LOWER DENSITY OPERATORS. Φ_{f} VERSUS Φ_{d}

Gertruda Ivanova, Elżbieta Wagner-Bojakowska, and Władysław Wilczyński

Communicated by Palle E.T. Jorgensen

Abstract

Using the new method of the construction of lower density operator introduced in the earlier paper of the first two authors, we study how much the new operator can be different from the classical one. The aim of this paper is to show that if f is a good adjusted measure-preserving bijection then the lower density operator generated by f can be really different from the classical density operator.

Keywords: lower density operator, measure-preserving bijection.
Mathematics Subject Classification: 54C60, 26E25, 28D05.

1. INTRODUCTION

The density topology plays essential role in the study of approximate continuity, approximate differentiation $([1,3,4])$, and in the potential theory ($[6]$). In this paper we study a new method of constructing a large class of lower density operators generated by measure-preserving bijections, which where introduced by the first authors ([5]).

Let \mathcal{S} be a σ-algebra of subsets of X and let $\mathcal{I} \subset \mathcal{S}$ be a σ-ideal. For $A, B \in \mathcal{S}$, if the symmetric difference $A \Delta B$ belongs to \mathcal{I}, then we will write $A \sim B$.

Let $\Phi: \mathcal{S} \rightarrow \mathcal{S}$ be a a lower density operator on \mathcal{S}, i.e. for each $A, B \in \mathcal{S}$, the following conditions are fulfilled:

1. $\Phi(\emptyset)=\emptyset, \quad \Phi(X)=X$;
2. if $A \sim B$, then $\Phi(A)=\Phi(B)$;
3. $\Phi(A \cap B)=\Phi(A) \cap \Phi(B)$;
4. $\Phi(A) \sim A$.

If $X=\mathbb{R}, \mathcal{S}$ is a σ-algebra \mathcal{L} of Lebesgue measurable sets and \mathcal{I} - a σ-ideal \mathcal{N} of nullsets, then the classical density operator Φ_{d} assigns to each $A \in \mathcal{L}$ the set $\Phi_{d}(A)$ of all density points of A, of the form

$$
\Phi_{d}(A)=\left\{x \in \mathbb{R}: \lim _{h \rightarrow 0} \frac{\lambda([x-h, x+h] \cap A)}{2 h}=1\right\}
$$

where λ stands for Lebesgue measure on \mathbb{R}. It is nearly obvious that

$$
\begin{equation*}
\operatorname{Int}(A) \subset \Phi_{d}(A) \subset \bar{A} \tag{1.1}
\end{equation*}
$$

for each measurable set A, where $\operatorname{Int}(A)$ and \bar{A} denote the interior and closure of A, respectively.

In [5] authors concentrate on lower density operators for which the analogue of (1.1) is not fulfilled for some A in \mathcal{S}. They prove that if $f: \mathbb{R} \rightarrow \mathbb{R}$ is a measure-preserving bijection, i.e. $\lambda(f(A))=\lambda(A)=\lambda\left(f^{-1}(A)\right)$ for each $A \in \mathcal{L}$, then the operator $\Phi_{f}: \mathcal{L} \rightarrow \mathcal{L}$ defined as follows:

$$
\begin{equation*}
\Phi_{f}(A)=f^{-1}\left(\Phi_{d}(f(A))\right) \tag{1.2}
\end{equation*}
$$

for each $A \in \mathcal{L}$, is a lower density operator. Using this method there are given two examples of lower density operators for which the first or the second inclusion from (1.1) does not hold.

In this note we focus on comparison of the classical density operator Φ_{d} with the operator Φ_{f} generated by measure-preserving bijection f.

Obviously, if Φ is an arbitrary lower density operator defined on a family of Lebesgue measurable sets, then from the Lebesgue Density Theorem follows that the symmetric difference of $\Phi(A)$ and $\Phi_{d}(A)$ must be a set of measure zero for an arbitrary measurable A. However, the symmetric difference between $\Phi(A)$ and $\Phi_{d}(A)$ can be a large set in the sense of cardinality, as well as the Baire category.

The main result is Theorem 2.2 saying that the difference $\Phi_{f}(A) \backslash \Phi_{d}(A)$ can be a set of cardinality continuum. Here we use as A some subset of a symmetric Cantor-type set $C \subset[0,1]$, where Lebesgue measure of C equals $1 / 2$, and f is a suitably adjusted measure-preserving bijection on $[0,1]$. We prove also that if $g=f^{-1}$ and $A=(0,1 / 2)$, then $\Phi_{d}(A) \backslash \Phi_{g}(A)$ is a set of the second category, so is big in the Baire category sense (Theorem 2.6).

In the last part we prove that the equalities $\Phi_{f}(A)=\Phi_{d}(A)$ and $\Phi_{f}(A+a)=$ $\Phi_{f}(A)+a$ hold for arbitrary measurable A and $a \in \mathbb{R}$ if and only if $f(x)=x+c$ or $f(x)=-x+c$, where c is an arbitrary real number.

2. Φ_{f} VERSUS Φ_{d}

It is easy to see that $\Phi_{f} \Delta \Phi_{d}$ can be denumerable. Let \mathbb{Z} denote the set of integers. Put

$$
f(x)= \begin{cases}x+(-1)^{\lfloor x\rfloor} & \text { for } x \notin \mathbb{Z} \\ x & \text { for } x \in \mathbb{Z}\end{cases}
$$

and

$$
A=\bigcup_{k \in \mathbb{Z}}\left[\left(2 k+\frac{1}{2}, 2 k+1\right) \cup\left(2 k+1,2 k+\frac{3}{2}\right)\right] .
$$

Then

$$
f(A)=\bigcup_{k \in \mathbb{Z}}\left[\left(2 k-\frac{1}{2}, 2 k\right) \cup\left(2 k, 2 k+\frac{1}{2}\right)\right]
$$

So

$$
\Phi_{d}(f(A))=f(A) \cup \bigcup_{k \in \mathbb{Z}}\{2 k\}
$$

and

$$
\Phi_{f}(A)=f^{-1}\left(\Phi_{d}(f(A))\right)=A \cup \bigcup_{k \in \mathbb{Z}}\{2 k\} .
$$

Simultaneously, $\Phi_{d}(A)=A \cup \bigcup_{k \in \mathbb{Z}}\{2 k+1\}$, so

$$
\Phi_{d}(A) \Delta \Phi_{f}(A)=\mathbb{Z}
$$

The proof that this symmetric difference can be a set of cardinality continuum is more complicated. For this purpose we need some auxiliary lemma.

Lemma 2.1. If $f:(0,1) \rightarrow(0,1)$ is a bijection such that

$$
\lambda((0, b))=\lambda(f((0, b)))=\lambda\left(f^{-1}((0, b))\right)
$$

for an arbitrary $b \in(0,1]$, then f is a measure-preserving bijection.
Proof. First we will prove that for arbitrary $a \in[0,1)$

$$
\begin{equation*}
\lambda((a, 1))=\lambda(f((a, 1)))=\lambda\left(f^{-1}((a, 1))\right) . \tag{2.1}
\end{equation*}
$$

Let $a \in[0,1)$. From our assumption we obtain

$$
\lambda(f((a, 1)))=1-\lambda(f((0, a)))=1-a=\lambda((a, 1))
$$

and

$$
\lambda\left(f^{-1}((a, 1))\right)=1-\lambda\left(f^{-1}((0, a))\right)=1-a=\lambda((a, 1)) .
$$

Hence for arbitrary $a \in[0,1), b \in(0,1], a<b$

$$
\begin{equation*}
\lambda((a, b))=\lambda(f((a, b)))=\lambda\left(f^{-1}((a, b))\right) . \tag{2.2}
\end{equation*}
$$

If $A \subset(0,1)$ is open or closed, then from (2.2)

$$
\lambda(A)=\lambda(f(A))=\lambda\left(f^{-1}(A)\right) .
$$

Now let E be a measurable subset of $(0,1)$. There exists a decreasing sequence $\left\{G_{n}\right\}_{n \in \mathbb{N}}$ of open sets and an increasing sequence $\left\{F_{n}\right\}_{n \in \mathbb{N}}$ of closed sets such that

$$
\bigcup_{n=1}^{\infty} F_{n} \subset E \subset \bigcap_{n=1}^{\infty} G_{n}
$$

and

$$
\lambda\left(F_{n}\right) \nearrow \lambda(E) \swarrow \lambda\left(G_{n}\right) .
$$

Hence

$$
\begin{equation*}
\bigcup_{n=1}^{\infty} f\left(F_{n}\right) \subset f(E) \subset \bigcap_{n=1}^{\infty} f\left(G_{n}\right) \tag{2.3}
\end{equation*}
$$

and

$$
\lambda\left(f\left(F_{n}\right)\right) \nearrow \lambda(E) \swarrow \lambda\left(f\left(G_{n}\right)\right),
$$

so

$$
\begin{equation*}
\lambda\left(\bigcup_{n=1}^{\infty} f\left(F_{n}\right)\right)=\lambda(E)=\lambda\left(\bigcap_{n=1}^{\infty} f\left(G_{n}\right)\right) . \tag{2.4}
\end{equation*}
$$

Consequently, from (2.3) and (2.4), $\lambda(f(E))=\lambda(E)$.
Analogously,

$$
\bigcup_{n=1}^{\infty} f^{-1}\left(F_{n}\right) \subset f^{-1}(E) \subset \bigcap_{n=1}^{\infty} f^{-1}\left(G_{n}\right)
$$

and

$$
\lambda\left(f^{-1}\left(F_{n}\right)\right) \nearrow \lambda(E) \swarrow \lambda\left(f^{-1}\left(G_{n}\right)\right),
$$

so

$$
\lambda\left(f^{-1}(E)\right)=\lambda(E)
$$

i.e. f is a measure-preserving bijection.

Theorem 2.2. There exists a measure-preserving bijection $f: \mathbb{R} \rightarrow \mathbb{R}$ and a measurable set $A \subset \mathbb{R}$ such that

$$
\operatorname{card}\left(\Phi_{f}(A) \backslash \Phi_{d}(A)\right)=\mathfrak{c}
$$

Proof. In the first step we construct a symmetric Cantor-type set $C \subset[0,1]$ such that $\lambda(C)=\frac{1}{2}$ in the following way: remove from $[0,1]$ the open interval I_{1}^{1} with center $1 / 2$ and length $1 / 4$. Designate the remaining closed intervals J_{1}^{1} and J_{2}^{1}. From J_{1}^{1} and J_{2}^{1} remove the concentric open intervals I_{1}^{2} and I_{2}^{2} of length $1 / 4^{2}$.

At the k-th stage of the construction there remain 2^{k} closed intervals $J_{1}^{k}, \ldots, J_{2^{k}}^{k}$ of equal length. From each J_{i}^{k} remove the concentric open interval I_{i}^{k+1} of length $1 / 4^{k+1}, i=1, \ldots, 2^{k}$, and so on. Put

$$
C=\bigcap_{k=1}^{\infty} \bigcup_{i=1}^{2^{k}} J_{i}^{k}
$$

Then C is a symmetric perfect nowhere dense set and $\lambda(C)=\frac{1}{2}$.
From the classical Lebesgue Density Theorem it follows that $\lambda\left(C \backslash \Phi_{d}(C)\right)=0$. We will show that card $\left(C \backslash \Phi_{d}(C)\right)=\mathfrak{c}$. It suffices to prove that $C \backslash \Phi_{d}(C)$ includes a non-empty perfect set.

Let us start with I_{1}^{1}. There exists $k_{1} \in \mathbb{N}$ and $j_{1}^{1} \in\left\{1, \ldots, 2^{k_{1}}\right\}$ such that consecutive closed intervals $J_{j_{1}^{1}}^{k_{1}}$ and $J_{j_{1}^{1}+1}^{k_{1}}$ contiguous to I_{1}^{1} from both sides are shorter than I_{1}^{1}. Denote them by $J_{j_{1}^{1}, l}^{k_{1}}$ and $J_{j_{1}^{1}, r}^{k_{1}}$, respectively. Observe that if $x \in J_{j_{1}^{1}, l}^{k_{1}}$, then

$$
\frac{\lambda\left(C \cap\left[x, \sup I_{1}^{1}\right]\right)}{\sup I_{1}^{1}-x}<\frac{1}{2}
$$

and if $x \in J_{j_{1}^{1}, r}^{k_{1}}$, then

$$
\frac{\lambda\left(C \cap\left[\inf I_{1}^{1}, x\right]\right)}{x-\inf I_{1}^{1}}<\frac{1}{2}
$$

Put

$$
J_{1}=J_{j_{1}^{1}, l}^{k_{1}} \cup J_{j_{1}^{1}, r}^{k_{1}} .
$$

If $I_{j_{1}^{1}}^{k_{1}+1}$ and $I_{j_{1}^{1}+1}^{k_{1}+1}$ are open intervals removed in $\left(k_{1}+1\right)$-th stage from $J_{j_{1}^{1}, l}^{k_{1}}$ and $J_{j_{1}^{1}, r}^{k_{1}}$, respectively, then there exists $k_{2}>k_{1}$ and $j_{1}^{2} \in\left\{1, \ldots, 2^{k_{2}}\right\}$ such that consecutive closed intervals $J_{j_{1}^{2}}^{k_{2}}$ and $J_{j_{1}^{2}+1}^{k_{2}}$ contiguous to $I_{j_{1}^{1}}^{k_{1}+1}$ are shorter that $I_{j_{1}^{1}}^{k_{1}+1}$ and there exists $j_{2}^{2} \in\left\{1, \ldots, 2^{k_{2}}\right\}$ such that consecutive closed intervals $J_{j_{2}^{2}}^{k_{2}}$ and $J_{j_{2}^{2}+1}^{k_{2}}$ contiguous to $I_{j_{1}^{1}+1}^{k_{1}+1}$ are shorter that $I_{j_{1}^{1}+1}^{k_{1}+1}$. Denote the intervals $J_{j_{1}^{2}}^{k_{2}}, J_{j_{1}^{2}+1}^{k_{2}}, J_{j_{2}^{2}}^{k_{2}}, J_{j_{2}^{2}+1}^{k_{2}}$ by $J_{j_{1}^{2}, l}^{k_{2}}, J_{j_{1}^{2}, r}^{k_{2}}, J_{j_{2}^{2}, l}^{k_{2}}, J_{j_{2}^{2}, r}^{k_{2}}$, respectively. If $x \in J_{j_{1}^{2}, l}^{k_{2}}$ and $z=\sup I_{j_{1}^{1}}^{k_{1}+1}$, then

$$
\frac{\lambda(C \cap[x, z])}{z-x}<\frac{1}{2}
$$

and if $x \in J_{j_{2}^{2}, l}^{k_{2}}$ and $z=\sup I_{j_{1}^{1}+1}^{k_{1}+1}$, then

$$
\frac{\lambda(C \cap[x, z])}{z-x}<\frac{1}{2} .
$$

Similarly, if $x \in J_{j_{1}^{2}, r}^{k_{2}}$ and $z=\inf I_{j_{1}^{1}}^{k_{1}+1}$, then

$$
\frac{\lambda(C \cap[z, x])}{x-z}<\frac{1}{2}
$$

and if $x \in J_{j_{2}^{2}, r}^{k_{2}}$ and $z=\inf I_{j_{1}^{1}+1}^{k_{1}+1}$, then

$$
\frac{\lambda(C \cap[z, x])}{x-z}<\frac{1}{2}
$$

Put

$$
J_{2}=J_{j_{1}^{2}, l}^{k_{2}} \cup J_{j_{1}^{2}, r}^{k_{2}} \cup J_{j_{2}^{2}, l}^{k_{2}} \cup J_{j_{2}^{2}, r}^{k_{2}} .
$$

Suppose that we have chosen closed intervals $J_{j_{i}^{m}}^{k_{m}}, i \in\left\{1, \ldots, 2^{m}\right\}$, and $J_{m}=\bigcup_{i=1}^{2^{m}} J_{j_{i}^{m}}^{k_{m}}$.

Consider open intervals $I_{j_{i}^{m}}^{k_{m}+1}$, for $i \in\left\{1, \ldots, 2^{m}\right\}$ removed in $\left(k_{m}+1\right)$-th stage from $J_{j_{i}^{m}}^{k_{m}}$, respectively. There exists $k_{m+1}>k_{m}$ such that consecutive closed intervals remaining in the k_{m+1}-th stage contiguous to $I_{j_{i}^{m}}^{k_{m}+1}$ are shorter than $I_{j_{i}^{m}}^{k_{m}+1}$, for $i \in\left\{1, \ldots, 2^{m}\right\}$. We will denote the pair of such intervals by $J_{j_{i}^{m+1}, l}^{k_{m}+1}$ and $J_{j_{i}^{m+1}, r}^{k_{m}+1}$, $i \in\left\{1, \ldots, 2^{m}\right\}$. Put

$$
J_{m+1}=\bigcup_{i=1}^{2^{m}}\left(J_{j_{i}^{m+1}, l}^{k_{m}+1} \cup J_{j_{i}^{m+1}, r}^{k_{m}+1}\right) .
$$

Observe that if $x \in J_{j_{i}^{m+1}, l}^{k_{m}+1}$ and $z=\sup I_{j_{i}^{m}}^{k_{m}+1}$ then

$$
\frac{\lambda(C \cap[x, z])}{x-z}<\frac{1}{2}
$$

and if $x \in J_{j_{i}^{m+1}, r}^{k_{m}+1}$ and $z=\inf I_{j_{i}^{m}}^{k_{m}+1}$ then

$$
\frac{\lambda(C \cap[z, x])}{x-z}<\frac{1}{2}
$$

for $i \in\left\{1, \ldots, 2^{m}\right\}$.
Put

$$
E=\bigcap_{m=1}^{\infty} J_{m}
$$

Clearly, E is perfect, nowhere dense, $E \subset C$ and if $x \in E$ then $x \notin \Phi_{d}(C)$. Obviously $\operatorname{card}(E)=$ c. Consequently,

$$
\begin{equation*}
\operatorname{card}\left(C \backslash \Phi_{d}(C)\right)=\mathbf{c} \tag{2.5}
\end{equation*}
$$

Now we will construct a measure-preserving bijection $f: \mathbb{R} \rightarrow \mathbb{R}$. It will be convenient to denote by I_{1} the open interval I_{1}^{1} removed in the first stage of the construction, I_{2} and I_{3} - open intervals I_{1}^{2} and I_{2}^{2} removed in the second stage, $I_{2^{k-1}}, I_{2^{k-1}+1}, \ldots, I_{2^{k}-1}$ - open intervals removed in the k-th stage.

Let D be the set of the left-hand ends of all intervals $I_{n}, n \in \mathbb{N}$, contiguous to C,

$$
C_{0}=C \backslash(D \cup\{0,1\})
$$

and $H_{n}=I_{n} \cup\left\{\inf I_{n}\right\}$ for $n \in \mathbb{N}$.
Put

$$
f_{1}(x)=\lambda(C \cap(0, x))
$$

for $x \in(0,1)$. Then f_{1} is strictly increasing on C_{0}, constant on intervals $I_{n}, n \in \mathbb{N}$, and continuous, so $f_{1}((0,1))=(0,1 / 2)$. Hence $f_{1}: C_{0} \rightarrow(0,1 / 2)$ is a bijection.

Put

$$
f_{2}(x)=\frac{1}{2}+\sum_{i=1}^{n-1} \lambda\left(I_{i}\right)+x-\inf I_{n}
$$

for $x \in H_{n}, n \in \mathbb{N}$ (we assume that $\sum_{i=1}^{0} \lambda\left(I_{i}\right)=0$). Then $f_{2}: \bigcup_{n=1}^{\infty} H_{n} \rightarrow[1 / 2,1)$ is a bijection, too.

At last

$$
f(x)= \begin{cases}f_{1}(x) & \text { for } x \in C_{0} \\ f_{2}(x) & \text { for } x \in \bigcup_{n=1}^{\infty} H_{n} \\ x & \text { for } x \notin(0,1)\end{cases}
$$

Clearly, $f: \mathbb{R} \rightarrow \mathbb{R}$ is a bijection. Now we will prove that f is a measure-preserving transformation. It suffices to prove that $\lambda(A)=\lambda(f(A))=\lambda\left(f^{-1}(A)\right)$ for each measurable $A \subset(0,1)$.

Let $b \in(0,1]$. First we will show that

$$
\begin{equation*}
\lambda((0, b))=\lambda(f((0, b))) \tag{2.6}
\end{equation*}
$$

We have

$$
(0, b)=\left[(0, b) \cap C_{0}\right] \cup\left[(0, b) \cup \bigcup_{n=1}^{\infty} H_{n}\right]
$$

and

$$
\lambda\left[(0, b) \cap C_{0}\right]=f_{1}(b) .
$$

Simultaneously,

$$
f\left[(0, b) \cap C_{0}\right]=f_{1}\left[(0, b) \cap C_{0}\right]=\left(0, f_{1}(b)\right)
$$

so

$$
\begin{equation*}
\lambda\left(f\left[(0, b) \cap C_{0}\right]\right)=f_{1}(b)=\lambda\left[(0, b) \cap C_{0}\right] . \tag{2.7}
\end{equation*}
$$

On the other hand,

$$
\lambda\left[H_{n} \cap(0, b)\right]=\lambda\left[f_{2}\left(H_{n} \cap(0, b)\right)\right]
$$

for each $n \in \mathbb{N}$, as f_{2} is a translation on each H_{n}. Hence

$$
\begin{align*}
\lambda\left(f\left[(0, b) \cap \bigcup_{n=1}^{\infty} H_{n}\right]\right) & =\sum_{n=1}^{\infty} \lambda\left[f_{2}\left(H_{n} \cap(0, b)\right)\right] \\
& =\sum_{n=1}^{\infty} \lambda\left[H_{n} \cap(0, b)\right]=\lambda\left[(0, b) \cap \bigcup_{n=1}^{\infty} H_{n}\right] . \tag{2.8}
\end{align*}
$$

Finally, (2.7) and (2.8) implies (2.6).
Now we will prove that

$$
\begin{equation*}
\lambda((0, b))=\lambda\left(f^{-1}((0, b))\right) \tag{2.9}
\end{equation*}
$$

for $b \in(0,1]$.
Let $b \in(0,1 / 2]$. Then

$$
\lambda\left(f^{-1}((0, b))\right)=\lambda\left(C_{0} \cap f^{-1}((0, b))\right)=\lambda\left(C_{0} \cap\left(0, f_{1}^{-1}(b)\right)\right) .
$$

Put $x=f_{1}^{-1}(b)$. Hence

$$
\lambda\left(C_{0} \cap\left(0, f_{1}^{-1}(b)\right)\right)=\lambda\left(C_{0} \cap(0, x)\right)=f_{1}(x)=b,
$$

which gives (2.9) for $b \in(0,1 / 2]$.
Now let $b \in(1 / 2,1]$. We have

$$
f^{-1}((0, b))=C_{0} \cup\left[\bigcup_{n=1}^{\infty} H_{n} \cap\left[\frac{1}{2}, b\right)\right],
$$

so we get

$$
\lambda\left(f^{-1}((0, b))\right)=\lambda\left(C_{0}\right)+\lambda\left(\bigcup_{n=1}^{\infty} H_{n} \cap\left[\frac{1}{2}, b\right)\right)=\frac{1}{2}+b-\frac{1}{2}=\lambda((0, b)) .
$$

Consequently, the equality (2.9) holds for each $b \in(0,1]$. Using Lemma 2.1 we obtain that f is a measure-preserving bijection.

Finally we will prove that

$$
\begin{equation*}
\operatorname{card}\left(\Phi_{f}\left(C_{0}\right) \backslash \Phi_{d}\left(C_{0}\right)\right)=\mathfrak{c} \tag{2.10}
\end{equation*}
$$

Obviously, $C \backslash C_{0}$ is denumerable, so $\Phi_{d}\left(C_{0}\right)=\Phi_{d}(C)$ and using (2.5) we obtain

$$
\operatorname{card}\left(C_{0} \backslash \Phi_{d}\left(C_{0}\right)\right)=\mathfrak{c}
$$

On the other hand, $f\left(C_{0}\right)=(0,1 / 2)=\Phi_{d}\left(f\left(C_{0}\right)\right)$, so $\Phi_{f}\left(C_{0}\right)=C_{0}$, which proves (2.10).

In [2] A. Denjoy proved that the set of points of porosity of a nonempty closed nowhere dense set $F \subset \mathbb{R}$ is residual in F (compare also [9], Proposition 2.7). Hence, as each point of porosity of F is not a density point of F, we obtain

Theorem 2.3. If $C \subset[0,1]$ is a symmetric Cantor set such that $\lambda(C)=1 / 2$, then $\Phi_{d}(C)$ is of the first category in C.
Corollary 2.4. $\Phi_{d}(C)$ is of the first category in C_{0}.
Now let f be a function from Theorem 2.2.
Theorem 2.5. The set $f\left(\Phi_{d}(C)\right)$ is of the first category in $(0,1 / 2)$.
Proof. From Corollary 2.4 it follows that $\Phi_{d}(C) \subset \bigcup_{n=1}^{\infty} F_{n}$, where F_{n}, for $n \in \mathbb{N}$, are closed subsets of C nowhere dense in C_{0}. Let $n \in \mathbb{N}$. Observe that $f\left(F_{n} \cap C_{0}\right)$ is nowhere dense in $(0,1 / 2)$. Indeed, if $(a, b) \subset(0,1 / 2), a<b$, then there exist $x_{1}, x_{2} \in C_{0}$ such that $f\left(x_{1}\right)=\lambda\left(C_{0} \cap\left(0, x_{1}\right)\right)=a$ and $f\left(x_{2}\right)=\lambda\left(C_{0} \cap\left(0, x_{2}\right)\right)=b$. Hence $\left(x_{1}, x_{2}\right) \cap C_{0} \neq \emptyset$ as $\lambda\left(C_{0} \cap\left(x_{1}, x_{2}\right)\right)>0$. Then there exists an interval $(c, d) \subset\left(x_{1}, x_{2}\right)$ such that $C_{0} \cap(c, d) \neq \emptyset$ and $C_{0} \cap(c, d) \cap F_{n}=\emptyset$, so $(f(c), f(d)) \cap f\left(F_{n} \cap C_{0}\right)=\emptyset$. Clearly, the interval $(f(c), f(d))$ is non-degenerated, as $\lambda((f(c), f(d)))=\lambda((c, d))>0$, and $(f(c), f(d)) \subset(a, b)$. Consequently, $f\left(F_{n} \cap C_{0}\right)$ is nowhere dense in ($0,1 / 2$), for $n \in \mathbb{N}$.

Now we will prove that the difference between $\Phi_{d}(A)$ and $\Phi_{g}(A)$ can be a set which is big in the category sense, for some measure-preserving bijection $g: \mathbb{R} \rightarrow \mathbb{R}$.

Theorem 2.6. There exists a measure-preserving bijection $g: \mathbb{R} \rightarrow \mathbb{R}$ and a measurable set $A \subset \mathbb{R}$ such that $\Phi_{d}(A) \backslash \Phi_{g}(A)$ is of the second category.
Proof. Let f be a function from Theorem 2.2. Put $g=f^{-1}$ and $A=(0,1 / 2)$. We have $g(A)=C_{0}, \Phi_{d}(g(A))=\Phi_{d}\left(C_{0}\right)=\Phi_{d}(C)$ and $\Phi_{g}(A)=g^{-1}\left(\Phi_{d}(C)\right)=f\left(\Phi_{d}(C)\right)$. From the previous theorem $\Phi_{g}(A)$ is of the first category in $(0,1 / 2)$, while $\Phi_{d}(A)=(0,1 / 2)$, so $\Phi_{d}(A) \backslash \Phi_{g}(A)$ is residual on $(0,1 / 2)$.

It is natural to ask when $\Phi_{f}(A)=\Phi_{d}(A)$ for each $A \in \mathcal{L}$. We will prove that this equality holds if and only if $f(x)=x+c$ or $f(x)=-x+c$ where c is an arbitrary real number.

Theorem 2.7. If $f(x)=x+c$ or $f(x)=-x+c$, where $c \in \mathbb{R}$ is arbitrary, then $\Phi_{f}(A)=\Phi_{d}(A)$ for each measurable $A \subset \mathbb{R}$.

Proof. Let $f(x)=x+c$, where $c \in \mathbb{R}$. Then for arbitrary $A \in \mathcal{L}$

$$
\Phi_{f}(A)=f^{-1}\left(\Phi_{d}(f(A))\right)=f^{-1}\left(\Phi_{d}(A)+c\right)=\Phi_{d}(A)+c-c=\Phi_{d}(A) .
$$

In the second case the proof is analogous.
Let τ_{d} denote the classical density topology on the real line (comp. [7, 8]), i.e.

$$
\tau_{d}=\left\{A \in \mathcal{L}: A \subset \Phi_{d}(A)\right\}
$$

Theorem 2.8. If $\Phi_{f}(A)=\Phi_{d}(A)$ for each $A \in \mathcal{L}$, then $f(x)=x+c$ or $f(x)=-x+c$ for some $c \in \mathbb{R}$.

Proof. From the assumption it follows that

$$
f^{-1}\left(\Phi_{d}(f(A))\right)=\Phi_{d}(A)
$$

for each $A \in \mathcal{L}$, so

$$
\Phi_{d}(f(A))=f\left(\Phi_{d}(A)\right) .
$$

Hence if $A \in \tau_{d}$ then $f(A) \in \tau_{d}$, as $A \subset \Phi_{d}(A)$ implies $f(A) \subset f\left(\Phi_{d}(A)\right)=\Phi_{d}(f(A))$.
Obviously, $\mathbb{R}=\left(-\infty, x_{0}\right) \cup\left\{x_{0}\right\} \cup\left(x_{0}, \infty\right)$ for each $x_{0} \in \mathbb{R}$, so

$$
\begin{equation*}
f\left(\left(-\infty, x_{0}\right)\right) \cup f\left(\left(x_{0}, \infty\right)\right)=\mathbb{R} \backslash\left\{f\left(x_{0}\right)\right\} \tag{2.11}
\end{equation*}
$$

and $f\left(\left(-\infty, x_{0}\right)\right), f\left(\left(x_{0}, \infty\right)\right)$ are open in τ_{d}.
Observe that

$$
\Phi_{d}\left(f\left(\left(-\infty, x_{0}\right)\right)\right) \cup \Phi_{d}\left(f\left(\left(x_{0}, \infty\right)\right)\right)=\mathbb{R} \backslash\left\{f\left(x_{0}\right)\right\} .
$$

The inclusion " \supset " is obvious. On the other hand, if

$$
f\left(x_{0}\right) \in \Phi_{d}\left(f\left(\left(-\infty, x_{0}\right)\right)\right) \cup \Phi_{d}\left(f\left(\left(x_{0}, \infty\right)\right)\right)
$$

then \mathbb{R} is a union of two disjoint non-empty sets from τ_{d} - a contradiction, as the families of sets which are connected in the density topology and in the natural topology on the real line are equal (compare with [4, Theorem 3]).

Now we will show that

$$
\begin{equation*}
f\left(\left(-\infty, x_{0}\right)\right)=\left(-\infty, f\left(x_{0}\right)\right) \text { and } f\left(\left(x_{0}, \infty\right)\right)=\left(f\left(x_{0}\right), \infty\right) \tag{2.12}
\end{equation*}
$$

or

$$
\begin{equation*}
f\left(\left(-\infty, x_{0}\right)\right)=\left(f\left(x_{0}\right), \infty\right) \text { and } f\left(\left(x_{0}, \infty\right)\right)=\left(-\infty, f\left(x_{0}\right)\right) \tag{2.13}
\end{equation*}
$$

Suppose that this is not the case. Then there exist two points $y_{1} \in f\left(\left(-\infty, x_{0}\right)\right)$ and $y_{2} \in f\left(\left(x_{0}, \infty\right)\right)$ such that $y_{1}, y_{2} \in\left(-\infty, f\left(x_{0}\right)\right)$ or $y_{1}, y_{2} \in\left(f\left(x_{0}\right), \infty\right)$. Consider the first case. If $\left(z_{1}, z_{2}\right)$ is an open interval such that $\left(z_{1}, z_{2}\right) \subset\left(-\infty, f\left(x_{0}\right)\right)$ and $y_{1}, y_{2} \in\left(z_{1}, z_{2}\right)$ then $\left(z_{1}, z_{2}\right) \cap f\left(\left(-\infty, x_{0}\right)\right) \in \tau_{d}$ and $\left(z_{1}, z_{2}\right) \cap f\left(\left(x_{0}, \infty\right)\right) \in \tau_{d}$. Since $\left(z_{1}, z_{2}\right) \subset \mathbb{R} \backslash\left\{f\left(x_{0}\right)\right\}$, from (2.11) we obtain

$$
\left(z_{1}, z_{2}\right)=\left(z_{1}, z_{2}\right) \cap f\left(\left(-\infty, x_{0}\right)\right) \cup\left(z_{1}, z_{2}\right) \cap f\left(\left(x_{0}, \infty\right)\right)
$$

and both summands are non-empty, so $\left(z_{1}, z_{2}\right)$ is not connected on τ_{d} - a contradiction. The proof in the second case is analogous.

Now from the arbitrariness of $x_{0} \in \mathbb{R}$, using (2.12) or (2.13) we will prove that f is monotone. Suppose that (2.12) holds. Let $x_{1}<x_{2}, x_{1}, x_{2} \in \mathbb{R}$. Then

$$
\left(-\infty, f\left(x_{1}\right)\right)=f\left(\left(-\infty, x_{1}\right)\right) \subset f\left(\left(-\infty, x_{2}\right)\right)=\left(-\infty, f\left(x_{2}\right)\right)
$$

so $f\left(x_{1}\right)<f\left(x_{2}\right)$, i.e. f is increasing.
Analogously, f is decreasing if (2.13) holds. Since f is a monotone bijection, it must be continuous.

Now we will prove that f must be a linear function of the form $f(x)=x+c$ or $f(x)=-x+c$, for some $c \in \mathbb{R}$.

Assume that f is increasing. Fix $x_{1}, x_{2} \in \mathbb{R}, x_{1}<x_{2}$. Then $f\left(\left(x_{1}, x_{2}\right)\right)=$ $\left(f\left(x_{1}\right), f\left(x_{2}\right)\right)$, so $f\left(x_{2}\right)-f\left(x_{1}\right)=x_{2}-x_{1}$, as f preserves measure. Hence

$$
f\left(x_{2}\right)=x_{2}+\left(f\left(x_{1}\right)-x_{1}\right) .
$$

From the arbitrariness of x_{1} and x_{2} we obtain

$$
f(x)=x+c
$$

for all $x \in \mathbb{R}$. If f is decreasing the proof is analogous.
Now we will prove that $\Phi_{f}(A+a)=\Phi_{f}(A)+a$ for each $A \in \mathcal{L}$ and $a \in \mathbb{R}$ if and only if f is linear function of the form $f(x)=x+c$ or $f(x)=-x+c$, where $c \in \mathbb{R}$ is arbitrary. Obviously, such equality holds for the classical density operator, as the Lebesgue measure is invariant with respect to translation.

Theorem 2.9. If $f(x)=x+c$ or $f(x)=-x+c$, where $c \in \mathbb{R}$ is arbitrary, then

$$
\Phi_{f}(A+a)=\Phi_{f}(A)+a
$$

for each $A \in \mathcal{L}$ and $a \in \mathbb{R}$.
Proof. Let $A \in \mathcal{L}$ and $a \in \mathbb{R}$. According to Theorem 2.7, if $f(x)=x+c$ then

$$
\Phi_{f}(A+a)=\Phi_{d}(A+a)=\Phi_{d}(A)+a=\Phi_{f}(A)+a .
$$

In the second case the proof is analogous.

Theorem 2.10. If $\Phi_{f}(A+a)=\Phi_{f}(A)+a$ for each $A \in \mathcal{L}$ and $a \in \mathbb{R}$ then $f(x)=x+c$ or $f(x)=-x+c$ for some $c \in \mathbb{R}$.

Proof. If $A_{1}, A_{2} \in \mathcal{L}$ and $A_{1} \subset A_{2}$ then $\Phi_{f}\left(A_{1}\right) \subset \Phi_{f}\left(A_{2}\right)$, as Φ_{f} is a lower density operator. In particular, if $A=\left(-\infty, x_{0}\right)$ for some $x_{0} \in \mathbb{R}$ and $a>0$ then $A \subset A+a$, so

$$
\begin{equation*}
\Phi_{f}(A) \subset \Phi_{f}(A+a)=\Phi_{f}(A)+a \tag{2.14}
\end{equation*}
$$

We will prove that if $A=\left(-\infty, x_{0}\right)$ then $B=\Phi_{f}(A)=\Phi_{f}\left(\left(-\infty, x_{0}\right)\right)$ is also a left half-line. Suppose that it is not the case. Then there exist two points $y_{1}, y_{2} \in \mathbb{R}, y_{2}<y_{1}$ such that $y_{1} \in B$ and $y_{2} \notin B$. If $a=y_{1}-y_{2}$ then $y_{2}+a=y_{1} \in B$. Simultaneously $y_{2}+a \notin B+a$ - a contradiction, as from (2.14)

$$
B=\Phi_{f}(A) \subset \Phi_{f}(A+a)=B+a .
$$

Hence $\Phi_{f}(A)$ is a left half-line (open or closed). Similarly one can prove that $\Phi_{f}\left(\left(x_{0}, \infty\right)\right)$ is a right-half-line (open or closed).

As Φ_{f} is a lower density operator, we have

$$
\lambda\left(\Phi_{f}\left(\left(-\infty, x_{0}\right)\right) \Delta\left(-\infty, x_{0}\right)\right)=0
$$

so $\Phi_{f}\left(\left(-\infty, x_{0}\right)\right)=\left(-\infty, x_{0}\right)$ or $\Phi_{f}\left(\left(-\infty, x_{0}\right)\right)=\left(-\infty, x_{0}\right]$ as both sets are left half-lines. Similarly we prove that $\Phi_{f}\left(\left(x_{0}, \infty\right)\right)=\left(x_{0}, \infty\right)$ or $\Phi_{f}\left(\left(x_{0}, \infty\right)\right)=\left[x_{0}, \infty\right)$.

Suppose that $\Phi_{f}\left(\left(-\infty, x_{0}\right)\right)=\left(-\infty, x_{0}\right]$. From the third property of a lower density operator $\Phi_{f}\left(\left(x_{0}, \infty\right)\right)=\left(x_{0}, \infty\right)$ and

$$
\Phi_{f}\left(\left(-\infty, x_{0}\right)\right) \cup \Phi_{f}\left(\left(x_{0}, \infty\right)\right)=\mathbb{R}
$$

Hence $f\left(\Phi_{f}\left(\left(-\infty, x_{0}\right)\right) \cup \Phi_{f}\left(\left(x_{0}, \infty\right)\right)\right)=\mathbb{R}$. On the other hand for arbitrary $C \in \mathcal{L}$

$$
\begin{equation*}
f\left(\Phi_{f}(C)\right)=\Phi_{d}(f(C)) \tag{2.15}
\end{equation*}
$$

so

$$
\Phi_{d}\left(f\left(\left(-\infty, x_{0}\right)\right)\right) \cup \Phi_{d}\left(f\left(\left(x_{0}, \infty\right)\right)\right)=\mathbb{R}
$$

a contradiction, as \mathbb{R} is connected relative to the density topology τ_{d}.
Similarly one can proceed under the assumption $\Phi_{f}\left(\left(x_{0}, \infty\right)\right)=\left[x_{0}, \infty\right)$.
Consequently, $\Phi_{f}\left(\left(-\infty, x_{0}\right)\right)=\left(-\infty, x_{0}\right)$ and $\Phi_{f}\left(\left(x_{0}, \infty\right)\right)=\left(x_{0}, \infty\right)$.
Hence, using (2.15),

$$
\Phi_{d}\left(f\left(\left(-\infty, x_{0}\right)\right)\right)=f\left(\Phi_{f}\left(\left(-\infty, x_{0}\right)\right)\right)=f\left(\left(-\infty, x_{0}\right)\right)
$$

and

$$
\Phi_{d}\left(f\left(\left(x_{0}, \infty\right)\right)\right)=f\left(\Phi_{f}\left(\left(x_{0}, \infty\right)\right)\right)=f\left(\left(x_{0}, \infty\right)\right)
$$

so $f\left(\left(-\infty, x_{0}\right)\right) \in \tau_{d}$ and $f\left(\left(x_{0}, \infty\right)\right) \in \tau_{d}$. Clearly,

$$
f\left(\left(-\infty, x_{0}\right)\right) \cup f\left(\left(x_{0}, \infty\right)\right)=\mathbb{R} \backslash\left\{f\left(x_{0}\right)\right\}
$$

Now we will prove that $f\left(\left(-\infty, x_{0}\right)\right)=\left(-\infty, f\left(x_{0}\right)\right)$ or $f\left(\left(-\infty, x_{0}\right)\right)=\left(f\left(x_{0}\right), \infty\right)$. Suppose that this is not the case. Then there exist two points $x_{1}, x_{2} \in \mathbb{R}$, $x_{1}<x_{0}<x_{2}$ such that $f\left(x_{1}\right)$ and $f\left(x_{2}\right)$ are in the same half-line. To fix ideas suppose that $f\left(x_{1}\right), f\left(x_{2}\right) \in\left(-\infty, f\left(x_{0}\right)\right)$. If $\left(z_{1}, z_{2}\right)$ is an open interval such that $f\left(x_{1}\right), f\left(x_{2}\right) \in\left(z_{1}, z_{2}\right)$ and $\left(z_{1}, z_{2}\right) \subset\left(-\infty, f\left(x_{0}\right)\right)$ then $\emptyset \neq\left(z_{1}, z_{2}\right) \cap f\left(\left(-\infty, x_{0}\right)\right) \in \tau_{d}$ and $\emptyset \neq\left(z_{1}, z_{2}\right) \cap f\left(\left(x_{0}, \infty\right)\right) \in \tau_{d}$. As $f\left(x_{0}\right) \notin\left(z_{1}, z_{2}\right),\left(z_{1}, z_{2}\right)$ is not connected in τ_{d} - a contradiction.

In the second case the proof is analogous. Similarly as in the proof of Theorem 2.8 we obtain that f is monotone and continuous. Simultaneously, as f preserves measure, $f(x)=x+c$ if f is increasing and $f(x)=-x+c$ in the other case.

Acknowledgements. The authors wish to express their thanks to the referee for his helpful comments improving this paper.

REFERENCES

[1] A.M. Bruckner, Differentiation of Real Functions, Lecture Notes in Mathematics, vol. 659, Springer-Verlag, Berlin, 1978.
[2] A. Denjoy, Leçons sur le Calcul des Coefficients d'une Série Trigonométrique. Tome I. La Différentiation Seconde Mixte et Son Application aux Séries Trigonométriques, Gauthier-Villars, Paris, 1941.
[3] C. Goffman, C. Neugebauer, T. Nishiura, Density topology and approximate continuity, Duke Math. J. 28 (1961), 497-505.
[4] C. Goffman, D. Waterman, Approximately continuous transformations, Proc. AMS 12 (1961), 116-121.
[5] G. Ivanova, E. Wagner-Bojakowska, On lower density operators, submitted.
[6] J. Lukeš, J. Malý, L. Zajiček, Fine Topology Methods in Real Analysis and Potential Theory, Lecture Notes in Mathematics, vol. 1189, Springer-Verlag, 1986.
[7] J.C. Oxtoby, Measure and Category, Springer-Verlag, New York, 1971.
[8] W. Wilczyński, Density topologies, [in:] E. Pap (ed.), Handbook of Measure Theory, vol. I and II, Amsterdam, North-Holland, 2002, 675-702.
[9] L. Zajíček, Porosity and σ-porosity, Real Anal. Exchange 13 (1987/88), 314-350.

Gertruda Ivanova (corresponding author)
gertruda.ivanova@apsl.edu.pl
© https://orcid.org/0000-0002-1832-9491
Pomeranian University in Słupsk
Institute of Exact and Technical Sciences
Arciszewskiego 22d, 76-200 Słupsk, Poland

Elżbieta Wagner-Bojakowska
elzbieta.wagner@wmii.uni.lodz.pl
© https://orcid.org/0000-0002-5916-6481
Łódź University
Faculty of Mathematics and Computer Science
Stefana Banacha 22, 90-238 Łódź, Poland
Władysław Wilczyński
wladyslaw.wilczynski@wmii.uni.lodz.pl
© https://orcid.org/0000-0002-7478-9847
Łódź University
Faculty of Mathematics and Computer Science
Stefana Banacha 22, 90-238 Łódź, Poland
Received: December 29, 2022.
Revised: January 16, 2023.
Accepted: January 17, 2023.

