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Abstract. An edge imbalance provides a local measure of how irregular a given graph is.
In this paper, we study graphs with graphic imbalance sequences. We give a new proof
of imbalance graphicness for trees and use the new idea to prove that the same holds for
unicyclic graphs. We then show that antiregular graphs are imbalance graphic and consider
the join operation on graphs as well as the double graph operation. Our main results are
concerning imbalance graphicness of three classes of block graphs: block graphs having all
cut vertices in a single block; block graphs in which the subgraph induced by the cut vertices
is either a star or a path. In the end, we discuss open questions and conjectures regarding
imbalance graphic graphs.
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1. INTRODUCTION

A regular graph is a graph having the same degree for every its vertex. One approach to
measure how irregular a graph can be is to consider the multiset of its edge imbalances
(the so-called imbalance sequence MG of a graph G) [1]. Here, an imbalance of an
edge is the absolute difference of the degrees of its vertices. Accordingly, the sum
of all edge imbalances in a graph G is called its irregularity and denoted by I(G).
Various upper and lower bounds on I(G) for general graphs and for special graph
classes as well as the characterizations of graphs which attain extremal values of I(G)
can be found in [1, 4, 8, 15,16, 18]. On the other hand, from a qualitative point of view,
there are several interesting classes of “irregular” graphs: highly irregular [6] (graphs
where for any vertex all its neighbors have distinct degrees) and stepwise irregular [9]
(graphs in which the imbalance of every edge is one). For other aspects of irregularity
in graphs we refer to the book [3].

Another approach in studying the multiset of edge imbalances was taken in [11],
where the authors studied the graphicness of imbalance sequence. A graph G is called
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imbalance graphic provided its imbalance sequence MG is graphic (which means that
there is another graph H whose multiset of vertex degrees equals MG). The imbalance
graphicness of the following classes of graphs was established in [11]: trees, a particular
case of split graphs (where the corresponding independent set consists of leaf vertices)
as well as the so-called complete extensions of paths, cycles and complete graphs.

It was also conjectured in [11] that graphs having no edge with zero imbalance are
necessarily imbalance graphic, which still is an open question. The second imbalance
conjecture from [11] was motivated by the fact that the set of mean imbalances of
imbalance non-graphic graphs is dense in [0, 2]. Hence, it was conjectured that the
inequality I(G) ≥ 2|E(G)| implies that G is imbalance graphic. In this paper, we
disprove this conjecture by constructing a counterexample with a given number of
vertices n ≥ 9. This line of research expanded in [10], where unary (subdivision and
the complete extension of a graph) and binary (various graph products, the corona of
graphs as well as the splice and the link of rooted graphs) operations on graphs which
preserve imbalance graphicness were considered.

This paper is organized as follows. At first, we give basic definitions and results in
the second section. In the third section we provide a new method of proving imbalance
graphicness of trees and apply it to show that the same holds for unicyclic graphs. We
then proceed by showing that antiregular graphs are imbalance graphic and consider
the joins with complete as well as with empty graphs. In the end of the third section
we prove that the double graph operation preserves the imbalance graphicness.

The fourth section of the paper is devoted to establishing the imbalance graphicness
of block graphs (which are natural generalization of trees) from the following three
classes: block graphs having all cut vertices in a single block; block graphs in which
the subgraph induced by the cut vertices is either a star or a path. These results were
announced at the 43rd Australiasian Combinatorics Conference [17].

The last section of the paper discusses open questions and conjectures regarding
imbalance graphic graphs.

2. PRELIMINARIES

2.1. MAIN DEFINITIONS

For a set X denote by
(

X
2
)

the collection of two-element subsets of X.
A graph G is an ordered pair (V, E), where V = V (G) is the set of its vertices and

E = E(G) ⊂
(

V
2
)

is the set of its edges. All graphs considered in this paper are finite.
Frequently, an edge {u, v} ∈ E(G) in a graph G will be denoted simply as uv. If there
is an edge e = uv ∈ E(G), then we say that the vertices u and v are adjacent and
the edge e is incident with u, v. A graph is called complete provided every two of its
vertices are adjacent. By Kn we denote the complete graph with n vertices.

The neighborhood of a vertex u in a graph G is the set NG(u) = {v ∈ V (G) : uv ∈
E(G)} and the closed neighborhood of u is the set NG[u] = NG(u) ∪ {u}. The degree
of u is the number dG(u) = |NG(u)|. A vertex u is called a leaf vertex if dG(u) = 1.
The unique edge incident to a leaf vertex is called a leaf edge. An edge which is not
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leaf edge is called an inner edge. For a graph G by ∆(G) and δ(G) we denote the
maximum and the minimum degree among vertices in G, respectively. A graph G is
called regular provided ∆(G) = δ(G).

In the course of this paper we will frequently use the following unary and binary
operations on graphs. By G we denote the complement of a graph G. The complement
of a complete graph is called an empty graph. The line graph L(G) of a graph G has
the vertex set V (L(G)) = E(G) and the edge set E(L(G)) = {{uv, vw} : uv, vw ∈
E(G), u ̸= w}. Further, by G ∪ H we denote the union of graphs G, H (note that
V (G∪H) = V (G)⊔V (H) and E(G∪H) = E(G)∪E(H)). For a graph G and a natural
number n ∈ N we write nG for the union of n isomorphic copies of G. Another standard
binary graph operation is the join G + H, where V (G + H) = V (G) ⊔ V (H) and
E(G + H) = E(G) ∪ E(H) ∪ {uv : u ∈ V (G), v ∈ V (H)}.

Let a1, b1, a2, b2 ∈ V (G) be four different vertices in a graph G such that
a1b1, a2b2 ∈ E(G) and a1a2, b1b2 /∈ E(G). The corresponding 2-switch operation
produces a graph which is obtained from G by deletion of the edges a1b1, a2b2 and
addition of new edges a1a2, b1b2.

A graph is called connected if there is a path between every pair of its vertices
(otherwise, the graph is disconnected). A connected component in a graph is its maximal
connected subgraph. A tree is a connected graph without cycles. Prominent examples
of trees are paths Pn (n-vertex trees with at most two leaf vertices) and stars K1,n−1
(n-vertex trees with at most one non-leaf vertex). For example, the complete graph
K2 is a path P2 and a star K1,1, simultaneously. A graph which has exactly one cycle
is called unicyclic.

For a set of vertices A ⊂ V (G) by G[A] we denote the subgraph of G induced by A.
Also, we put G − A = G[V (G)\A] and G − u = G − {u} for any vertex u ∈ V (G).
Similarly, for a set of edges E′ ⊂ E(G) by G − E′ we denote the spanning subgraph of
G with E(G−E′) = E(G)\E′. And for a single edge e ∈ E(G) we put G−e = G−{e}.

A vertex u ∈ V (G) is called simplicial if its neighborhood NG(u) induces a complete
subgraph in G. A vertex u ∈ V (G) is called a cut vertex if the graph G − u has more
connected components than G (in particular, for connected graphs G the graph G − u
must be disconnected). An edge e ∈ E(G) is a bridge provided G−e has more connected
components than G (in particular, for connected graphs G the graph G − e must have
exactly two connected components). A graph is called 2-connected if it does not have
cut vertices. A maximal 2-connected subgraph in G is called its block. A pendant block
in a graph G is its block which contains exactly one cut vertex of G. A graph is called
a block graph provided all its blocks are complete subgraphs. Note that every vertex
in a block graph is either a cut vertex or a simplicial vertex.

2.2. GRAPHIC MULTISETS AND IMBALANCE GRAPHIC GRAPHS

A multiset M is a pair (X, f), where X is a set and f : X → N is the multiplicity
function (which counts the number of appearances of elements x ∈ X in M). We will
also denote a multiset M = (X, f) as M = {x[f(x)] : x ∈ X}.
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For a multiset M = (X, f) and a natural number n ∈ N we put nM = (X, nf),
where (nf)(x) = nf(x) for all x ∈ X. Now let M = (X, f) be a multiset of integers,
i.e. X ⊂ Z. By M mod 0 we denote the multiset (X\{0}, f |X\{0}). For a number
n ∈ Z by Mn we denote the multiset (nX, f), where nX = {nx : x ∈ X}.

A multiset M of non-negative integers is called graphic provided it is the multiset
of vertex degrees of some graph G. Any such graph G is called a realization of M .
There is a classical criterion for graphic multisets by Erdős and Gallai [7] which will
be used many times throughout this paper.

Theorem 2.1 ([7]). Let d1 ≥ . . . ≥ dn be n ≥ 2 non-negative integers. The multiset
M = {d1, . . . , dn} is graphic if and only if the sum

∑n
i=1 di is even and for all

1 ≤ k ≤ n − 1 the following inequality holds:

k∑

i=1
di ≤ k(k − 1) +

n∑

j=k+1
min{k, dj}.

The imbalance of an edge uv ∈ E(G) is the value imbG(uv) = |dG(u) − dG(v)|.
The imbalance sequence MG of a graph G is the multiset of all edge imbalances in
G. The sum of all edge imbalances in G is called the irregularity of G and denoted
by I(G). It is easy to see that I(G) = 0 if and only if every connected component of
G is a regular graph.

A graph G is imbalance graphic provided its imbalance sequence MG is graphic.
Otherwise, a graph is called imbalance non-graphic. For any imbalance graphic graph G
we assume by default that V (H) = E(G) for every realization H of MG.

A simple examination shows that every graph with n ≤ 5 vertices is imbalance
graphic. The next proposition contains basic properties of imbalance graphic graphs
and will be used in this paper.

Proposition 2.2 ([11]). Let G, G1, G2 be graphs. Then:

1. if G1 and G2 are imbalance graphic, then so is G1 ∪ G2,
2. if G is imbalance graphic, then G + K1 is also imbalance graphic,
3. if G has a constant edge imbalance, then G is imbalance graphic.

3. NEW CLASSES OF IMBALANCE GRAPHIC GRAPHS

3.1. TREES AND UNICYCLIC GRAPHS

We start by presenting the new proof of imbalance graphicnesss of trees. The same
idea would be used for unicyclic graphs. These two proofs are based on the next result
and its corollary.

Proposition 3.1. Let G1, G2 be two imbalance graphic graphs and wx ∈ E(G1),
yz ∈ E(G2) be their edges with dG1(w) ≥ dG1(x), dG2(y) ≥ dG2(z) and
(dG1(w) − dG2(y)) · (dG2(z) − dG1(x)) ≥ 0. Then the graph which is obtained from
G1 ∪ G2 by performing the 2-switch on the vertices w, x, y, z is also imbalance graphic.
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Proof. Put G = G1 ∪ G2 and let G′ be the graph which is obtained from G by
2-switching the vertices w, x, y, z. Since G1 and G2 are both imbalance graphic, there
are realizations of their imbalance sequences. By H1 we will denote the realiza-
tion of MG1 and by H2 the realization of MG2 . Let A = NH1(wx) = {a1, . . . , ak},
B = NH2(yz) = {b1, . . . , bm} be the neighborhoods of wx and yz in H1 and H2,
respectively. Clearly, G is imbalance graphic with H = H1 ∪ H2 being a realization
of MG.

Without loss of generality, we can assume that k ≤ m.
Firstly, we remove the vertices wx, yz from H and add new edges {ai, bi}, 1 ≤ i ≤ k,

to obtain the graph H ′. Further, we will add two new vertices wy, xz to H ′ with
the edges:

1. {bi, wy} for k + 1 ≤ i ≤ k + imbG′(wy),
2. {bi, xz} for k + imbG′(wy) + 1 ≤ i ≤ m.

The obtained graph H ′′ is a realization of G′. Indeed, since

(dG1(w) − dG2(y)) · (dG2(z) − dG1(x)) ≥ 0,

we have

m − k = imbG2(yz) − imbG1(wx)
= dG2(y) − dG2(z) − (dG1(w)) − dG1(x))
= (dG2(y) − dG1(w)) + (dG1(x) − dG2(z))
= |dG2(y) − dG1(w)| + |dG1(x) − dG2(z)|
= imbG′(wy) + imbG′(xz).

Corollary 3.2. Let G1, G2 be two imbalance graphic graphs and xl1 ∈ E(G1), yl2 ∈
E(G2) be their leaf edges with leaves l1, l2. Then the graph ((G1 ∪G2)−{l1, l2})∪{xy}
(which is obtained from G1 ∪ G2 by deleting the vertices l1, l2 and adding the edge xy)
is imbalance graphic.

Proof. Since dG1(l1) = dG2(l2) = 1, we can 2-switch the vertices x, l1, y, l2 in G1 ∪ G2
and get an imbalance graphic graph H. Also, we know that H has two connected
components H1, H2, where V (H2) = {l1, l2}. Now recall that imbH(l1l2) = 0, which
implies that ((G1 ∪ G2) − {l1, l2}) ∪ {xy} = H1 is also imbalance graphic.

Using Corollary 3.2, one can obtain a conceptually different and simpler proof of
imbalance graphicness of trees, which was originally established in [11].

Corollary 3.3 ([11]). Trees are imbalance graphic.

Proof. The proof goes by induction on n. If n ≤ 5, then trivially T is imbalance
graphic. Now suppose that n ≥ 6. If T is a star, then MT = {(n − 2)[n − 1]} is clearly
graphic. Now we can assume that T is not a star. This means that there is an inner
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edge xy ∈ E(T ). We remove the edge xy from T and add to it two new vertices l1, l2
with the edges xl1, yl2. The obtained graph is a forest G consisting of two trees G1
and G2 (see Figure 1). Thus, G is imbalance graphic by the induction assumption and
Proposition 2.2.

. . .
x

l1 l2

y
. . .

Fig. 1. T after removing the edge xy and adding new leaf vertices l1, l2

Since l1 and l2 are leaf vertices in G, we use Corollary 3.2 in order to show that
the initial tree

T = ((G1 ∪ G2) − {l1, l2}) ∪ {xy}

is indeed imbalance graphic.

Exploiting the same idea as in the proof of Corollary 3.3, we can prove the imbalance
graphicness of unicyclic graphs.

Theorem 3.4. Unicyclic graphs are imbalance graphic.

Proof. It is sufficient to prove the theorem for connected unicyclic graphs. Thus, let
G be a connected unicyclic graph with n ≥ 3 vertices. In order to prove that G
is imbalance graphic, we use induction on n. If n = 3, then the statement clearly
holds. Hence, assume n ≥ 4. If G is a cycle, then MG = {0[n]} is trivially graphic.
Now suppose that G contains a bridge between two inner vertices. Then, using the
same argument as in proof of Corollary 3.3, we obtain that G is imbalance graphic.
Therefore, we further assume that G is not a cycle and that every bridge in G connects
a leaf vertex with a vertex on the cycle.

Let A = {a1, a2, . . . , ak} ⊂ V (G) be a maximal connected subset of vertices
in G having dG(a) = ∆(G) for all a ∈ A. It is clear that each element in A lies
on a cycle in G. Now consider the function f : A → V (G), which for any a ∈ A
returns a leaf vertex from NG(a), i.e. f(a) ∈ NG(a) and dG(f(a)) = 1 (see Figure 2).
Put H = G − f(A). By induction assumption, H is imbalance graphic. Let F be
a realization of MH (recall that we assume that V (F ) = E(H)).
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. . .

a1

a2

a3

f(a1)

f(a2)

f(a3)

Fig. 2. An illustration for the induction step from the proof of Theorem 3.4

It is clear that for all a ∈ A and v ∈ NH(a)\A it holds imbG(av) = imbH(av) + 1.
Moreover, for all a ∈ A and a′ ∈ NH(a) ∩ A we have imbH(aa′) = imbG(aa′).

Add to F new vertices aif(ai), 1 ≤ i ≤ k with new edges {aif(ai), aiv}, 1 ≤ i ≤ k,
v ∈ NH(a)\A. Further, add new edges {aif(ai), ajf(aj)} for aiaj ∈ E(G), 1 ≤ i, j ≤ k.
The obtained graph is a realization of MG.

3.2. ANTIREGULAR GRAPHS, JOINS AND THE DOUBLE GRAPH

As is well known, there is no graph with n ≥ 2 vertices which has pairwise different
degrees of its vertices (this is a classical application of Dirichlet’s principle as isolated
and universal vertices cannot coexist simultaneously). A graph G is called antiregu-
lar [2], if there is exactly one pair of different vertices u, v ∈ V (G) with dG(u) = dG(v).
It is known that for any n ≥ 2 there are only two non-isomorphic antiregular graphs
with n vertices and they are complementary (see [5]).

Proposition 3.5. Antiregular graphs are imbalance graphic.

Proof. The proof goes by induction on n = |V (G)|, n ≥ 2. If n = 2, then the
statement is obvious since K2 and K2 are the only 2-vertex graphs. Recall that for
every n ≥ 2 there are exactly two antiregular graphs on n vertices, namely Gn and
its complement Gn. Also, Gn = Gn−1 + K1 and Gn−1 = Gn−1 ∪ K1. Since for every
imbalance graphic graph G the graphs G + K1 and G ∪ K1 are also imbalance graphic
(see Proposition 2.2), the statement holds.

Now we turn our attention to particular joins of graphs. At first, we show that
the second statement from Proposition 2.2 does not hold for imbalance non-graphic
graphs. Moreover, we prove an even stronger statement.

Proposition 3.6. For any k ≥ 1 there exists a graph G such that G+Kk is imbalance
non-graphic.
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Proof. At first, we deal with the case k = 1. For any number m ≥ 7 consider the graph
G = (Km−1 ∪ K1) + K2. We calculate the imbalances of edges in G + K1. We have

MG+K1 mod 0 = {m − 1[1], m − 2[2], 1[m + 1]}.

To show that MG+K1 mod 0 is not graphic, we use Erdős-Gallai criterion (Theorem 2.1)
and consider the first three elements of MG+K1 mod 0 (in a non-increasing order):
M ′ = {m − 1[1], m − 2[2]}. Then

∑

d∈M ′

d − |M ′|(|M ′| − 1) −
∑

d∈MG+K1 mod 0\M ′

min{d, |M ′|} = m − 1 + 2(m − 2) − 6 − (m + 1)

= 2m − 12 > 0.

Therefore, MG+K1 mod 0 is non-graphic and hence so is MG+K1 .
Now let k ≥ 2. To prove the statement of the proposition, we construct an

imbalance non-graphic graph H with exactly k universal vertices. Fix any number
m ∈ N with 2m > k2 + 7k. Consider a complete graph G′ ≃ Km and a subset
A ⊂ V (G′) with |A| = k − 1. Add to G′ the new vertex v with edges uv for all u ∈ A
to obtain a graph G′′. Finally, set H = G′′ + P , where P ≃ P3, V (P ) = {x, y, z} and
E(P ) = {xy, yz} (see Figure 3).

At first, observe that H indeed has exactly k universal vertices, namely, the vertices
from A ∪ {y}.

G′′ :

Km v

u1

. . .

uk−1

+

x y z

P :

Fig. 3. The join H = G′′ + P from the proof of Proposition 3.6
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Further, let us calculate the degrees of vertices in H. For all t ∈ V (G′)\A we have
dH(t) = dH(x) = dH(z) = m + 2. For all u ∈ A it holds dH(u) = dH(y) = m + 3. And
clearly dH(v) = k + 2.

Now we calculate the imbalances of edges in H. For all t ∈ V (G′)\A and u ∈ A we
have imbH(tu) = 1, imbH(uv) = m − k + 1, imbH(xt) = imbH(zt) = 0, imbH(xu) =
imbH(zu) = 1, imbH(xv) = imbH(zv) = m − k, imbH(yt) = 1, imbH(yu) = 0 and
imbH(yv) = m − k + 1. Thus

MH mod 0 = {m − k + 1[k], m − k[2], 1[(m − k + 1)k + 2(k − 1)]}.

To show that MH is not graphic, we again use Erdős-Gallai criterion and consider the
first k + 2 elements of MH : M ′ = {m − k + 1[k], m − k[2]}. Then

∑

d∈M ′

d − |M ′|(|M ′| − 1) −
∑

d∈MH \M ′

min{d, |M |}

= (m − k + 1)k + 2(m − k) − (k + 2)(k + 1) − ((m − k + 1)k + 2(k − 1))
= 2m − 2k − k2 − 3k − 2 − 2k + 2 = 2m − k2 − 7k > 0.

Therefore, MH is non-graphic. Setting G = H[V (H)\(A ∪ {y})], we conclude that
G + Kk ≃ H is imbalance non-graphic.

Note that the construction of a graph H from the proof of Proposition 3.6 yields
that the join of two imbalance graphic graphs is not necessarily imbalance graphic
itself. Indeed, P ≃ P3 is clearly imbalance graphic and

MG′′ mod 0 = {m − k + 1[k − 1], 1[(k − 1)(m − k + 1)]}

has a realization (k − 1)K1,m−k+1. However, H = G′′ + P is imbalance non-graphic
for 2m > k2 + 7k.

The next result establishes a positive result on imbalance graphicness for joins of
arbitrary graphs with empty graphs of suitable order.

Theorem 3.7. Let G be an n-vertex graph and m ≥ n − max{1, δ(G)}. Then G + Km

is imbalance graphic.

Proof. Put H = G + Km and V (H)\V (G) = {a1, a2, . . . , am}. We arrange the edge
set of H in the non-increasing order of their imbalances: E(H) = {e1, e2, . . . , e|E(H)|}.
Since m ≥ n − max{1, δ(G)}, then for all 1 ≤ i ≤ |E(H)| we have

imbH(ei) ≤ ∆(G) − max{1, δ(G)} ≤ m + ∆(G) − n.

Thus, the imbalances of the first m edges from E(H) are equal to m + ∆(G) − n.
We use the Erdős–Gallai criterion. Hence, we must prove that for all

1 ≤ k ≤ |E(H)| − 1 the following inequality holds:

k∑

i=1
imbH(ei) ≤ k(k − 1) +

|E(H)|∑

i=k+1
min{k, imbH(ei)}.
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Note that ∆(G) − n ≤ −1. If k > m, then we have

k∑

i=1
imbH(ei) ≤ k(m + ∆(G) − n) ≤ k(m − 1) ≤ k(k − 1).

Now we show that the desired inequality holds for k ≤ m as well. At first, note
that in this case

k∑

i=1
imbH(ei) = (m + ∆(G) − n)k.

Further, for all k + 1 ≤ i ≤ m it also holds imbH(ei) = m + ∆(G) − n. We consider
two subcases.
Subcase 1. k > m + ∆(G) − n.

Here for all k + 1 ≤ i ≤ m we have

min{k, imbH(ei)} = min{k, m + ∆(G) − n} = m + ∆(G) − n.

Therefore,

k∑

i=1
imbH(ei) = (m + ∆(G) − n)k ≤ (m + ∆(G) − n)m

= (m + ∆(G) − n)(m − k) + (m + ∆(G) − n)k
≤ (m + ∆(G) − n)(m − k) + (k − 1)k

≤ k(k − 1) +
|E(H)|∑

i=k+1
min{k, imbH(ei)}.

Subcase 2. k ≤ m + ∆(G) − n.
Here for all k + 1 ≤ i ≤ m we have

min{k, imbH(ei)} = min{k, m + ∆(G) − n} = k.

Therefore,

k∑

i=1
imbH(ei) = (m + ∆(G) − n)k ≤ (m − 1)k = (m − k + k − 1)k

= (m − k)k + (k − 1)k ≤ k(k − 1) +
|E(H)|∑

i=k+1
min{k, imbH(ei)}.

Hence, by Theorem 2.1, H is imbalance graphic.

Note that, generally speaking, the statement of Theorem 3.7 does not hold for
m = n − max{1, δ(G)} − 1. Indeed, consider the graph G = K3 ∪ K1. It is clear that
n = |V (G)| = 4 and δ(G) = 0. However, for m = n − max{1, δ(G)} − 1 = 2 the graph
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G + K2 is imbalance non-graphic. It is also an interesting question whether we can
construct such a graph for an arbitrary number of vertices n.

To conclude this section, we consider another unary graph operation called the
double graph. Namely, let G be a graph. Consider a graph G′ which is an isomorphic
copy of G with V (G′) = {u′ : u ∈ V (G)}. The double graph D[G] [14] of G is
a graph with the vertex set V (D[G]) = V (G) ⊔ V (G′) and the edge set E(D[G]) =
E(G) ∪ E(G′) ∪ {uv′ : uv ∈ E(G)}. In other words, to construct D[G] we take the
union of G with its copy G′ and add new edges uv′ for every edge uv in G. An example
of a double graph is given in Figure 4.

u v w

u′ v′ w′

Fig. 4. The double graph D[P3] of a 3-vertex path

Proposition 3.8. The double graph of an imbalance graphic graph is also imbalance
graphic.

Proof. Let G be an imbalance graphic graph. From the construction of D[G] it follows
that dD[G](u) = dD[G](u′) = 2dG(u). Hence, we can calculate MG directly: for all
uv ∈ E(G) we have imbD[G](uv) = imbD[G](u′v′) = imbD[G](uv′) = 2 imbG(uv).
Therefore, MD[G] = 4M2

G. This means that for a realization H of MG the graph 2D[H]
is a realization of MD[G]. Hence, D[G] is imbalance graphic.

A closely related construction to the double graph of G is the so-called bipartite
double cover of G, which is defined as the tensor product G × K2. One can observe
that G × K2 = D[G] − (E(G) ∪ E(G′)). It is also easy tp see that G × K2 is imbalance
graphic whenever G is (as MG×K2 = 2MG).

4. IMBALANCE GRAPHIC BLOCK GRAPHS

Since every tree is a block graph, in light of Corollary 3.3 it is natural to ask whether
all block graphs are imbalance graphic. To support the affirmative answer to the
question, in this section we provide positive results about three particular classes of
block graphs: block graphs having all cut vertices in a single block; block graphs in
which the subgraph induced by the cut vertices is either a star or a path.
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Theorem 4.1. Block graphs having all cut vertices in a single block are imbalance
graphic.

Proof. Let G be a block graph with all the cut vertices lying in a single block. If G
does not have cut vertices at all, then it is complete and hence trivially imbalance
graphic. Now assume G contains pendant blocks. We use induction on n = |V (G)| to
prove that G is imbalance graphic. If n ≤ 5, then G is trivially imbalance graphic.
Assume that G contains n ≥ 6 vertices. Let B be a block in G which contains all its
cut vertices and let B1, B2, . . . , Bl be pendant blocks in G.

Put m = maxv∈V (B) dG(v) and let A = {v1, . . . , vk} be the set of vertices from V (B)
whose degrees are equal to m. For any such vertex vi ∈ A fix an (arbitrary) simplicial
vertex ui from a pendant block which contains vi (at least one such a block exists).
For every 1 ≤ i ≤ k by Bi we denote the pendant block in G that contains the vertices
vi and ui. Consider the graph G′ obtained from G by deleting all such vertices ui

(see Figure 5).

v2

v1

u1

u2

Fig. 5. The construction of the graph G′ from the induction step

Clearly, G′ is also a block graph having all its cut vertices in a single block. By
induction assumption, G′ is imbalance graphic. Let H ′ be a realization of MG′ mod 0.
It is clear that for all 1 ≤ i ≤ k and for all edges e ∈ E(Bi − ui) we have imbG(e) =
imbG′(e). Now consider an edge of the form e = viw ∈ E(G′) for some 1 ≤ i ≤ k and
w ∈ NG(vi)\V (Bi). We have

imbG(e) =
{

imbG′(e), if dG(w) = m,

imbG′(e) + 1, if dG(w) < m.
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Add k new vertices to H ′ of the form uivi, 1 ≤ i ≤ k with new edges:

1. {uivi, viw}, where 1 ≤ i ≤ k, w /∈ V (Bi) and dG(w) < m,
2. {uivi, ujvj}, where 1 ≤ i, j ≤ k, i ̸= j.

The constructed graph is a realization of MG mod 0 implying that MG is graphic.

Remark 4.2. If G is a block graph having one cut vertex, a realization of MG can be
constructed from the line graph L(G) by the deletion of edges in L(G) between the
edges from a common block in G. An illustration of such a construction is given in
Figure 6.

12 3

4 5

Block graph G

1213

14

15

45

Line graph L(G)

1213

14

15

45

The realization of MG

Fig. 6. Construction of a realization for MG from L(G)

Theorem 4.3. Block graphs in which cut vertices induce a star are imbalance graphic.

Proof. Let G be a block graph in which cut vertices induce a star S, a be the center
of S and a1, . . . , ak be the leaves of S. Without loss of generality, we can assume that
G is connected. We use induction on n = |V (G)| to prove that G is imbalance graphic.
If n ≤ 5, then G is imbalance graphic. Hence, suppose n ≥ 6.

At first, assume there is a vertex ai ∈ V (G) with dG(ai) > dG(a). In this case,
delete an arbitrary simplicial vertex u from the pendant block B, whose cut vertex
is ai (see Figure 7). It is clear that the obtained graph G′ = G − u is also a block
graph in which cut vertices induce a star. By induction assumption, G′ is imbalance
graphic. Let H be a realization of MG′ mod 0. Add to H the new vertex aiu with the
new edges of the form {aiu, aib} for every b ∈ NG′(ai)\V (B). The obtained graph is
a realization of MG mod 0.
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a

ai

u

Fig. 7. The case where dG(ai) > dG(a) for some vertex ai

Now consider the case when dG(a) ≥ dG(ai) for all 1 ≤ i ≤ k. Here, we have two
subcases.

Subcase 1. There exists 1 ≤ i ≤ k with NG(ai) ∩ NG(a) = ∅.
In this subcase delete the bridge aai from G and add two new leaf edges al1 and

ail2 (see Figure 8).

a

ai

→
a

ai

l1

l2

Fig. 8. Operation on G which produces two components G1 and G2.

The obtained graph has two connected components (as G is connected), one of
which is a block graph G1 with a unique cut vertex and the other one is a block graph
G2 in which cut vertices induce a star. By induction assumption and Theorem 4.1,
both G1 and G2 are imbalance graphic. Let H be the (disjoint) union of realizations
of graphic sequences MG1 and MG2 .
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By Corollary 3.2, G is imbalance graphic.

Subcase 2. For all 1 ≤ i ≤ k it holds NG(ai) ∩ NG(a) ̸= ∅.
Choose an arbitrary cut vertex ai and a vertex v ∈ NG(a) ∩ NG(ai). Delete the

vertex v from G obtaining the imbalance graphic graph G′ (see Figure 9). Let H be
a realization of MG′ mod 0. Add to H two new vertices va, vai with the new edges of
the form {vai, aiw} for all w ∈ NG(ai)\NG[a] and {va, aw} for all w ∈ NG(a)\NG[ai].
The obtained graph is a realization of MG mod 0.

a ai

v

Fig. 9. Construction of the imbalance graphic graph G′ from Subcase 2

Theorem 4.4. Block graphs in which cut vertices induce a path are imbalance graphic.

Proof. Let G be a block graph in which cut vertices induce a path. We use induction
on n = |V (G)| to prove that G is imbalance graphic. If n ≤ 5, then G is imbalance
graphic.

Let a1, . . . , ak be the cut vertices of G and aiaj ∈ E(G) if and only if |i − j| = 1.
If k ≤ 2, then all cut vertices in G lie in a common block implying that by Proposi-
tion 4.1, G is imbalance graphic. Hence, we can assume that k ≥ 3.

Denote by B the block in G which contains the vertices a1 and a2. If |V (B)| = 2,
then B is a bridge in G and, therefore, using the same strategy as in the proof of
Subcase 1 from Theorem 4.3, we can show that G is imbalance graphic. Thus, assume
that B contains a simplicial vertex u. Clearly, ua1, ua2 ∈ E(G).

Put C1 = NG(a1)\B and C2 = (NG(a2)\B)\{a3}. Since a1 is a cut vertex in G,
then C1 ≠ ∅. Also, fix a vertex w ∈ C1 (see Figure 10). Note that w is necessarily
simplicial in G.
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a2a1 a3

u

w

. . . . . .

B

C1

C2

Fig. 10. Preparation for the induction step in the proof of Theorem 4.4.

It is clear that G′ = G − u is also a block graph in which cut vertices induce
a path, thus by induction assumption G′ is imbalance graphic. Let H be a realization of
MG′ mod 0. It is easy to see that for all e = a1c, c ∈ C1 it holds imbG(e) = imbG′(e)+1.
Also, for all e = a2c, c ∈ C2 we have imbG(e) = imbG′(e)+1. Finally, imbG(a1u) = |C1|
and imbG(a2u) = |C2| + 1.

At first, add to H two new vertices a1u and a2u to obtain the new graph H ′.
Further we consider the next two cases.
Case 1. dG(a2) > dG(a3).

In this case imbG(a2a3) = imbG′(a2a3) + 1. Adding to H ′ new edges of the form
{a1u, a1c}, where c ∈ C1, {a2u, a2c}, where c ∈ C2, and the new edge {a2u, a2a3}, we
obtain the realization of MG mod 0.
Case 2. dG(a2) ≤ dG(a3).

Since dG(a2) ≤ dG(a3), then imbG(a2a3) = imbG′(a2a3) − 1. At first, add to H ′

new edges {a1u, a1c}, c ∈ C1, c ̸= w. Further, add new edges {a2u, a2c}, c ∈ C2.
Fix a vertex x ∈ NH(a2a3) and delete from H ′ the edge {a2a3, x}. If x = a2c for

some c ∈ C2, then we add the edges {a1u, x} and {a2u, a1w}. Otherwise, add the
edges {a1u, a1w} and {a2u, x}. In both cases, the obtained graph is a realization of
MG mod 0.

5. OPEN QUESTIONS AND CONJECTURES

As we saw in the previous section, some block graphs from specific classes are imbalance
graphic. Also, all trees are imbalance graphic. In light of these results, we formulate
our main conjecture:

Conjecture 5.1. All block graphs are imbalance graphic.

This conjecture was verified for all block graphs with ≤ 13 vertices using the library
of chordal graphs created by McKay [12].

It is well known that line graphs of trees are exactly claw-free block graphs.
Interestingly, every line graph of a tree up to 21 vertices is imbalance graphic (here
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and later we used the library nautyTraces [13] to generate graphs). This is why we
formulate the weaker version of Conjecture 5.1:

Conjecture 5.2. Line graphs of trees are imbalance graphic.

Also, we should note that there are line graphs of imbalance graphic graphs that are
imbalance non-graphic (see Figure 11). However, there are not many such connected
graphs (see Table 1).

G L(G)

Fig. 11. An imbalance graphic graph G with imbalance non-graphic line graph L(G)

Table 1
Number of connected graphs with ≤ 10 vertices whose line graphs are imbalance non-graphic

n Connected n-vertex graphs with
imbalance non-graphic line graphs

1 – 5 0
6 1
7 1
8 9
9 5
10 64

Another interesting question arises in view of Corollary 3.3 and Theorem 3.4.
Namely, whether bicyclic graphs (these are the n-vertex graphs with n + 1 edges) are
imbalance graphic. As it turns out, there is an imbalance non-graphic bicyclic graph
depicted in Figure 12.
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MG = {2[2], 0[5]}

2
0

0

0

0

0

2

Fig. 12. Bicyclic graph G which is imbalance non-graphic

However, the graph mentioned above is the only connected bicyclic imbalance
non-graphic graph among all such graphs up to 21 vertices. This is why we formulate
the following conjecture:
Conjecture 5.3. The graph shown in Figure 12 is the only connected imbalance
non-graphic bicyclic graph.

Now we turn our attention to the second imbalance conjecture formulated by
Kozerenko and Skochko in [11]. It was believed that there is a universal constant
c > 0 such that any graph G with I(G) ≥ c|E(G)| is necessarily imbalance graphic.
Moreover, it was explicitly conjectured that c = 2. In the next proposition we show
that this conjecture is false.
Proposition 5.4. For every real number c > 0 there is an imbalance non-graphic
graph G having I(G) ≥ c · |E(G)|.
Proof. Consider the graph G given in Figure 13.

. . .0
0

0

0

0

k − 1

k − 1

k
+

1

k
+ 1

k + 1

k +
1

k

Fig. 13. Counterexample to the second imbalance conjecture from [11]
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As we can see, MG mod 0 = {k − 1[2], k + 1[k]}. Let us show that this multiset is
not graphic. Suppose it is and let H be a realization of MG mod 0. It is obvious that
all the k vertices with the degree k + 1 must be universal, because |V (H)| = k + 2.
However, since H is not a complete graph, it must be true that δ(H) ≥ k, which is
a contradiction.

Now let us show that we can find such k that I(G) ≥ c · |E(G)|. On the
one hand, I(G) = 2(k − 1) + k(k + 1) = k2 + 3k − 2. On the other hand,
c · |E(G)| = c(k + 7). Hence, any k satisfying the inequality k2 + 3k − 2 ≥ c(k + 7)
(equivalently, k ≥ ⌈ c−3+

√
c2+22c+17

2 ⌉) will do.

Finally, we would like to recall the first and the most interesting hypothesis
concerning imbalance graphic graphs that was also proposed in [11]. This conjecture
was verified for all graphs up to 12 vertices.
Conjecture 5.5. We note that in order to support this conjecture, in [11] Suppose
that for all edges e ∈ E(G) we have imbG(e) > 0. Then G is imbalance graphic.

We note that in order to support this conjecture, in [10] it was showed that any
multigraph (here multiple edges between a given pair of vertices are allowed) G with
imbG(e) > 0 for all e ∈ E(G) is imbalance multigraphic (i.e. its imbalance sequence
MG equals the multiset of vertex degrees of some multigraph).
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