right\|_{1, p}^{\rho}}\left\|u_{\lambda_{i}}\right\|_{\infty}^{1-p}\right\}$ converges to $z(s)=h(s) z_{1}(s) \geq 0$.

Let $s_{i} \in(0,1)$ be a maximum of $w_{i}$. Then,

$$
\phi_{p}\left(w_{i}^{\prime}(s)\right)=\int_{s}^{s_{i}}\left(-\phi_{p}\left(w_{i}^{\prime}(\sigma)\right)\right)^{\prime} d \sigma=\int_{s}^{s_{i}} \frac{\lambda_{i} h(\sigma) f\left(r_{0} \sigma^{\frac{p-1}{p-N}}, u_{\lambda_{i}}(\sigma)\right)}{a+\alpha\left\|u_{\lambda_{i}}\right\|_{1, p}^{p}}\left\|u_{\lambda_{i}}\right\|_{\infty}^{1-p} d \sigma .
$$

From (3.4),

$$
\left|w_{i}^{\prime}(s)\right|^{p-1}=\left|\phi_{p}\left(w_{i}^{\prime}(s)\right)\right| \leq \int_{s}^{s_{i}} C \max (\tilde{A}(\sigma), \tilde{B}(\sigma)) h(\sigma) d \sigma \leq C\|\max (\tilde{A}, \tilde{B}) h\|_{1}
$$

so $\left|w_{i}^{\prime}(s)\right| \leq\|\max (\tilde{A}, \tilde{B}) h\|_{1}^{\frac{1}{p-1}}$ for all $s \in[0,1]$. By the Arzelà-Ascoli theorem, there exists $w \in C([0,1])$ such that $w_{i} \rightarrow w$ in $C([0,1])$.

Since $\left(s_{i}\right)$ is bounded, there exists a subsequence (again denote by $\left(s_{i}\right)$ ) that converges to some $s_{0}$. Again by (3.4), we have

$$
\left|\frac{\lambda_{i} f\left(r_{0} s^{\frac{p-1}{p-N}}, u_{\lambda_{i}}\right)}{a+\alpha\left\|u_{\lambda_{i}}\right\|_{1, p}^{p}}\right|\left\|u_{\lambda_{i}}\right\|_{\infty}^{1-p} \leq C \max (\tilde{A}(s), \tilde{B}(s)) h(s) .
$$

Since $\max (\tilde{A}, \tilde{B}) h \in L^{1}(0,1)$, by the Lebesgue dominated convergence theorem,

$$
\int_{s}^{s_{i}} \frac{\lambda_{i} h(\sigma) f\left(r_{0} \sigma^{\frac{p-1}{p-N}}, u_{\lambda_{i}}(\sigma)\right)}{a+\alpha\left\|u_{\lambda_{i}}\right\|_{1, p}^{p}}\left\|u_{\lambda_{i}}\right\|_{\infty}^{1-p} d \sigma \rightarrow \int_{s}^{s_{0}} z(\sigma) d \sigma
$$

Therefore,

$$
\phi_{p}^{-1}\left(\int_{s}^{s_{i}} \frac{\lambda_{i} h(\sigma) f\left(r_{0} \sigma^{\frac{p-1}{p-N}}, u_{\lambda_{i}}(\sigma)\right)}{a+\alpha\left\|u_{\lambda_{i}}\right\|_{1, p}^{p}}\left\|u_{\lambda_{i}}\right\|_{\infty}^{1-p} d \sigma\right) \rightarrow \phi_{p}^{-1}\left(\int_{s}^{s_{0}} z(\sigma) d \sigma\right)
$$

so we get

$$
\int_{0}^{\tau} \phi_{p}^{-1}\left(\int_{s}^{s_{i}} \frac{\lambda_{i} h(\sigma) f\left(r_{0} \sigma^{\frac{p-1}{p-N}}, u_{\lambda_{i}}(\sigma)\right)}{a+\alpha\left\|u_{\lambda_{i}}\right\|_{1, p}^{p}}\left\|u_{\lambda_{i}}\right\|_{\infty}^{1-p} d \sigma\right) d s \rightarrow \int_{0}^{\tau} \phi_{p}^{-1}\left(\int_{s}^{s_{0}} z(\sigma) d \sigma\right) d s
$$

We see that

$$
w_{i}(\tau) \rightarrow \int_{0}^{\tau} \phi_{p}^{-1}\left(\int_{s}^{s_{0}} z(\sigma) d \sigma\right) d s=w(\sigma)
$$

and so

$$
w_{i}^{\prime}(\tau)=\phi_{p}^{-1}\left(\int_{\tau}^{s_{i}} \frac{\lambda_{i} h(\sigma) f\left(r_{0} \sigma^{\frac{p-1}{p-N}}, u_{\lambda_{i}}(\sigma)\right)}{a+\alpha\left\|u_{\lambda_{i}}\right\|_{1, p}^{p}}\left\|u_{\lambda_{i}}\right\|_{\infty}^{1-p} d \sigma\right)
$$

converges to $\phi_{p}^{-1}\left(\int_{\tau}^{s_{0}} z(\sigma) d \sigma\right)=w^{\prime}(\tau)$ for all $\tau \in[0,1]$. Hence, $-\left(\phi_{p}\left(w^{\prime}\right)\right)^{\prime}=z \geq 0$ with $w(0)=0=w(1)$. Since $\|w\|_{\infty}=1$, clearly $w \neq 0$. Then, since $w$ is concave, $w>0$ in $(0,1), w^{\prime}(0)>0$, and $w^{\prime}(1)<0$. Because $w_{i} \rightarrow w$ in $C([0,1])$, we conclude that $w_{i}(s)>0$ for all $s \in(0,1)$ for $i$ sufficiently large. Hence, $u_{\lambda_{i}}(s)>0$ for all $s \in(0,1)$ for $i$ sufficiently large. This contradicts $m\left(\left\{x \in(0,1): u_{\lambda_{i}}(x) \leq 0\right\}\right)>0$ for all sufficiently large $i$.

Thus, the mountain pass solution is positive, and this completes the proof of Theorem 1.5.

## REFERENCES

[1] N. Aissaoui, W. Long, Positive solutions for a Kirchhoff equation with perturbed source terms, Acta Math. Scientia 42 (2022), 1817-1830.
[2] C.O. Alves, F.J.S.A. Corrêa, T.F. Ma, Positive solutions for a quasilinear elliptic equation of Kirchhoff type, Comput. Math. Appl. 49 (2005), 85-93.
[3] A. Ambrosetti, P.H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal. 14 (1973), 349-381.
[4] M. Badiale, E. Serra, Semilinear Elliptic Equations for Beginners. Existence Results via the Variational Approach, Universitext, Springer, London, 2011.
[5] H. Brézis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Springer, New York, 2010.
[6] D. Butler, E. Ko, E.K. Lee, R. Shivaji, Positive radial solutions for elliptic equations on exterior domains with nonlinear boundary conditions, Comm. Pure Appl. Anal. 13 (2014), 2713-2731.
[7] A. Castro, R. Shivaji, Nonnegative solutions for a class of nonpositone problems, Proc. Roy. Soc. Edinburgh Sect. A 108 (1988), 291-302.
[8] A. Castro, D.G. de Figueiredo, E. Lopera, Existence of positive solutions for a semipositone p-Laplacian problem, Proc. Roy. Soc. Edinburgh Sect. A 146 (2016), 475-482.
[9] R. Dhanya, Q. Morris, R. Shivaji, Existence of positive radial solutions for superlinear semipositone problems on the exterior of a ball, J. Math. Anal. Appl. 434 (2016), 1533-1548.
[10] M. Ding, C. Zhang, S. Zhou, Local boundedness and Hölder continuity for the parabolic fractional p-Laplace equations, Calc. Var. Partial Differential Equations 60 (2021), Article no. 38.
[11] L. Gasinski, N.S. Papageorgiou, Nonsmooth Critical Point Theory and Nonlinear Boundary Value Problems, Series in Mathematical Analysis and Applications, vol. 8, Chapman \& Hall/CRC, Boca Raton, 2005.
[12] J.R. Graef, S. Heidarkhani, L. Kong, A variational approach to a Kirchhoff-type problem involving two parameters, Results Math. 63 (2013), 877-889.
[13] J.R. Graef, S. Heidarkhani, L. Kong, Variational-hemivariational inequalities of Kirchhoff-type with small perturbations of nonhomogeneous Neumann boundary conditions, Math. Eng. Sci. Aero. 8 (2017), 345-357.
[14] J.R. Graef, S. Heidarkhani, L. Kong, S. Moradi, On an anisotropic discrete boundary value problem of Kirchhoff type, J. Difference Equ. Appl. 27 (2021), 1103-1119.
[15] J.R. Graef, S. Heidarkhani, L. Kong, A. Ghobadi, Existence of multiple solutions to a P-Kirchhoff problem, Differ. Equ. Appl. 14 (2022), 227-237.
[16] L. Guo, Y. Sun, G. Shi, Ground states for fractional nonlocal equations with logarithmic nonlinearity, Opuscula Math. 42 (2022), 157-178.
[17] D.D. Hai, Positive radial solutions for singular quasilinear elliptic equations in a ball, Publ. Res. Inst. Math. Sci. 50 (2014), 341-362.
[18] W. He, D. Qin, Q. Wu, Existence, multiplicity and nonexistence results for Kirchhoff type equations, Adv. Nonlinear Anal. 10 (2021), 616-635.
[19] G. Kirchhoff, Mechanik, Teubner, Leipzig, 1883.
[20] Q. Morris, R. Shivaji, I. Sim, Existence of positive radial solutions for a superlinear semipositone p-Laplacian problem on the exterior of a ball, Proc. Roy. Soc. Edinburgh Sect. A 148 (2018), 409-428.
[21] H. Pi, Y. Zeng, Existence results for the Kirchhoff type equation with a general nonlinear term, Acta Math. Scientia 42 (2022), 2063-2077.
[22] D. Qin, V.D. Radulescu, X. Tang, Ground states and geometrically distinct solutions for periodic Choquard-Pekar equations, J. Differential Equations 275 (2021), 652-683.
[23] J. Smoller, A. Wasserman, Existence of positive solutions for semilinear elliptic equations in general domains, Arch. Ration. Mech. Anal. 98 (1987), 229-249.
[24] L. Wang, K. Xie, B. Zhang, Existence and multiplicity of solutions for critical Kirchhoff-type p-Laplacian problems, J. Math. Anal. Appl. 458 (2018), 361-378.

John R. Graef (corresponding author)<br>john-graef@utc.edu<br>https://orcid.org/0000-0002-8149-4633<br>University of Tennessee at Chattanooga<br>Department of Mathematics<br>Chattanooga, TN 37403, USA<br>Doudja Hebboul<br>doudja.hebboul@g.ens-kouba.dz<br>Ecole Normale Supérieure<br>Laboratory of Partial Differential Equations and History of Mathematics<br>Kouba, Algiers, Algeria<br>Toufik Moussaoui<br>toufik.moussaoui@g.ens-kouba.dz<br>Ecole Normale Supérieure<br>Laboratory of Fixed Point Theory and Applications<br>Kouba, Algiers, Algeria<br>Received: August 17, 2022.<br>Revised: November 7, 2022.<br>Accepted: November 8, 2022.

