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EXISTENCE OF POSITIVE RADIAL SOLUTIONS
TO A p-LAPLACIAN KIRCHHOFF TYPE PROBLEM

ON THE EXTERIOR OF A BALL
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Abstract. In this paper the authors study the existence of positive radial solutions
to the Kirchhoff type problem involving the p-Laplacian

−
(
a+ b

∫

Ωe

|∇u|pdx
)

∆pu = λf (|x|, u) , x ∈ Ωe, u = 0 on ∂Ωe,

where λ > 0 is a parameter, Ωe = {x ∈ RN : |x| > r0}, r0 > 0, N > p > 1, ∆p is the
p-Laplacian operator, and f ∈ C([r0,+∞) × [0,+∞) ,R) is a non-decreasing function
with respect to its second variable. By using the Mountain Pass Theorem, they prove
the existence of positive radial solutions for small values of λ.

Keywords: Kirchhoff problem, p-Laplacian, positive radial solution, variational
methods.
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1. INTRODUCTION

The aim of this work is to prove the existence of positive radial solutions on the
exterior of a ball to the Kirchhoff type problem





−
(
a+ b

∫

Ωe

|∇u|pdx
)

∆pu = λf (|x|, u), x ∈ Ωe,

u(x) = 0, |x| = r0,

u(x) → 0, |x| → ∞,

(1.1)

where a and b are positive constants, λ > 0 is a parameter, Ωe = {x ∈ RN : |x| > r0},
r0 > 0, N > p > 1, ∆p is the p-Laplacian operator (∆pu = div

(
|∇u|p−2∇u

)
), and

f : [r0,+∞) × [0,+∞) → R is continuous and is non-decreasing in its second variable.
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Note that Kirchhoff type problems are nonlinear, and as such present several
interesting challenges; see, for instance, the recent work in [1,2,12–15,18,21,24] for
various issues and applications. Additional work on p-Laplacian problems can be found
in [6–10,17,20,23] and other related results in [16,22].

In [7, 8, 17,23], the equations considered are of the form

∆pu = λf(u) in Ω

with Dirichlet boundary conditions, where Ω is a bounded domain in RN . Concerning
the existence of positive radial solutions to a class of p-Laplacian problems on the
exterior of a ball, we mention the papers [9] for p = 2 and [20] for any p > 1. In these
articles the equation is of the form −∆pu = λK(|x|)f(u) and the authors appeal to
the Mountain Pass Theorem (MPT).

Notice that our problem (1.1) can be written as




−M
( ∫

Ωe

|∇u|pdx
)

∆pu = λf (|x|, u) , x ∈ Ωe,

u(x) = 0, |x| = r0,

u(x) → 0, |x| → ∞,

where M(ζ) = a+ bζ.
In the case where p = 2 and M is any positive function defined on R+ (with some

additional conditions), problems of the type




−M
( ∫

Ω

|∇u|2dx
)

∆u = f (x, u), in Ω,

u = 0, on ∂Ω,

where Ω a bounded domain in RN , have physical motivations. For example, the
Kirchhoff operator M(

∫
Ω |∇u|2dx)∆u appears in nonlinear vibration equations such as





utt −M
( ∫

Ω

|∇u|2dx
)

∆u = f (x, u), in Ω × (0, T ),

u = 0, on ∂Ω × (0, T ),
u(x, 0) = u0(x), ut(x, 0) = u1(x).

Such equations generalize to higher dimensions the equation studied by Kirchhoff [19],

ρ
∂2u

∂t2
−
(P0
h

+ E

2L

L∫

0

∣∣∣∂u
∂x

∣∣∣
2
dx
)∂2u

∂x2 = 0

as an extension of the classical D’Alembert wave equation for free vibrations of elastic
strings.



Existence of positive radial solutions to a p-Laplacian Kirchhoff type problem. . . 49

Kirchhoff type problems have been treated in many papers. For example, in [2],
by using truncations and the MPT, the authors proved the existence of solutions to
the problem 




−M
( ∫

Ω

|∇u|2dx
)

∆u = f (x, u) , in Ω,

u = 0, on ∂Ω,

where Ω is a bounded smooth domain in RN . In [18], He et al. considered a similar
problem where Ω is a bounded domain in R3 or is all of R3, and instead of f(t, u),
they had f(u) + h with h ≥ 0 and h ∈ L2(Ω). In [24], Wang et al. also took Ω to also
be a bounded and smooth domain in RN and used the MPT to prove the existence of
solutions to the problem





−M
( ∫

Ω

|∇u|pdx
)

∆pu = λf(x, u) + |u|p⋆−2u, in Ω,

u = 0, on ∂Ω,

for all λ greater than some λ⋆ > 0, where p⋆ = Np
N−p . An important feature of that

study is that M could be zero at zero. Additional recent results on Kirchhoff type
problems can be found in [1, 12–15,21].

Extending the ideas in [9,20], instead of ∆pu, we consider a Kirchhoff type operator
and generalize the term K(|x|)f(u) to f(|x|, u), where f : [r0,+∞) × [0,+∞) → R is
continuous, non-decreasing in its second variable, and satisfies:

(F1) there exist continuous functions A, B : [r0,+∞) → (0,+∞) with q > 2p− 1 and
µ ∈

(
0, N−p

p−1

)
such that

A(ξ)(tq − 1) ≤ f(ξ, t) ≤ B(ξ)(tq + 1) for all (ξ, t) ∈ [r0,+∞) × [0,+∞)

where A(ξ), B(ξ) ≤ 1
ξN+µ for ξ ≫ 1,

(F2) for all ξ ∈ [r0,+∞), f(ξ, 0) < 0,
(F3) (Ambrosetti-Rabinowitz condition) There exists θ > 2p such that, for all suffi-

ciently large t,
tf(ξ, t) > θF (ξ, t) for all ξ ≥ r0,

where F (ξ, t) =
∫ t

0 f(ξ, σ)dσ.

Applying the change of variables r = |x| and s =
(

r
r0

) p−N
p−1 transforms (1.1) into

the boundary-value problem (see, for example, [6])




−
(
a+ α

1∫

0

|u′|pdσ
)

(ϕp(u′))′ = λh(s)f(r0s
p−1
p−N , u(s)), s ∈ (0, 1),

u(0) = u(1) = 0,

(1.2)
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where

α = bNωNr
N−p
0

(
N − p

p− 1

)p−1
, ϕp(ζ) = |ζ|p−2ζ, h(s) =

(
r0

(p− 1)
(N − p)

)p

s
−p(N−1)

N−p ,

and ωN is the volume of the unit ball in RN .

Remark 1.1. If in (F1) we assume that µ ≥ N−p
p−1 , this would imply that the functions

defined by h(s)B(r0s
p−1
p−N ) or h(s)A(r0s

p−1
p−N ) are dominated in neighborhoods of zero

by a continuous function on [0, 1], and in fact, we would have a simpler situation. But
µ ∈

(
0, N−p

p−1

)
implies the singularity of these functions at s = 0, but they would still

belong to L1(0, 1).

Remark 1.2. Consider the function

f(ξ, t) = 1
2ξ 7

2
(2t4 − 1).

Then f satisfies all of the above conditions for N = 3, p = 2, q = 4, µ = 1
2 , and θ = 9

2 .

As a second example, we have the following.

Remark 1.3. Take N = 4, p = 2, and q = 4 > 2p − 1 = 3. We need µ ∈ (0, 2)
so choose µ = 1. Let

A(ξ) = 2 + sin ξ
ξ5 and B(ξ) = (4 − cos ξ)(ξ2 + 1)

ξ7 .

Then

f(ξ, t) = 3(ξ2 + 1)
ξ7

(et2 − 2)(t4 + 1)
et2

satisfies all of the above conditions for some θ > 4.

Next, we define what is meant by a solution of our problem.

Definition 1.4. We say that u ∈ W 1,p
0 (0, 1) is a weak solution of problem (1.2) if

(a+ α∥u∥p
1,p)

1∫

0

|u′(s)|p−2u′(s)v′(s)ds = λ

1∫

0

h(s)f(r0s
p−1
p−N , u(s))v(s)ds

for all v ∈ W 1,p
0 (0, 1).

We will establish the following theorem, which is our main result in this paper.

Theorem 1.5. Assume that (F1)–(F3) hold. Then (1.2) admits a positive weak solution
for λ ≈ 0.
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2. PRELIMINARIES

In order to apply variational techniques such as the MPT, we extend the function f to
[r0,+∞) ×R by setting f(ξ, t) = f(ξ, 0) for (ξ, t) ∈ [r0,+∞) × (−∞, 0). We also need
the Banach spaces W 1,p

0 (0, 1), C[0, 1], and Lr(0, 1) equipped their respective norms
∥ · ∥1,p, ∥ · ∥∞, and ∥ · ∥r. We recall that W 1,p

0 (0, 1) is compactly embedded in C[0, 1],
and this implies that ∥u∥∞ ≤ k∥u∥1,p for every u in W 1,p

0 (0, 1), where k is a fixed
positive constant (see [5]).

Remark 2.1. Let

D = {(ξ, t) ∈ [r0,+∞) × R : f(ξ, t) ≥ 0}

and
Dc = {(ξ, t) ∈ [r0,+∞) × R : f(ξ, t) < 0}.

On D, we have
|f(ξ, t)| = f(ξ, t) ≤ B(ξ)(tq + 1),

and on Dc,
|f(ξ, t)| ≤ A(ξ).

Hence, for all (ξ, t) ∈ [r0,+∞) × R,

|f(ξ, t)| ≤ max(A(ξ), B(ξ))(|t|q + 1),

and for every compact interval I ⊂ R, there exists a constant MI such that

|f(ξ, t)| ≤ MI max(A(ξ), B(ξ)) for all ξ ≥ r0 and all t ∈ I.

Remark 2.2. If f satisfies (F1) and (F3), then:

(F4) There exists a continuous function θ1 : [r0,+∞) → (0,+∞) and a constant
C > 0 such that

θ1(ξ) ≤ C

ξN+µ

and
tf(ξ, t) > θF (ξ, t) − θ1(ξ) for all (ξ, t) ∈ [r0,+∞) × [0,+∞) .

Remark 2.3. We note that (F1) implies that there exist continuous functions
A1, B1 : [r0,+∞) → (0,+∞) and a positive constant C1 such that

F (ξ, t) ≤ B1(ξ)(|t|q+1 + 1) for all (ξ, t) ∈ [r0,+∞) × R,

and
F (ξ, t) ≥ A1(ξ)(tq+1 − C1) for all (ξ, t) ∈ [r0,+∞) × [0,+∞) .

Furthermore, A1(ξ), B1(ξ) ≤ 1
ξN+µ for ξ ≫ 1, where µ is given in (F1). Notice

that the second inequality above follows from the fact that tq+1

q+1 − t ≥ tq+1

2(q+1) for all
t ≥ (2(q + 1))

1
q .



52 John R. Graef, Doudja Hebboul, and Toufik Moussaoui

Lemma 2.4. Let J : W 1,p
0 (0, 1) → R be defined by

J(u) = 1
p
M̂(∥u∥p

1,p) − λK(u)

where

K(u) =
1∫

0

h(s)F (r0s
p−1
p−N , u(s))ds

and

M̂(t) =
t∫

0

M(σ)dσ with M(t) = a+ αt.

Then J is well defined, continuously differentiable, and for all v ∈ W 1,p
0 (0, 1),

its Gâteaux derivative is given by

J ′(u)(v) = M(∥u∥p
1,p)

1∫

0

|u′(s)|p−2u′(s)v′(s)ds− λ

1∫

0

h(s)f(r0s
p−1
p−N , u(s))v(s)ds.

Proof. It is clear that M̂(∥u∥p
1,p) is finite, and since W 1,p

0 (0, 1) ↪→ C[0, 1],
by Remark 2.1, for I = [−∥u∥∞, ∥u∥∞], there exists MI > 0 such that

∣∣f(r0s
p−1
p−N , σ)

∣∣ ≤ MI max(A(r0s
p−1
p−N ), B(r0s

p−1
p−N )) for all σ ∈ I.

Therefore,

1∫

0

|h(s)||F (r0s
p−1
p−N , u(s))|ds ≤ MI∥u∥∞

1∫

0

max(A(r0s
p−1
p−N ), B(r0s

p−1
p−N ))|h(s)|ds < ∞.

The functional J is continuous. Moreover, if we set L(u) = ∥u∥p
1,p, then M̂ ◦ L is

differentiable, and for all v ∈ W 1,p
0 (0, 1),

1
p

(M̂ ◦ L)′(u)(v) = M(∥u∥p
1,p)

1∫

0

|u′(s)|p−2u′(s)v′(s)ds.

On the other hand, from the continuity of f , we see that K is Gâteaux differentiable
and its Gâteaux derivative is continuous. Hence, K is continuously differentiable and

K ′(u)(v) =
1∫

0

h(s)f(r0s
p−1
p−N , u(s))v(s)ds for all v ∈ W 1,p

0 (0, 1).
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Therefore, J is continuously differentiable, and for all v ∈ W 1,p
0 (0, 1),

J ′(u)(v) = M(∥u∥p
1,p)

1∫

0

|u′(s)|p−2u′(s)v′(s) − λ

1∫

0

h(s)f(r0s
p−1
p−N , u(s))v(s)ds

as we wished to show.

In order to prove our main result, Theorem 1.5 above, we will apply the Mountain
Pass Theorem stated below.
Theorem 2.5 (Mountain Pass Theorem [3]). Let X be a Banach space and let
J ∈ C1(X;R) satisfy:
(i) (Palais–Smale condition) any sequence (un) ⊂ X such that (J(un)) is bounded

and J ′(un) → 0 as n → ∞ possesses a convergent subsequence,
(ii) J(0) = 0,
(iii) there exist ν, R > 0 such that J(u) ≥ ν for all u with ∥u∥X = R,
(iv) there exists e ∈ X such that ∥e∥X > R and J(e) < 0.
In addition, let

Γ := {γ ∈ C([0, 1], X) : γ(0) = 0, γ(1) = e}
and

ĉ := inf
γ∈Γ

max
t∈[0,1]

J(γ(t)).

Then ĉ is a critical value of the functional J .

3. PROOF OF THEOREM 1.5

In this section, we construct the proof of our main result. We begin by recalling that
proving Theorem 1.5 is equivalent to proving that the functional J defined above
admits a positive critical point for λ ≈ 0 (see[4]). As was seen in Lemma 2.4, the
functional J is in C1(W 1,p

0 (0, 1),R), so we need to prove that J satisfies the conditions
of the MPT.

In the following, for all s ∈ (0, 1], we denote by Ã(s), B̃(s), Ã1(s), B̃1(s), and
θ̃1(s) the quantities A(r0s

p−1
p−N ), B(r0s

p−1
p−N ), A1(r0s

p−1
p−N ), B1(r0s

p−1
p−N ), and θ1(r0s

p−1
p−N ),

respectively.

3.1. THE PALAIS–SMALE CONDITION

In order to show that our functional J satisfies the Palais–Smale condition, we first
recall the following proposition.
Proposition 3.1 ([11]). Let ψ : W 1,p(0, 1) → [0,+∞) be defined by

ψ(u) = 1
p

1∫

0

|u′
(s)|pds.
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Then ψ
′ exists and

⟨ψ′
(u), v⟩ =

1∫

0

|u′
(s)|p−2u

′
(s)v

′
(s)ds.

In addition, if un ⇀ u and lim supn→+∞⟨ψ′(un), un − u⟩ ≤ 0, then un → u strongly
in W 1,p(0, 1).

Lemma 3.2. The functional J satisfies the Palais–Smale condition.

Proof. Let (un)n ⊂ W 1,p
0 (0, 1) such that (J(un))n is bounded and J ′(un) → 0 as

n → ∞. First, we will prove that (un)n is bounded in W 1,p
0 (0, 1). Assume to contrary

that (un)n is such that J ′(un) → 0 as n → ∞, there exists M > 0 such that
|J(un)| ≤ M for all n ≥ 1, but ∥un∥1,p → ∞ as n → ∞.

We consider the quantity

θJ(un) − ⟨J ′(un), un⟩
∥un∥1,p

,

where θ > 2p is chosen as in (F3). Since J(un) is bounded and J ′(un) → 0 as n → ∞,

lim
n→∞

θJ(un) − ⟨J ′(un), un⟩
∥un∥1,p

= 0.

However, we have

θJ(un) − ⟨J ′(un), un⟩ = a
(θ
p

− 1
)

∥un∥p
1,p + α

( θ
2p − 1

)
∥un∥2p

1,p

− λ

1∫

0

h(s)
(
θF (r0s

p−1
p−N , un(s)) − f(r0s

p−1
p−N , un(s))un(s)ds

)

= a
(θ
p

− 1
)

∥un∥p
1,p + α

( θ
2p − 1

)
∥un∥2p

1,p − λ(I1 + I2),

where

I1 =
∫

{un≥0}

h(s)
(
θF (r0s

p−1
p−N , un(s)) − f(r0s

p−1
p−N , un(s))un(s)

)
ds

and
I2 =

∫

{un<0}

h(s)
(
θF (r0s

p−1
p−N , un(s)) − f(r0s

p−1
p−N , un(s))un(s)

)
ds,

with
{un ≥ 0} = {s ∈ [0, 1] : un(s) ≥ 0}

and
{un < 0} = {s ∈ [0, 1] : un(s) < 0}.
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Using (F4), we can write

I1 ≤
∫

{un≥0}

h(s)θ1(r0s
p−1
p−N )ds ≤

∫

[0,1]

h(s)θ1(r0s
p−1
p−N )ds ≤ ∥hθ̃1∥1,

and on {un < 0},

θF (r0s
p−1
p−N , un(s)) − f(r0s

p−1
p−N , un(s))un(s) = (θ − 1)f(r0s

p−1
p−N , 0)un(s)

≤ (θ − 1)A(r0s
p−1
p−N )∥un∥∞

≤ k(θ − 1)A(r0s
p−1
p−N )∥un∥1,p,

so that
θJ(un) − ⟨J ′(un), un⟩

∥un∥1,p
≥ a

(θ
p

− 1
)

∥un∥p−1
1,p + α

( θ
2p − 1

)
∥un∥2p−1

1,p

− λ
∥hθ̃1∥L1

∥un∥1,p
− kλ(θ − 1)∥hÃ∥1.

Taking the limit as n → +∞, we obtain a contradiction. Thus, (un) is bounded
in W 1,p

0 (0, 1) and this implies that there exists a subsequence, again calling it (un),
that converges weakly in W 1,p

0 (0, 1) and strongly in C[0, 1].
We want to show that un → u strongly in W 1,p

0 (0, 1). Since for all v ∈ W 1,p
0 (0, 1),

J ′(un)(v) = M(∥un∥p
1,p)

1∫

0

|u′
n(s)|p−2u

′
n(s)v′(s)ds− λ

1∫

0

h(s)f(r0s
p−1
p−N , un(s))v(s)ds,

we have
∣∣∣

1∫

0

|u′
n|p−2u′

n(u′
n − u′)

∣∣∣ ≤ |J ′(un)(un − u)| + λ|
∫ 1

0 h(s)f(r0s
p−1
p−N , un(s))(un − u)ds|

a
.

Since J ′(un) → 0 and (un) is bounded in W 1,p
0 (0, 1), we have J ′(un)(un − u) → 0

as n → +∞. On the other hand, since un → u strongly in C[0, 1] and since (un) is
bounded in the same space, we have (see Remark 2.1)

∣∣∣
1∫

0

h(s)f(r0s
p−1
p−N , un(s))(un(s)−u(s))ds

∣∣∣ ≤ MI∥un−u∥∞∥hmax(Ã, B̃)∥1 → 0, (3.1)

where I = [−M,M ] is such that u, un ∈ [−M,M ] for s ∈ [0, 1]. This implies that

∣∣∣
1∫

0

|u′
n(s)|p−2u

′
n(s)(u

′
n(s) − u′(s))ds

∣∣∣ → 0

as n → ∞. By Proposition 3.1, un → u strongly in W 1,p
0 (0, 1), which completes

the proof of the lemma.
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3.2. THE GEOMETRY OF J

We begin by pointing out that J(0) = 0. Next, we prove two lemmas that will be
needed to complete the proof that J satisfies the Mountain Pass Theorem.

Lemma 3.3. For any positive function w in W 1,p
0 (0, 1) satisfying ∥w∥1,p = 1,

we have limσ→+∞ J(σw) = −∞ for any σ > 0.

Proof. Let w ∈ W 1,p
0 (0, 1) be such that w is positive with ∥w∥1,p = 1, and let σ > 0

be a parameter. We have

J(σw) = 1
p
M̂(∥σw∥p

1,p) − λ

1∫

0

h(s)F (r0s
p−1
p−N , σw(s))ds

with
M̂(∥σw∥p

1,p) = aσp + α

2 σ
2p.

By (F1) and an integration,

1∫

0

h(s)F (r0s
p−1
p−N , σw(s))ds ≥

1∫

0

h(s)A(r0s
p−1
p−N )

(
(σw(s))q+1

q + 1 − σw(s)
)
ds. (3.2)

Then,

J(σw) ≤ a

p
σp + α

2pσ
2p − λ

σq+1

q + 1

1∫

0

h(s)A(r0s
p−1
p−N )(w(s))q+1ds

+ λσ

1∫

0

h(s)A(r0s
p−1
p−N )w(s)ds.

But

0 <
1∫

0

h(s)A(r0s
p−1
p−N )(w(s))q+1ds ≤ kq+1∥hÃ∥1∥w∥q+1

1,p < ∞

and

0 <
1∫

0

h(s)A(r0s
p−1
p−N )w(s)ds ≤ k∥hÃ∥1∥w∥1,p < ∞,

so limσ→+∞ J(σw) = −∞ since q > 2p− 1. This proves the lemma.
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Lemma 3.4. There exists λ0 > 0 such that for all λ ∈ (0, λ0) and u ∈ W 1,p
0 (0, 1) be

such that ∥u∥1,p = λ
−1

2(q+1−2p) , we have J(u) ≥ α
4pλ

−p
q+1−2p .

Proof. Let λ > 0 and u ∈ W 1,p
0 (0, 1) be such that

∥u∥1,p = λ
−1

2(q+1−2p) .

We have

J(u) ≥ a

p
λ

−p
2(q+1−2p) + α

2pλ
−p

q+1−2p − λ

1∫

0

h(s)B1(r0s
p−1
p−N )(|u(s)|q+1 + 1)ds

≥ a

p
λ

−p
2(q+1−2p) + α

2pλ
−p

q+1−2p − λ∥u∥q+1
∞ ∥hB̃1∥1 − λ∥hB̃1∥1

≥ a

p
λ

−p
2(q+1−2p) + α

2pλ
−p

q+1−2p − kλλ
−(q+1)

2(q+1−2p) − λ∥hB̃1∥1

≥ λ
−p

q+1−2p

(
α

2p + a

p
λ

p
2(q+1−2p) − k∥hB̃1∥1λ

1
2 − ∥hB̃1∥1λ

q+1−p
q+1−2p

)
.

Since
lim
λ→0

a

p
λ

p
2(q+1−2p) − k∥hB̃1∥1λ

1
2 − ∥hB̃1∥1λ

q+1−p
q+1−2p = 0,

there exists λ0 > 0 such that for all λ ∈ (0, λ0),

J(u) ≥ α

4pλ
−p

q+1−2p ,

which proves the lemma.

From Lemma 3.3 and Lemma 3.4, we can deduce that conditions (iii) and (iv) of
Theorem 2.5 are satisfied. We have then proved that the functional J admits a critical
value for λ ≈ 0. We need to show that this critical point is positive.

3.3. POSITIVITY OF THE MPT SOLUTION

Let r = 1
q+1−2p . We start with two lemmas.

Lemma 3.5. Let uλ be a mountain pass solution to (1.1). Then there exists M0 > 0
and λ1 > 0 such that

∥uλ∥∞ ≥ M0λ
−r p

q+1

for all λ ∈ (0, λ1).
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Proof. Since uλ is a mountain pass solution, we have

λ

1∫

0

h(s)f(r0s
p−1
p−N ,uλ(s))uλ(s)ds = a∥uλ∥p

1,p + α∥uλ∥2p
1,p

= pJ(uλ) + α

2 ∥uλ∥2p
1,p + pλ

1∫

0

h(s)F (r0s
p−1
p−N , uλ)ds

≥ pJ(uλ) + pλ

∫

{uλ<0}

h(s)F (r0s
p−1
p−N , uλ(s))ds

+ pλ

∫

{uλ≥0}

h(s)F (r0s
p−1
p−N , uλ(s))ds

≥ pJ(uλ) + pλ

∫

{uλ≥0}

h(s)F (r0s
p−1
p−N , uλ(s))ds.

In view of Remark 2.3 and the fact that uλ satisfies

J(uλ) ≥ α

4pλ
−rp for all λ ∈ (0, λ0),

we see that

λ

1∫

0

h(s)f(r0s
p−1
p−N , uλ)uλds ≥ α

4 λ
−rp + pλ

∫

{uλ≥0}

h(s)A1(r0s
p−1
p−N )uq+1

λ ds

− C1pλ

∫

{uλ≥0}

h(s)A1(r0s
p−1
p−N )ds

≥ α

4 λ
−rp − C1pλ∥hÃ1∥1 ≥ α

8 λ
−rp,

for all λ ∈
(

0,min
(
λ0,

(
α

8p∥hÃ1∥1

) 1
rp+1

))
. By Remark 2.1, for all

λ ∈
(

0,min
(
λ0,

(
α

8p∥hÃ1∥1

) 1
rp+1

, 1
))

,
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we have

∥uλ∥q+1
∞ + ∥uλ∥∞ ≥ α

8∥hmax(Ã, B̃)∥1
λ−rp.

Then, for all

λ ∈
(

0,min
(
λ0,

(
α

8p∥hÃ1∥1

) 1
rp+1

, 1,
(

α

16∥hmax(Ã, B̃)∥1

) 1
rp

))
,

we have ∥uλ∥∞ ≥ 1, so

∥uλ∥q+1
∞ ≥ α

16∥hmax(Ã, B̃)∥1
λ−rp,

or

∥uλ∥∞ ≥
(

α

16∥hmax(Ã, B̃)∥1

) 1
q+1

λ−r p
q+1 .

Taking

M0 =
(

α

16∥hmax(Ã, B̃)∥1

) 1
q+1

and

λ1 = min
(
λ0,

(
α

8p∥hÃ1∥1

) 1
rp+1

, 1,
(

α

16∥hmax(Ã, B̃)∥1

) 1
rp

)

completes the proof of the lemma.

Lemma 3.6. Let uλ be a mountain pass solution of (1.2). Then there exists C0 > 0
and λ2 > 0 such that

∥uλ∥1,p ≤ C0λ
−r,

for all λ ∈ (0, λ2).
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Proof. Since uλ is a solution of (1.2), by Remark 2.2, we have

a∥uλ∥p
1,p + α

2 ∥uλ∥2p
1,p = pJ(uλ) + pλ

1∫

0

h(s)F (r0s
p−1
p−N , uλ(s))ds

= pJ(uλ) + pλ

∫

{uλ<0}

h(s)uλ(s)f(r0s
p−1
p−N , 0)ds

+ pλ

∫

{uλ≥0}

h(s)F (r0s
p−1
p−N , uλ(s))ds

≤ pJ(uλ) + pλ

∫

{uλ<0}

h(s)uλ(s)f(r0s
p−1
p−N , 0)ds

+ pλ

∫

{uλ≥0}

h(s)
θ

(
uλ(s)f(r0s

p−1
p−N , uλ(s)) + θ1(r0s

p−1
p−N )

)
ds

≤ pJ(uλ) + pλ

∫

{uλ<0}

h(s)uλ(s)f(r0s
p−1
p−N , 0)ds

+ p

θ
λ

1∫

0

h(s)
(
uλ(s)f(r0s

p−1
p−N , uλ(s)) + θ1(r0s

p−1
p−N )

)
ds

− p

θ
λ

∫

{uλ<0}

h(s)
(
uλ(s)f(r0s

p−1
p−N , 0) + θ1(r0s

p−1
p−N )

)
ds

≤ pJ(uλ) + p

θ
λ

1∫

0

h(s)uλ(s)f(r0s
p−1
p−N , uλ(s))ds

+ p

θ
λ∥hθ̃1∥1 + pλ

(
1 − 1

θ

) ∫

{uλ<0}

h(s)uλ(s)f(r0s
p−1
p−N , 0)ds

≤ pJ(uλ) + p

θ
(a∥uλ∥p

1,p + α∥uλ∥2p
1,p)

+ p

θ
λ∥hθ̃1∥1 + pλk∥uλ∥1,p∥hmax(Ã, B̃)∥1.

Then,

a
(

1 − p

θ

)
∥uλ∥p

1,p +
(α

2 − pα

θ

)
∥uλ∥2p

1,p ≤ pJ(uλ) + p

θ
λ∥hθ̃1∥1 + pλk′∥uλ∥1,p, (3.3)

where k′ = k∥hmax(Ã, B̃)∥1. On the other hand, since uλ is a mountain pass
solution, we have J(uλ) ≤ max

σ≥0
J(σw) where w > 0 is such that ∥w∥1,p = 1, and so
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in view of Remark 2.3,

J(uλ) ≤ max
σ≥0

a

p
σp + α

2pσ
2p − λ

q + 1D1σ
q+1 + C1λ∥hÃ1∥1,

where

0 < D1 :=
1∫

0

hA1(r0s
p−1
p−N )w(s)q+1ds ≤ kq+1∥hÃ1∥1∥w∥q+1

1,p < ∞.

Let

P (σ) = α

2pσ
2p + a

p
σp − Cλ

q + 1σ
q+1 + C1λ∥hÃ1∥1,

P1(σ) =
(a
p

+ α

2p

)
σp − Cλ

q + 1σ
q+1 + C1λ∥hÃ1∥1

and
P2(σ) =

(a
p

+ α

2p

)
σ2p − Cλ

q + 1σ
q+1 + C1λ∥hÃ1∥1.

On [0, 1], P (σ) ≤ P1(σ) and on (1,+∞), P (σ) ≤ P2(σ). Also, P1(σ) is maximized for
σ1 = K̃

1
q+1−p

1 λ
−1

q+1−p and P2(σ) is maximized for σ2 = K̃r
2λ

−r, where K̃1 = 2a+α
2C and

K̃2 = 2a+α
C . Note that if λ ≤ 1, then λ ≤ λ−2pr, λ ≤ λ

−p
q+1−p and λ

−p
q+1−p ≤ λ−2pr.

Therefore,

pP1(σ) + p

θ
λ∥hθ̃1∥1 ≤

(
a+ α

2

)
K̃

p
q+1−p

1 λ
−p

q+1−p + λp

(
C1∥hÃ1∥1 + ∥hθ̃1∥1

θ

)

≤ λ
−p

q+1−p

((
a+ α

2

)
K̃

p
q+1−p

1 + p
(
C1∥hÃ1∥1 + ∥hθ̃1∥1

θ

))

≤ λ−2pr

((
a+ α

2

)
K̃

p
q+1−p

1 + p
(
C1∥hÃ1∥1 + ∥hθ̃1∥1

θ

))

= C̃1λ
−2pr

and

pP2(σ) + p

θ
λ∥hθ̃1∥1 ≤

(
a+ α

2

)
K̃2pr

2 λ−2pr + λp

(
C1∥hÃ1∥1 + ∥hθ̃1∥1

θ

)

≤ λ−2pr

((
a+ α

2

)
K̃2pr

2 + p
(
C1∥hÃ1∥1 + ∥hθ̃1∥1

θ

))

= C̃2λ
−2pr.

Setting C̃3 = max(C̃1, C̃2) gives

pJ(uλ) + p

θ
λ∥hθ̃1∥1 ≤ C̃3λ

−2pr,
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and from (3.3), we have
(α

2 − pα

θ

)
∥uλ∥2p

1,p ≤ C̃3λ
−2pr + pλk′∥uλ∥1,p.

By Lemma 3.5, for all λ ∈ (0, λ1),

∥uλ∥1,p ≥ 1
k

∥uλ∥∞ ≥ M0
k
λ−r p

q+1 .

Then for all λ ∈
(

0,min(λ1,
(

M0
k

) q+1
rp

)
, we have ∥uλ∥1,p ≥ 1, so

(α
2 − pα

θ

)
∥uλ∥2p

1,p ≤ C̃3λ
−2pr + pλk′∥uλ∥2p

1,p.

This implies (α
2 − pα

θ
− pλk′

)
∥uλ∥2p

1,p ≤ C̃3λ
−2pr.

Hence, for all λ ∈
(

0,min
(
λ1,
(

M0
k

) q+1
rp , α(θ−2p)

4θpk′

))
, we have

α(θ − 2p)
4θ ∥uλ∥2p

1,p ≤ C̃3λ
−2pr.

Taking C0 = 4θC̃3
α(θ−p) and λ2 = min(λ1,

(
M0
k

) q+1
rp , α(θ−2p)

4θpk′ ), we see that the lemma
is proved.

To prove the positivity of the mountain pass solution, assume to the contrary, that
there exists a sequence {(λi, uλi)}∞

i=1 ⊂ (0, 1) × C([0, 1]) of mountain pass solutions
to (1.2) such that λi → 0 as i → ∞ and m({x ∈ (0, 1) : uλi(x) ≤ 0}) > 0. Let
wi = uλi

∥uλi
∥∞

. Since

−(ϕp(u′
λi

))′ = λih(s)f(r0s
p−1
p−N , uλi

)
a+ α∥uλi∥p

1,p

,

we have

−(ϕp(w′
i))′ = λih(s)f(r0s

p−1
p−N , uλi

)
a+ α∥uλi∥p

1,p

∥uλi∥1−p
∞ .

From Remark 2.1 and Lemmas 3.5 and 3.6, we obtain
∣∣∣∣∣
λif(r0s

p−1
p−N , uλi

)
a+ α∥uλi∥p

1,p

∥uλi
∥1−p

∞

∣∣∣∣∣ ≤
(
λi∥uλi

∥q+1−p
∞

α∥uλi∥p
1,p

+ λi

a
M1−p

0 λ
−rp(1−p)

q+1
i

)
max(Ã, B̃)

≤
(
λi

α
kq+1−p∥uλi

∥
1
r
1,p + M1−p

0
a

)
max(Ã, B̃)

≤
(
λi

α
kq+1−pC

1
r
0 λ

−1
i + M1−p

0
a

)
max(Ã, B̃)

≤ D2 max(Ã(s), B̃(s)),
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where

D2 = kq+1−pC
1
r
0

α
+ M1−p

0
a

.

So for all s ∈ (0, 1), the sequence
{

λif(r0s
p−1
p−N ,uλi

)
a+α∥uλi

∥p
1,p

∥uλi
∥1−p

∞

}
is bounded. Thus, there

exists a subsequence (named the same) that converges to a limit z1(s). Moreover,
z1(s) ≥ 0 since

z1(s) = lim
i→∞

λif(r0s
p−1
p−N , uλi

)
a+ α∥uλi∥p

1,p

∥uλi∥1−p
∞ ≥ lim

i→∞
λif(r0s

p−1
p−N , 0)

a+ α∥uλi∥p
1,p

∥uλi∥1−p
∞ = 0.

Hence, for all s ∈ (0, 1), the sequence
{

λih(s)f(r0s
p−1
p−N ,uλi

)
a+α∥uλi

∥p
1,p

∥uλi
∥1−p

∞

}
converges to

z(s) = h(s)z1(s) ≥ 0.
Let si ∈ (0, 1) be a maximum of wi. Then,

ϕp(w
′
i(s)) =

si∫

s

(−ϕp(w′
i(σ)))′dσ =

si∫

s

λih(σ)f(r0σ
p−1
p−N , uλi(σ))

a+ α∥uλi∥p
1,p

∥uλi∥1−p
∞ dσ.

From (3.4),

|w′
i(s)|p−1 = |ϕp(w

′
i(s))| ≤

si∫

s

C max(Ã(σ), B̃(σ))h(σ)dσ ≤ C∥ max(Ã, B̃)h∥1,

so |w′
i(s)| ≤ ∥ max(Ã, B̃)h∥

1
p−1
1 for all s ∈ [0, 1]. By the Arzelà-Ascoli theorem, there

exists w ∈ C([0, 1]) such that wi → w in C([0, 1]).
Since (si) is bounded, there exists a subsequence (again denote by (si)) that

converges to some s0. Again by (3.4), we have
∣∣∣∣∣
λif(r0s

p−1
p−N , uλi

)
a+ α∥uλi∥p

1,p

∣∣∣∣∣ ∥uλi
∥1−p

∞ ≤ C max(Ã(s), B̃(s))h(s).

Since max(Ã, B̃)h ∈ L1(0, 1), by the Lebesgue dominated convergence theorem,
si∫

s

λih(σ)f(r0σ
p−1
p−N , uλi(σ))

a+ α∥uλi
∥p

1,p

∥uλi
∥1−p

∞ dσ →
s0∫

s

z(σ)dσ.

Therefore,

ϕ−1
p




si∫

s

λih(σ)f(r0σ
p−1
p−N , uλi

(σ))
a+ α∥uλi∥p

1,p

∥uλi∥1−p
∞ dσ


 → ϕ−1

p




s0∫

s

z(σ)dσ


 ,
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so we get
τ∫

0

ϕ−1
p




si∫

s

λih(σ)f(r0σ
p−1
p−N , uλi(σ))

a+ α∥uλi
∥p

1,p

∥uλi
∥1−p

∞ dσ


 ds →

τ∫

0

ϕ−1
p




s0∫

s

z(σ)dσ


 ds.

We see that

wi(τ) →
τ∫

0

ϕ−1
p




s0∫

s

z(σ)dσ


 ds = w(σ),

and so

w
′
i(τ) = ϕ−1

p




si∫

τ

λih(σ)f(r0σ
p−1
p−N , uλi(σ))

a+ α∥uλi
∥p

1,p

∥uλi
∥1−p

∞ dσ




converges to ϕ−1
p

(∫ s0
τ
z(σ)dσ

)
= w′(τ) for all τ ∈ [0, 1]. Hence, −(ϕp(w′))′ = z ≥ 0

with w(0) = 0 = w(1). Since ∥w∥∞ = 1, clearly w ̸= 0. Then, since w is concave, w > 0
in (0, 1), w′(0) > 0, and w′(1) < 0. Because wi → w in C([0, 1]), we conclude that
wi(s) > 0 for all s ∈ (0, 1) for i sufficiently large. Hence, uλi

(s) > 0 for all s ∈ (0, 1) for
i sufficiently large. This contradicts m({x ∈ (0, 1) : uλi

(x) ≤ 0}) > 0 for all sufficiently
large i.

Thus, the mountain pass solution is positive, and this completes the proof
of Theorem 1.5.
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