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1. INTRODUCTION

1.1. ZERO ORDER OPERATORS AND THEIR SPECTRUM

Spectral properties of self-adjoint pseudodifferential operators on a compact manifold
have been the topic of intensive study at least for the latest 70 years. For elliptic
operators of positive order, thus having discrete spectrum, Weyl type asymptotics is
known since long ago, with the second term existing under some geometric conditions.
For operators of negative order, the compact ones, the eigenvalue asymptotics formula
was established by M. Birman and M. Solomyak, see [6], a more elementary proof, under
certain regularity conditions was presented in [22]; a remainder estimate and, again,
the second term in asymptotics, was investigated in [18, Section 11.8]. Considerably
less is known for pseudodifferential operators of zero order. The location of the
essential spectrum σess(A) of such operator A acting on a closed smooth manifold X
is determined by the principal (order zero) symbol a0(x, ω), ω = ξ/|ξ|, of A. Namely,
for operators acting on functions, σess(A) coincides with the set of values R(a0) of the
symbol a0:

σess(A) = R(a0) ≡
⋃

(x,ω)∈S∗X

{a0(x, ω)}.
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For operators acting on sections of a vector bundle over X, the essential spectrum of
A coincides with the union of the spectra of the principal symbol a0(x, ω):

σess(A) =
⋃

(x,ω)∈S∗X
σ(a0(x, ω)) =

⋃

(x,ω)∈S∗X

⋃

ι

{µµµι(x, ω)},

where µµµι(x, ω) are eigenvalues of the symbol a0(x, ω) (this simple but important fact
was established in [1] in the scalar case and in [24] in the vector case). Recently,
some applications required an analysis of the essential spectrum of such operators, see
[13–15].

Less is known about the discrete spectrum of zero order operators. Examples in
[27] show that embedded eigenvalues can be present, even in the one-dimensional case.
As for non-embedded eigenvalues, they, of course, may converge only to the tips of the
essential spectrum and a natural question arises about their rate of convergence to these
tips. This kind of questions arises, in particular, in the study of the Neumann–Poincare
(NP, the double layer potential) operator K for the three-dimensional elasticity. It
is known that this operator is not compact, even for infinitely smooth data; it was
found in [2] that it is a zero order symmetrizable pseudodifferential operator acting on
smooth sections of a trivial three-dimensional vector bundle over the boundary X of
a nice domain D in R3. The principal symbol of this operator, a 3×3 matrix, was found
in [2] (see also [3, 21]); it depends only on the Lamé constants of the material of the
body but not on its geometry. Therefore, if the material is homogeneous, the principal
symbol of the NP operator has constant eigenvalues not depending on (x, ω) ∈ S∗X
and therefore there are only finitely many (in fact, exactly 3) points of the essential
spectrum of this operator. This means that the operator K is polynomially compact.
Such kind of operators has been studied in [24], and it was found that the eigenvalues
of a polynomially compact pseudodifferential operator converge to the points of the
essential spectrum power-like. The rate of this convergence depends on the subprincipal
symbol and, possibly, in the degenerate case, on the some lower order symbols of the
operator K; the coefficients in the eigenvalue asymptotic formulas depend on the Lamé
constants and geometrical characteristics of the surface X, see [24,25].

For a nonhomogeneous material, the eigenvalues of the principal symbol of the
NP operator are, generally, nonconstant and the essential spectrum may consist of
several intervals in the real line and the isolated point 0; for a body D with connected
boundary X there are two such intervals, symmetrical with respect to the zero point.
The principal symbol of the NT operator equals

k0(x, ω) = k(x)r(ω) ≡ i

k(x)|ξ|




0 0 −ξ1
0 0 −ξ2
ξ1 ξ2 0


 (1.1)

in a special local co-ordinate system. The coefficient k(x) is determined by the Lame
constants λ(x), µ(x) at the boundary point x ∈ X, k(x) = µ(x)

2(2µ(x)+λ(x)) while the
matrix r(ω), ω = ξ

|ξ| ∈ S∗
x(X) has eigenvalues −1, 0, 1. Thus the essential spec-

trum of the NP operator consists of the point zero and the range of the functions
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x 7→ k(x), x 7→ −k(x), x ∈ X. If k(x) is not constant on the surface X, these intervals
are nontrivial; for a connected boundary they have the form J− = [−k+, −k−],
J+ = [k−,k+], where k− = minx∈X k(x), k+ = maxx∈X k(x).

In [21], the case of one of these extremal points, say, k−, being a nondegenerate
extremum of k(x) was considered, and certain estimates for the rate of convergence
of eigenvalues of K, lying below k−, to this point have been obtained. Asymptotic
formulas for these eigenvalues have not been derived in [21]. What could be seen from
the results of [21] is that this rate of convergence is different from the one for the case
of a homogeneous material; in fact, they converge faster.

In the present paper we consider, in a more general setting, the question of the
asymptotics of eigenvalues of a self-adjoint zero order pseudodifferential operator as
they converge to an extremal value of an eigenvalue branch of the principal symbol.
We understand that the behavior of these eigenvalues should depend on the structure
of this extremal point. In this paper we consider the case of a nondegenerate extremal
value and a special case of a degenerate one, generalizing (1.1). The rate of convergence
of eigenvalues depends, in fact, on the structure of the extremum. Some other cases of
the structure of the extremal point will be considered in later publications.

Our approach is based upon a reduction of the above spectral problem to the study
of the negative eigenvalue asymptotics of Schrödinger-like operators with negative
potential tending to zero at infinity. This kind of problems has been considered since
quite long ago, probably, starting from the papers [8,23] and [28], and further on, until
very general results, in the pseudodifferential setting, obtained by V. Ivrii [17, Section
10.5] . The formulas for eigenvalue asymptotics for this kind of problems have Weyl
form, i.e., are expressed in the terms of phase space volume. However it is possible here
that the region of the phase space where the symbol of the operator is negative, has
finite volume, and in this case there are only finitely many negative eigenvalues, due
to CLR-type estimates. This circumstance imposes the condition of a sufficiently slow
decay of the absolute value of the potential, required for the validity of asymptotic
formulas. As applied to pseudodifferential operators under consideration, this slow
decay condition translates into the one of nonvanishing of the subprincipal symbol at
the critical point.

1.2. SETTING 1. THE PSEUDODIFFERENTIAL OPERATOR

Let X be a smooth compact boundary-less manifold of dimension d (equipped with
Riemannian metric.) Let E be an N− dimensional Hermitian vector bundle over X.
We consider a zero order pseudodifferential operator A acting in the space of smooth
sections of E . We suppose that A is selfadjoint in L2(E) with respect to the Riemannian
measure on X and the fixed Hermitian structure on E .

In a fixed local co-ordinate system in a neighborhood U in X and a fixed local
frame in E over U , operator A is defined by

(Au)(x) = F−1
ξ→xa(x, ξ)Fx′→ξu(x′) + (Ou)(x) (1.2)

for a section u of E supported in U . Here F is the Fourier transform, F−1 is the inverse
Fourier transform, a(x, ξ) is the symbol of the operator A in this local representation,
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a smooth section of Hom (E) and O is an infinitely smoothing operator. The operator
A is supposed to be a classical zero order pseudodifferential operator; this means that
in a fixed (and, therefore, any) local representation the symbol a(x, ξ) expands in an
asymptotic series in homogeneous functions,

a(x, ξ) ∼
∞∑

ν=0
a−ν(x, ξ), a−ν(x, τξ) = τ−νa−ν(x, ξ), τ > 0. (1.3)

Of course, the symbol a(x, ξ) and its homogeneous components depend on the choice of
local co-ordinates and the local frame. However the principal symbol a0(x, ξ) and the
subprincipal symbol asub (x, ξ) = a−1(x, ξ) + 1

2i

∑
j ∂ξj

∂xj
a0(x, ξ) are invariant in the

usual sense, see, e.g., [26]. (We, in fact, do not need to go into details of this invariance
since our main considerations take place in fixed local coordinates and a fixed frame.)

Consider the principal symbol a0(x, ξ) of A, for (x, ξ) ∈ Ṫ X, the cotangent bundle
of X with the zero section removed. It is a smooth function with values in Hom Ex,
zero order positively homogeneous in ξ variable. The self-adjointness condition implies
that a0(x, ξ) is symmetric with respect to the Hermitian structure of the bundle E .
Thus, a0(x, ξ) has N real eigenvalues µµµι(x, ξ), ι = 1, . . . , N counting multiplicity, for
any (x, ξ) ∈ ṪX. Ordered in the non-decreasing way, µµµ1(x, ξ) ≥ µµµ2(x, ξ) ≥ . . . ≥
µµµN(x, ξ), these eigenvalues are zero order homogeneous in ξ and are continuous
functions of (x, ξ) ∈ ṪX. Moreover, on a connected open set U ⊂ ṪX where a certain
µµµι(x, ξ) has constant multiplicity, this eigenvalue is a smooth function of (x, ξ) ∈ U .
On such a set, the corresponding eigenvectors eι(x, ξ) of a0(x, ξ) can be locally chosen
depending on (x, ξ) ∈ U in a smooth way as well. This happens, in particular, if the
eigenvalue µµµι(x, ξ) is simple.

More generally, let for (x, ξ) ∈ U the eigenvalues µµµι(x, ξ) can be split into two
disjoint groups, IN ≡ [1, N] = I ∪ I′, so that µµµι(x, ξ) ̸= µµµι′(x, ξ), ι ∈ I, ι′ ∈ I′.
Denote by πI(x, ξ) the spectral projection of the homomorphism a0(x, ξ) corresponding
to the spectral set µµµι, ι ∈ I, with similarly defined πI′(x, ξ). Under these conditions,
the projections πI(x, ξ), πI′(x, ξ) depend smoothly on (x, ξ) ∈ U . We are interested
especially in the case when the set I consists of just one element.

1.3. SETTING 2. THE EXTREMAL POINT

We give here the description of the structure of a tip point of the essential spectrum of
A. We suppose that the principal symbol a0(x, ξ) with eigenvalues µµµι(x, ξ) possesses
the following properties. There exists a point x0 ∈ X such that µµµ1(x0, ξ) = 1 for
ξ ∈ Ṫx0X, and µµµ1(x, ξ) has a nondegenerate maximum at the point x = x0. Consider
local co-ordinates on X near the point x0 so that x0 = 0. Thus, near this point the
function µµµ1(x, ξ) has the form

µµµ1(x, ξ) = 1 − 1
2

∑

j,k

xjxkζj,k(ξ) + O(|x|3) ≡ 1 − Qξ(x) + O(|x|3), (1.4)
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where ζj,k(ξ) = ∂xj
∂xk

µµµ1(x, ξ)|x=0. By our nondegeneration assumption, the quadratic
form Qξ(x) in (1.4) is positive definite for all ξ – by compactness, it is uniformly
positive definite for ξ ∈ ˙Tx0X,

∑

j,k

xjxkζj,k(ξ) ≥ γ0|x|2, γ0 > 0. (1.5)

We suppose further that µµµ1(0, ξ) = 1 is the global maximal value of µµµ1(x, ξ) for
(x, ξ) ∈ ṪX: there exists δ > 0, r > 0, such that µµµ1(x, ξ) < 1 − r for all x ∈ X outside
the δ -neighborhood Uδ of x0 and other eigenvalues µµµι(x, ξ), ι > 1, are strictly less
than 1, µµµι ≤ 1 − r for all x ∈ X, while µµµ1(x, ξ) < 1 for x ∈ Uδ \ x0.

It follows that 1 is the highest point of the essential spectrum of A. We are interested
in finding the asymptotics of the eigenvalues of A as they approach 1, from above, of
course. We denote by λj(A) these eigenvalues, λ1 ≥ λ2 ≥ . . . > 1 and by n(1 + t) the
counting function of these eigenvalues, n(1 + t) =

∑
λj(A)>1+t 1.

At some moment in our considerations, it will be convenient to pass from the
operator A to AAA = 1 − A; for the new operator, it is the point zero will be the lowest
tip of the essential spectrum, the smallest eigenvalue of the principal symbol 1 − a0
will have a nondegenerate minimum at the point x = 0 and the object of the study
becomes the distribution of the negative eigenvalues of 1 − A as they approach zero
from below.

The most simple case is the scalar one. Here a(x, ξ) is a scalar function and the
above conditions are satisfied with µµµ1(x, ξ) replacing a(x, ξ)

The first main theorem, concerning the scalar case, is the following.
Theorem 1.1. Let the dimension of the bundle E equal 1. Let the (only) eigenvalue
of the principal symbol a0(x, ξ) of the zero order pseudodifferential operator A satisfy
condition (1.4). Then the eigenvalues of the operator A converging to 1 satisfy the
asymptotic formula

n(A, 1 + t) ∼ C1(A)t− d
2 , (1.6)

where the coefficient C1(A), see (3.13), is expressed in terms of the quadratic form
Qξ(x) in (1.4) and the value subprincipal symbol of the operator A at the point x = x0.

In the vector case the formulation of the theorem on eigenvalue asymptotics is
more complicated, and it involves an additional condition of topological character
(in fact, this condition is restrictive only in the dimension d = 3). The treatment of
the general case, N > 1, will be based upon a partial diagonalization of the operator
A. This topic was recently under investigation in the paper [11]. We present the result
we need.

Consider the restriction of the vector bundle E to a neighborhood of the point
x0 = 0, where the condition (1.4) is satisfied for the eigenvalue µµµ1(x, ξ). We may
suppose that this restriction is a trivial bundle. For the point in X, namely, for x = x0,
the (one-dimensional) spectral subspace of the principal symbol a0(x0, ξ) corresponding
to the eigenvalue µµµ1(x0, ξ), ξ ∈ Sd−1 = S∗

x0X, composes a one-dimensional complex
projective bundle B1 over the sphere Sd−1, which can be considered as a smooth
mapping

π1 : Sd−1 → CPN−1, (1.7)
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while the span of other eigenspaces of a(ξ) forms an N − 1- dimensional projective
bundle B⊥. We need to find a smooth global branch of the eigenvector e1(ξ), ξ ∈ Sd−1;
this means, the section of the projective bundle E1. There is a topological obstacle.
Namely, such a branch exists if and only if one of the following conditions is satisfied:

– Condition A: d ̸= 3; or
– Condition B: d = 3 and the Euler class e(B1) ∈ H2(CPN−1) pulls back to zero

under the mapping (1.7).

Theorem 1.2. Suppose that A is a zero pseudodifferential operator with symbol
satisfying (1.4). Suppose that Condition A or Condition B is satisfied. Then for the
eigenvalues of A converging to the point 1 from above the asymptotic formula

n(A, 1 + t) ∼ C(A)t− d
2 , (1.8)

holds, where the coefficient C(A) is expressed via the quadratic form Qξ(x) in (1.4),
the eigenvector corresponding to µµµ(x0, ξ), and the value of the subprincipal symbol a−1
at x = x0.

In the paper, we discuss in Sections 2–4 various aspects concerning the reduction
of our spectral problem to the one for a Schrödinger-type operators, as well as
the reduction of a vector problem to the scalar one. In Section 5 we collect these
considerations to give the proof of our main results. Finally, in Section 6, we show
how our results apply to the motivating example of the Neumann-Poincaré operator
in 3D-elasticity.

1.4. REMARKS

Remark 1.3. The explicit expression for the coefficient in (1.8) is rather unwieldy
and not informative, therefore we do not present it here.

Remark 1.4. The results on the eigenvalue asymptotics can be extended to other
forms of the behavior of eigenvalue µµµ1(x, ξ) near the critical point. For example, if the
leading terms of the Taylor expansion of the eigenvalue µµµ1(x, ξ) at x = 0 has the form

µµµ1(x, ξ) = 1 − Q(x, ξ) + o(|x|2l), (1.9)

where Q(x, ξ) is a homogeneous polynomial in x of degree 2l such that Q(x, ξ) ≥ C|x|2l,
the asymptotics of eigenvalues is

n(1 + t,A) ∼ C(2l)(A)t− d
2l . (1.10)

Such results are considerably more laborious; they are based upon a more advanced
machinery of V. Ivrii dealing with the eigenvalue asymptotics for Schrödinger type
operators. In this direction, the eigenvalue asymptotics can be found also for opera-
tors whose principal symbol has at the critical point a non-isotropic maximum, say,
µµµ1(x, ξ) ∼ 1 − x2

1 − x4
2, (x1, x2) → 0, in dimension d = 2. The corresponding results

will be published elsewhere.
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2. EXTRACTION OF THE SCALAR OPERATOR

In considering operators acting on vector functions, we reduce the spectral problem
to the one for the scalar operator. We will need this in the special case of operators
on the Euclidean space (thus certain topological obstacles arising in a more general
case disappear). We use the constructions elaborated in [9, 11].

Let A be a zero order pseudodifferential operator in Rd acting on the vector
functions of dimension N. We suppose that its principal symbol, the Hermitian matrix
a0(x, ξ) stabilizes at infinity:

a0(rσ, ξ) → a∞
0 (σ, ξ), r → +∞, σ = x

r
, r = |x|, (2.1)

moreover, a0(x, ξ) = a∞
0 (σ, ξ) for sufficiently large r = |x|. We suppose further on

that the spectrum of the matrix a0(x, ξ) is split in the following way: there exist
disjoint closed intervals J1, J ′ ⊂ R1 such that one eigenvalue µµµ1(x, ξ) of the matrix
a0(x, ξ) lies always in J1, and the remaining spectrum of the matrix a0(x, ξ) lies in
J ′. Let the Condition A or Condition B above be satisfied. Then it is possible to find
a unitary pseudodifferential operator T = T (x, D) such that T∗AT diagonalizes A up
to lower order terms, of order −2 in our case. Namely, the space L2(X, E) splits into
the orthogonal direct sum

L2(X, E) = L2(X, E1) ⊕ H⊥

with a one-dimensional trivial bundle E1, such that

T∗AT = diag (A(1),A⊥) + R, (2.2)

where R is an operator of order −2. with symbol decaying as |x|−2 at infinity. So,
a scalar pseudodifferential operator, responsible for the spectrum near the extremal
point of µµµ1(x, ξ), is separated.

We explain here how the above transformation is constructed. Let Γ1, Γ′ be
non-intersecting smooth contours in C1 encircling, respectively, intervals J1, J ′. Since
the spectrum of A outside J1 ∪ J ′ is finite, these contours can be chosen in such
way that they do not pass through eigenvalues, and contain all eigenvalues inside.
Denote Σ1, Σ′ the spectrum of A, correspondingly, inside Γ1, Γ′ and by Π1, Π′ the
corresponding spectral projections of A. Using the spectral theorem, we split A into
the direct sum, A = A1 ⊕ A′, where A1 = Π1,A′ = Π′A. The Hilbert space H = L2(E)
splits accordingly into the direct sum L2 = H1 ⊕ H′ ≡ Π1H ⊕ Π1H.

Operators A1, A′ are pseudodifferential operators of order zero. This follows from
the F. Riesz representation of the spectral projectors: Π1 = (2πi)−1 ∫

Γ1
(A−ζ)−1dζ. The

resolvent, (A − ζ)−1 is a zero order pseudodifferential operator. Its principal symbol is
(a0(x, ξ)−ζ)−1 and therefore the principal symbol of A1 is (2πi)−1 ∫

Γ1
(a0(x, ξ)−ζ)−1dζ,

which equals a0(x, ξ) times the spectral projection π1(x, ξ) of the Hermitian matrix
a0(x, ξ) corresponding to its spectrum inside the contour Γ1.

We are interested in the case when the interval J1 contains only one eigenvalue
of the symbol a0(x, ξ), namely, µµµ1(x, ξ). This means that the principal symbol of A1
is the rank one operator µµµ1(x, ξ)π1(x, ξ).
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Lower order symbols of A1 can be calculated iteratively using the Neumann series
for the resolvent (A − ζ)−1, we however do not perform all these calculations since
the explicit formulas for these terms are of no interest in the moment. We explain the
calculation of the symbol of order −1 only.

Namely, let b be the order −1 symbol of A (in the same fixed local co-ordinate
system and frame as a0. We are interested in the first two terms of the symbol of the
resolvent as r[ζ] = (a − ζ)−1 + c, and thus the symbol c we are looking for should
satisfy the equation

(a0 − ζ + b) ◦ ((a0 − ζ)−1 + c) = 1 + m, (2.3)

where m is a symbol of order −2. Equation (2.3) gives us

(a0 − ζ)c + b(a0 − ζ)−1 − 1
2i

(∂xa0)(a0 − z)−1(∂ξa0)(a0 − z)−1 = 0,

therefore
c(ζ) = −(a0 − ζ)−1q(ζ)(a0 − ζ)−1, (2.4)

where
q(ζ) = b + 1

2i
(∂xa0)(a0 − z)−1(∂ξa0). (2.5)

Finally, the order −1 symbol of A1 equals

a1,−1 = 1
2πi

∫

Γ1

c(ζ)dζ, (2.6)

where c(ζ) is given in (2.4), (2.5).
So, we have split, up to a nonessential error, our pseudodifferential operator into the

direct sum of pseudodifferential operators operators. For further construction, we note
that for the pseudodifferential operator A1, the range of the principal symbol a1

0(x, ξ),
forms a linear complex bundle over S∗Rd, a subbundle in the bundle q∗E , where q is
the projection q : S∗Rd → Rd. Assuming that Condition A or Condition B is satisfied,
q∗E admits a global section v(x, ξ). Having such global section, the construction
in [9] produces an isometric pseudodifferential operator T from L2(Rd) onto H1 such
that T∗A1T is, up to an infinitely smoothing operator, a scalar pseudodifferential
pseudodifferential operator. We, in fact, do not need an infinitely smoothing error,
it is sufficient to have an error operator of order −2.

We can summarize the above construction as the following proposition.

Proposition 2.1. Suppose that for a symbol a0(x, ξ) the eigenvalues µµµ1 and µµµι, ι > 1,
belong, respectively, to disjoint closed intervals J1, J ′, together containing all spectrum
of A Let A1,A′ be the pseudodifferential operators, parts of A corresponding to the
spectrum in A1,A′. Suppose that one of conditions A, B is satisfied. Then there exists
an isometric pseudodifferential operator T which implements, up to an operator of
order −2, a unitary equivalence between A1 and a scalar pseudodifferential operator
with principal symbol a1.
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Note that in [9], a procedure of finding the required transformation is presented
in a technically different way, which gives an explicit expression for the lower order
symbol of A1 not using contour integration.

3. EIGENVALUE ASYMPTOTICS FOR SCHRÖDINGER-LIKE OPERATORS

3.1. SOME HISTORY

Schrödinger-like operators are operators of the form H = A − B, where A is a positive
order l elliptic (pseudo-)differential operator in Rd with symbol a(x, ξ) ≍ |ξ|2l and
B is a zero order operator with symbol decaying as x tends to infinity. The initial
class of such operators, studied at least since early XX century, is the second order
(l = 1) Schrödinger operator with Coulomb type potential, H = −∆−V (x) in Rd, with
V (x) ∼ q|x|−γ as |x| → ∞ with γ > 0, q > 0. Spectral properties of of this operator can
be studied in a standard way, using proper special functions and elementary variational
and perturbation considerations. The essential spectrum coincides always with the
positive semi-axis. As for the discrete spectrum, consisting of negative eigenvalues,
everything depends on the rate of decay of V (x) at infinity. In particular, if γ > 2,
i.e., the ‘potential’ q|x|−γ decays fast at infinity, the operator H has finite discrete
spectrum, and the number of negative eigenvalues is controlled, e.g., by the CLR
estimate (for d ≥ 3) or proper eigenvalue estimates in low dimensions. On the other
hand, if γ ∈ (0, 2), there are infinitely many negative eigenvalues, and their distribution,
described by the function n(−t; H) := #{j : λj < −t} is a separate problem. The
typical result for the Schrödinger operator is the asymptotic phase volume formula

n(−t, H) ∼ (2π)−dvol Rd×Rd{(x, ξ) : H(x, ξ) < −t}, t → 0, (3.1)

where H(x, ξ) is the classical Hamiltonian, H(x, ξ) = |ξ|2 −V (x). This kind of formulas
is a more delicate fact than the semi-classical ones, say,

n(−t, Hh) ∼ (2π)−dh−dvol {(x, ξ) : H(x, ξ) < −t}, h → 0,

Hh = −h2∆ − V (x), Hh(x, ξ) = |ξ|2 − V (x),

where the phase volume of a fixed domain in the phase space is present, while in (3.1)
the domain changes depending on the spectral count parameter t. Formula (3.1) has
been sequentially extended to more and more general classes of potential V (y), see
[8,23,28–30], as well as to operators in a more general setting in [5,17,19,20], including
the matrix case.

We give here an exposition of the results of [19, Section 9], see also a more detailed
presentation in [20, Section 21], for the particular case of operators of interest that we
study in this paper. More general Schrödinger-like operators, needed for the treatment
of more complicated cases of zero order pseudodifferential operators, are presented
in [17,18].

The operators in question act on vector-functions on Rd with values in CN, so, all
symbols and their components are matrix-valued functions on Rd × Rd with values
in End (CN).
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Pseudodifferential operators in [19] are defined by means of the Weyl quantization;
this means that with the symbol aW (x, ξ) in a proper class one associates the operator

OPW (aW )u(x) = (2π)−d

∫

Rd

eixξ

∫

Rd

e−iyξaW (x + y, ξ)u(y)dydξ. (3.2)

As usual, formula (3.2) defines the operator initially on functions on the Schwartz
space and then extends by continuity to the proper Sobolev space (depending on the
quality of the symbol aW .) We recall here that other pseudodifferential quantizations
are used, we will, in particular, apply the quantization

OPℓ(aℓ)u(x) = (2π)−d

∫

Rd

eixξ

∫

Rd

e−iyξaℓ(x, ξ)u(y)dydξ. (3.3)

This quantization is called “left” in [19, 20] (therefore the subsymbol ℓ), while it is
called 0-quantization, in the scale of τ -quantizations, τ = 0, in the classical book by
M. Shubin [26]; in the terms of this latter book, the Weyl quantization is the 1

2 -one.
There exists the universal relation connecting symbols of the given operator presented
in different quantizations, see Theorem 23.3 in [26]; in our case, for symbols aW , aℓ

such that the operator OPW (aW ) − OPℓ(aℓ) is negligible, the relation holds

aW (x, ξ) ∼
∑

α

1
α!

(
−1

2

)|α|
∂α

ξ Dα
x aℓ(x, ξ), (3.4)

aℓ(x, ξ) ∼
∑

α

1
α!

(
1
2

)|α|
∂α

ξ Dα
x aW (x, ξ), Dx = −i∂x.

The conditions in [19] are imposed of the Weyl symbol of the operator. We will see
later what form do these conditions take for the ℓ-symbol. We consider a special form
of the symbol aW (x, ξ) fitting in Theorem 9.1 in [19]. Since we are not interested in
remainder estimates in eigenvalue asymptotic formulas, we skip some conditions in the
theorem needed for these remainder estimates only.

Our symbol aW (x, ξ), up to weaker terms which are denoted by a1(x, ξ) in (9.6) in
[19] and do not influence the leading terms in the eigenvalue asymptotics, equals ã(x, ξ):

ã(x, ξ) =
∑

|α|=2

aα,0(ω)ξα

+
∑

|α|=1

aα,1(ω)ξα|x|−κ − a2(ω)|x|−2κ, ω = x

|x| ,
(3.5)

for some κ ∈ (0, 1). The ellipticity condition (9.7) in [19] requires that, for the leading
term, |α| = 2, ∑

α

aα,0(ω)ξα ≥ c|ξ|2. (3.6)



Discrete spectrum of zero order pseudodifferential operators 257

Finally, there is the positivity condition (9.5): there exist a nonnegative l0 such that
for any ϵ > 0 there exist positive constants c(ϵ), C(ϵ) such that

ã(x, ξ) ≥ c(ϵ)|ξ|l0 (3.7)

for all ξ: |ξ| < ϵ, |x| > C(ϵ). This condition for the symbol (3.5) is satisfied for
l0 = l = 2.

Under these conditions, according to Theorem 9.1 in [19], for the eigenvalues of
the operator H = OPW (aW ) the following eigenvalue asymptotics holds

n(−t, H) ≡ #{λj(H) < −t} ∼ C(aW )t−θ, (3.8)

where θ = d(1−k)
kl , which for our case, k = 1

2 , l = 2, equals θ = d
2 . The asymptotic

coefficient C(aW ) equals

C(aW ) =
∑

ι

meas {(x, ξ) ∈ Rd × Rd : νννι(x, ξ) + 1 < 0}, (3.9)

where νννι(x, ξ) are the eigenvalues of the matrix ã(x, ξ).
Under the conditions of this Theorem, in the expression (3.9), the value of the

coefficient C(aW ) is determined by the region in the phase space where |ξ| is small, so
that the whole symbol ã(x, ξ) has negative eigenvalues.

We make here a detailed calculation for the case of our special interest, the scalar
one, N = 1, when aα,1 = 0, Here, the eigenvalue ν(x, ξ) equals

ν(x, ξ) =
∑

|α|=2

aα,0(ω)ξα − a2(ω)|x|−1, ω = x/|x| ∈ Sd−1. (3.10)

Thus the coefficient C(aW ) takes the form

C(aW ) = meas {(x, ξ) : a2(ω, ξ) < a0,+(ω)r−1 − 1}, r = |x|, (3.11)

where a2(ω, ξ) =
∑

|α|=2 aα,2(ω)ξα. In the expression in (3.11), a0,+(ω) denotes the
positive part of a0(ω) and we take into account that the points where a2(ω) is negative
do not contribute to the right-hand side. When calculating the coefficient in (3.11),
for fixed ω, |x|, we have

meas {ξ : a2(ω, ξ) < a0(ω)r−1 − 1 < 0} = ΩΩΩd det[a2(ω)]− 1
2 (a0,+(ω)r−1 − 1)

d
2
+, (3.12)

where ΩΩΩd is the volume of the unit ball in Rd. Integration of the expression in (3.12)
over x gives now

C(aW ) = ΩΩΩd

∫

Sd−1

(det[a2(ω)])− 1
2

∞∫

0

(a0,+(ω)r−1 − 1)
d
2
+rd−1drdω

= ΩΩΩdB
(d

2 + 1,
d

2

) ∫

Sd−1

(det[a2(ω)])− 1
2 a0,+(ω) d

2 dω,

(3.13)

where a2(ω) is the matrix [aα,2(ω)]|α|=2, and B is the Euler beta-function.
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Thus, we arrived at our general eigenvalue asymptotics theorem that we will use
for the study of the discrete spectrum of zero order operators.

Theorem 3.1. Let H be the operator in L2(Rd) with Weyl symbol aw = a2(x, ξ)−h(x);
let a2(x, ξ), the second order term in the symbol of the operator H be a positive quadratic
form in ξ with coefficients depending on x, zero order positively homogeneous in x
with smoothing near x = 0. Suppose that h(x) decays as a0(ω)|x|−1, ω = x

|x| ∈ Sd−1,
as |x| → ∞. Then for the operator H = a2(x, D)−h(x) the negative eigenvalues satisfy
the asymptotic law

n(−t, a2(x, D) − h(x)) ∼ t− d
2 C(aW ), (3.14)

where C(aW ) is defined in (3.13).

4. LOCALIZATION AND PERTURBATIONS

In this section we justify the transformations of the initial spectral problem for the zero
order pseudodifferential operator, having in mind to reduce it finally to a Schrödinger
type operator in the next section. We note first that, as explained above, the essential
spectrum of a zero order pseudodifferential operator consists of one or several intervals
(which may degenerate to single points). The study of the behavior of eigenvalues
converging to a certain tip of the essential spectrum, i.e., to an endpoint of one of
these intervals, can be reduced, by a simple linear-fractional transformation of the
operator, to the same problem for the lowest – or for the highest, if needed, – point of
the essential spectrum; we will use such transformation without additional comments.

4.1. LOCALIZATION

We suppose that the symbol of our operator A has the structure described in Sect.1.
Consider a smooth cut-off function χ(x), x ∈ X which equals 1 near the point x0,

in Uδ, and vanishes outside another, 2δ- neighborhood of this point. Set χ′ = 1 − χ.
Then the pseudodifferential operator A splits into the sum

A = B + C, B = χAχ, C = A − B. (4.1)

Operator C is a zero order self-adjoint pseudodifferential operator with principal
symbol c0(x, ξ) = (1 − χ(x)2)a(x, ξ). The eigenvalues of this principal symbol equal
(1 − χ(x)2)µµµι(x, ξ). Therefore the essential spectrum of C lies in the range of the
functions (1 − χ(x)2)µµµι(x, ξ), and consequently below 1 − r. The spectrum of C above
1 − r is therefore discrete. So, there are only a finite number of eigenvalues of C
above 1. Therefore, the asymptotics of the eigenvalues of A approaching 1 from above
is the same as the one for the operator B, provided there are infinitely many of the
latter ones. Such “localization” property can also be formulated in another, more
convenient way.
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Lemma 4.1. Let A be a self-adjoint zero order pseudodifferential operator on X such
that the largest eigenvalue µµµ1(x, ξ) attains it maximal value 1 at the point x0 for all ξ
and this maximum is nondegenerate, while all other eigenvalues µµµι(x, ξ) are always
less than 1 − r, r > 0. Then the asymptotics of eigenvalues of A approaching the point
1 does not depend on the values of the symbol outside any neighborhood of x0.

Having this localization in mind, we can suppose that the operator A contains the
cut-off function χ(x) from the very beginning, and thus acts only in a neighborhood
of x0. Therefore, we can consider our operator as acting in a (small) domain in the
Euclidean space Rd, having symbol with compact support, or on a sphere, with symbol
supported in a small cap around the pole. Note that until now we have not changed
the symbol near the point x0.

Next, for the sake of convenience of reasoning, we pass to considering, instead
of the above A, the operator AAA = 1 − A, in Rd. For the operator AAA, the smallest
eigenvalue of the principal symbol aaa = 1 − a has minimal value at x = 0, while the
complete symbol equals 1 outside a neighborhood of 0. Thus, zero is the lowest point
of the essential spectrum and our problem is reduced to studying the asymptotics of
the negative eigenvalues of AAA. From now on, we replace the notation AAA by the old
one, A, with corresponding notation change for the symbol, its components and its
eigenvalues. So, the smallest eigenvalue µµµ1(x, ξ) has now a nondegenerate minimum at
x = 0, µµµ1(x, ξ) = Q(x, ξ) + O(|x|3), x → 0, and all other eigenvalues are larger than
certain r > 0.

4.2. PERTURBATIONS

Here we present some results on the behavior of the counting function for the eigenvalues
under perturbations which are in some sense weak. Mostly, they are variations of
well-known properties but adapted to our situation.

Lemma 4.2. Let A be a non-negative self-adjoint operator. For an operator V we
denote by n(−t,A−V) the number of eigenvalues of A−V below −t. Suppose that W
is a weak perturbation in the sense that for a certain γ > 0, for any ε > 0,

n(−t, εA − W) = o(t−γ), t → 0, (4.2)

then

lim sup
t→0

tγn(−t,A − V − W) ≤ lim sup
t→0

tγn(−t,A − V), (4.3)

lim inf
t→0

tγn(−t,A − V − W) ≤ lim inf
t→0

tγn(−t,A − V).

If, additionally to (4.2), a similar relation holds with −W instead of W, one can
replace “≤” by “=” in (4.3)

Proof. We prove only the inequality

lim sup
t→0

tγn(−t,A − V − W) ≤ lim sup
t→0

tγn(−t,A − V);
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all remaining relations are proved analogously. As it follows from the variational
principle, for a fixed ε > 0,

n(−t,A − V − W) ≤ n(−tε, εA − W) + n(−t(1 − ε), (1 − ε)A − V). (4.4)

We multiply (4.4) by tγ and pass to lim sup as t → 0. The first term on the right
vanishes, and by further letting ε → 0, we obtain the required inequality.

Another property concerns the monotonicity of the asymptotics of the counting
function with respect to the main operator A operator A.

Lemma 4.3. Let A, B be two pseudodifferential operators in Rd with nonnegative
Weyl symbols a, b such that they are larger than r > 0 for x outside a δ− neighborhood
of x = 0 and a(x, ξ) ≤ b(x, ξ) in these neighborhood. Then for Weyl pseudodifferential
operators A, B,

lim sup
t→0

tγn(−t,B − V) ≤ lim sup
t→0

tγn(−t,A − V),

lim inf
t→0

tγn(−t,B − V) ≤ lim inf
t→0

tγn(−t,A − V).
(4.5)

Proof. First, we can change the symbols of operators A,B outside a small neigh-
borhood of zero such that the inequality between symbols holds everywhere in Rd.
This transformation, by Lemma 4.1, does not change the asymptotics of negative
eigenvalues. After this, (4.5) follows from the variational principle, since operators
with positive Weyl symbol are positive.

4.3. FREEZING THE SUBSYMBOL

In this section we discuss how the eigenvalue problem for a general zero order pseu-
dodifferential operator can be reduced to a problem of a special form.

We recall that the asymptotic distribution of eigenvalues of A above 1 does not
depend on values of symbol of the operator outside an arbitrary small neighborhood
of x0. Using this fundamental property, we perform a series of transformation of
our problem. In all these transformations we do not change the symbol a for x ∈ U ,
therefore the asymptotics of eigenvalues the eigenvalues approaching the tip of the
essential spectrum does not change.

Here we have fixed a global Euclidean co-ordinates system in Rd. Since now, all
ξ-homogeneous terms in the polyhomogeneous symbol of a1(x, ξ) and further operators
under consideration, are defined globally.

In these co-ordinates, we consider the subsymbol b(x, ξ). It is smooth in x and,
outside a neighborhood of ξ = 0 positively homogeneous of order −1 in ξ. We freeze
the symbol at the point x = 0 and consider the splitting b(x, ξ) = b(x0, ξ) + c(x, ξ),
where c(x0, ξ) = 0. Thus, c(x, ξ) = |x − x0|d(x0, ξ) with a bounded function d.

The following proposition provides us with the possibility to freeze the subsymbol
of the operator at the point 0, not changing the asymptotics of negative eigenvalues.
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Proposition 4.4. Let A be a zero order pseudodifferential operator with Weyl symbol
aW (x, ξ) ≥ p|x|2, p > 0 for |x| < δ and aW (x, ξ) ≥ 1, |x| > δ. Let C be an order −1
operator with principal symbol c(x, ξ), which is a symbol of order −1, moreover,
c(0, ξ) = 0. Then for the eigenvalues of operator A(x, D) − C(x, D) ≡ A − C the
estimate holds

n(−t,A(x, D) − C(x, D)) = o(t−γ), for any γ > 0. (4.6)

Proof. The proof follows the structure of the one of Theorem 4.3 in [21]. Let m(x)
be a smooth nonnegative function having zero of order 2 at 0 and such that
a(x, ξ) ≥ M(x), where M(x) is m(x) times the unit matrix, m(x) → 1 at infinity.
Therefore, n(−t,A(x, D) − C(x, D)) ≤ n(−t,M(x) − C). By the variational principle,
we are interested in the study of the quantity

n(−t,M(x) − C) = max dim{L : ((M(x) − C)u, u) < −t∥u∥2, u ∈ L \ {0}} (4.7)

as t → +0 (here and further on, the subspaces are considered in L2(Rd)).
We write the inequality in (4.7) as

∫
m(x)|u|2dx − (Cu, u) < t

∫
|u(x)|2dx,

or
(Cu, u) ≥

∫
(t + m(x))|u(x)|2dx. (4.8)

In the classical inequality AB ≤ Ap

p + Bq

q for positive A, B and p−1 + q−1 = 1, we set
A = t

1
p , B = |x| 2

q , with p, q to be fixed later. Thus, we have
∫

(t + m(x))|u(x)|2dx ≥ ct
1
p

∫
|x| 2

q |u(x)|2dx (4.9)

If we replace the right-hand side in (4.8) by a smaller quantity, namely, by the
right-hand side in (4.9), then the maximal dimension of subspaces where the resulting
inequality holds can only increase. Therefore, (4.7), (4.8), (4.9) imply an upper estimate
for the counting functions of eigenvalues we are interested in:

n(−t,M(x) − C) ≤ max dim{L : (Cu, u) > t
1
p

∫
|x| 1

q |u(x)|2dx, u ∈ L \ {0}}. (4.10)

Next, denote |x| 1
q u as v in (4.10). This gives

n(−t,M(x) − C)

≤ max dim
{

L : (|x|− 1
q (C(|x|− 1

q v), v) > ct
1
p

∫
|v(x)|2dx, v ∈ L \ {0}

}
.

(4.11)

The quantity on the right-hand side in (4.11) is nothing but the singular numbers
distribution function n(t

1
p , Z), where Z is the operator Z = |x|− 1

q C|x|− 1
q . Recall that
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C is the order −1 pseudodifferential operator with principal symbol c(x, ξ) which
vanishes for x = 0. Therefore, up to terms of lower order (which can be easily shown to
to make a weaker contribution to the eigenvalues estimates), C is an integral operator
with kernel majorated by C|x||x−y|1−d. In this way, we are left with studying singular
number estimates for the integral operator with kernel k(x, y) satisfying

|k(x, y)| ≤ C|x|1− 1
q |x − y|1−d|x|− 1

q . (4.12)

Such operators fit into the general setting of the fundamental paper [7], namely
Theorem 10.3 there.

We cite here the conditions of this theorem in [7] as applied to our case. Let
the function F (x), x ∈ Ω ⊂ Rd be positively homogeneous of order k = 1 − d, (the
condition −d < k < 0 is fulfilled) and continuous in the angle variable. Let the weight
functions a(x), b(x) belong to Lλ1 , Lλ2 , where

λ−1
1 + λ−1

2 = δ−1 ≡ 1 + k
d

= d−1; (4.13)

supposing δ−1 ≤ λj ≤ ∞. Then, by Theorem 10.3, (a), for the integral operator Fa,b

with kernel a(x)F (x − y)b(y),

sn(Fa,b) ≤ C(F )n− 1
δ ∥a∥Lλ1

∥b∥λ2 , (4.14)

Being applied to our case, with a(x) = C|x|1− 1
q ∈ L∞, b(x) = C|x|− 1

q , where
λ1 = ∞ and λ2 = d, the conditions of theorem are fulfilled when |x|− 1

q ∈ Ld which
holds for any q > 1. With such q fixed, we have estimate (4.14) which can be rewritten
as n(s, Fa,b) = O(s− 1

d ). We set s = t
1
p , which, by (4.11), gives the required estimate

n(−t,M(x) − C) = O(t− 1
pd ), (4.15)

and this, by the arbitrariness of p < ∞, gives the required estimate n(−t,M(x) −C) =
o(t−ϖ) for an arbitrary ϖ > 0.

We apply Lemma 4.2, which gives the required equality.

The proposition we have just proved has the following consequences.
First, the power asymptotics of n(−t,A) as t → 0 depends only on the value of

the subprincipal symbol of A at the point x = 0, so, we can replace this symbol
by the one frozen at x = 0. In fact, when we make such change, we, actually, add
a pseudodifferential operator of order −1 with symbol vanishing at x = 0, and this
change, by Proposition 4.4, adds operator with fast decaying eigenvalues. On the next
step we make the homotopy of the symbol in the following way. Continue the symbol
a of operator A1 from x ∈ U to x ∈ Rd, obtaining the symbol a2(x, ξ), so that its
principal term is smooth and zero order homogeneous in x outside some neighborhood
U2 ⊃ U and still all eigenvalues of the principal symbol are smaller than 1 − r. It is
possible to perform a homotopy from a1(x, ξ) to a2(x, ξ), again, this homotopy not
touching the symbol in U .
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Next, we note here that the value of symbol of order −1 at the point x0 = 0 for our
operators is the same for the Weyl quantization and the left one, due to relation (3.4).
In fact, these symbols differ by the combination of first order x-derivative of the
principal symbol at this point - but under our conditions these latter derivatives vanish.
This means that in eigenvalue asymptotics calculations we may arbitrarily replace the
Weyl quantization by the left one and vice versa, and this does not change the form of
the asymptotic coefficient.

5. EIGENVALUE ASYMPTOTICS

5.1. THE SCALAR CASE

Proof of Theorem 1.1. In the study of eigenvalue asymptotics of our operator, we
consider the scalar case first, N = 1. For a given ϵ, we consider a neighborhood of
x = 0, where

(1 − ϵ)Q(x, ξ) ≤ a0(x, ξ) ≤ (1 + ϵ)Q(x, ξ), x ∈ U (5.1)

where Q(x, ξ) is the (scalar-valued) quadratic form (1.4). This is possible, due to
the condition (1.4), by means of choosing a sufficiently small neighborhood U . We
will prove the eigenvalue asymptotics for operators (1 ± ϵ)Q − B(x, ∆) in the Weyl
quantization, Q = QW (x, Dx), B = bW (x, Dx) and then use the arbitrariness of ϵ to
justify the asymptotics for A − B using Lemma 4.3.

We recall that the negative eigenvalue asymptotics does not change if we replace
the subsymbol b(x, ξ) by its frozen value b(0, ξ).

Consider the symbol c(D) = b(x, D) − b(0, D). This symbol vanishes for x = 0. By
Proposition 4.4, operator εQ − C has negative eigenvalues with very fast convergence
to zero, so that n(−t, εQ − C) = o(t−ϖ) for any ϖ > 0. By Lemma 4.3, it follows that
the eigenvalue asymptotics for (1 ± ε)Q − B is the same as for (1 ± ε)Q − B0, where
B0 is the (Weyl) pseudodifferential operator with symbol b(0, ξ) not depending on x.

Now let F be the Fourier transform in Rd. We consider operators
L± = F−1((1 ± ε)Q − B0)F , unitarily equivalent to (1 ± ε)Q − B0). Up to weaker
terms we have

L± = (1 ± ε)Q − b(0, x). (5.2)

Here (1 ± ε)Q(D, x) is a second order elliptic differential operator with coefficients de-
pending on the parameter x, zero order positively homogeneous in x, with a smoothing
near x = 0. In its turn, b(0, x), is the operator of multiplication by a function b(0, x)
which decays as h(σ)|x|−1 as x → ∞, with a smooth function h(σ), σ = x

|x| . Thus, we
are in the conditions of Theorem 3.1, with a2(x, ξ) = (1±ε)Q(ξ, x) and a0(x) = b(0, x),
therefore, the asymptotics of negative eigenvalues of the operator (1±ε)Q(D, x)−b(0, x)
is given by the formula (3.14). The same asymptotics holds for the pre-Fourier operator
(1±ε)Q(x, D)−b(0, D). The asymptotic coefficients C for operators with ±ε converge
as ε → 0 to such coefficient with ε = 0. Therefore, by Lemma 4.3, we have the same
eigenvalue asymptotics for the operator a0(x, D) − a−1(0, D), with the symbol of order
−1 frozen at x = 0. Now recall that the difference a−1(x, D) − a−1(0, D) gives a weak
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contribution to the negative eigenvalue asymptotics by Lemma 4.2 and Proposition 4.4.
Finally, by our localization considerations in Section 4, this asymptotics holds for the
initial operator A.

5.2. THE VECTOR CASE

Proof of Theorem 1.2. We consider the operator in the Euclidean space after the
transformations described in Sect.4. So, the lowest eigenvalue µµµ1(x, ξ) of the prin-
cipal symbol a0(x, ξ) has a unique and nondegenerate minimum at x = 0 for all ξ,
µµµ1(0, ξ) = 0, and the complete Weyl symbol equals (111111111)N×N for |x| > R.

Using the localization property, Lemma 4.1, we will change a(x, ξ) outside a neigh-
borhood of x = 0, which enables further reduction to the scalar case. Let p1(x, ξ)
be the eigenprojection in CN of the symbol a0(x, ξ) corresponding to the eigenvalue
µµµ1(x, ξ). This eigenprojection is defined and depends smoothly on (x, ξ) for x in
a neighborhood Br = {x : |x| ≤ r} of the point x = 0, due to our assumption that the
eigenvalue is simple in such neighborhood. We also know that p1(x, ξ) is zero order
positively homogeneous in ξ variable. We extend this projection-valued function as
p̃1(x, ξ) outside the ball Br, so that it is smooth for all x ∈ Rd, has bounded derivatives
in x of all orders, has limit values as |x| → ∞ in each direction x

|x| = σ and positively
zero order homogeneous in ξ.

Next, consider the projection-valued function p′(x, ξ) = (111111111)N×N − p̃1(x, ξ). For
x ∈ Br, p′(x, ξ) is the spectral projection of a0(x, ξ) corresponding to the eigenvalues
different from µµµ1(x, ξ). Let χ(s), 0 ≤ s > ∞, be a smooth cut-off function, 0 ≤ χ(s) ≤ 1
such that χ(s) = 1 for s ≤ r/2 and χ(s) = 0 for s ≥ r. We set

µ̃µµ1(x, ξ) = χ(|x|)µµµ1(x, ξ) + (1 − χ(|x|)), (5.3)

Further on, we set µ̃µµ′(x, ξ) = 2r. Finally we set

ã(x, ξ) = µ̃µµ1(x, ξ)p̃1(x, ξ) + µ̃µµ′(x, ξ)p′(x, ξ). (5.4)
This matrix-valued function on T ∗Rd possesses, by its construction, the following
properties. For its zero order term, ã0(x, ξ), lowest eigenvalue coincides with the lowest
eigenvalue of a0(x, ξ) for x in a neighborhood Br of the origin; the corresponding
spectral projection of ã(x, ξ) coincides with the spectral projection of a(x, ξ) in this
neighborhood. Outside the ball, the lowest eigenvalue of ã(x, ξ) is not greater than 1.
The remaining eigenvalues of ã(x, ξ) equal 2. As a whole, the symbol ã(x, ξ) stabilizes
in x at infinity. Therefore, the essential spectrum of the pseudodifferential operator Ã,
corresponding to the eigenvalue µ̃µµ1(x, ξ) is separated from the essential spectrum corre-
sponding to other eigenvalues of the principal symbol. We can choose a closed interval
J1 containing the essential spectrum of A corresponding to µ̃µµ1(x, ξ) and not touching
other parts of the essential spectrum.

Now we are in the conditions of the construction in Section 2. Using Proposition 2.1,
we find a unitary pseudodifferential operator T such that, up to an operator of order
−2, the part of the operator A corresponding to the spectrum transforms by means of
T to a scalar pseudodifferential operator. To this latter operator we apply the result
on the scalar operator and obtain the eigenvalue asymptotics formula.
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6. THE NP OPERATOR IN ELASTICITY

We apply our general results to the Neumann–Poincaré operator K in 3D elasticity.
This is an operator acting on 3-component vector functions on the two-dimensional
manifold X = ∂(D), therefore N = 3, d = 2. Since d = 2, Condition A in Section 2
is satisfied. As explained in the Introduction, the principal symbol k0 of the zero
order pseudodifferential operator K is given by the expression (1.1), where ξ = (ξ1, ξ2)
are orthogonal co-ordinates in the tangent plane to X (identified naturally with the
cotangent plane since X is embedded in R3.) The symbol k0(ξ) is represented by the
matrix (1.1) in the frame where two axes are directed along the ξ1, ξ2 axes in the tangent
plane and the third axis is directed along the exterior normal to X. The eigenvalues
of the principal symbol equal µµµ1(x, ξ) = −k(x), µµµ2(x, ξ) = 0, µµµ3(x, ξ) = k(x). We see
that the eigenvalue µµµ2(x, ξ) is constant, it does not depend on the point x ∈ X and
on ξ ∈ Rd and thus the point zero is an isolated point of the essential spectrum of
K, independently of the geometry of X or the material parameters. Therefore, the
results of the present paper are not applicable to the study of eigenvalues converging
to this point; the results [24] or [25] are not applicable either, since the latter papers
consider the case when the whole essential spectrum consists of isolated points. Thus,
an additional analysis is needed, and the corresponding results will be presented in
a later publication.

In the opposite, the analysis of the discrete spectrum near other tips of the essential
spectrum fits in the scope of the present paper.

Suppose that the function k(x) has its nondegenerate maximal value 1 at the point
x0 ∈ X. Following our general approach, we consider the operator 1 − K, for which
the principal symbol 111111111 − k, where 111111111 is the 3 × 3 unit matrix.

The eigenvector e1(x, ξ) corresponding to the eigenvalue µµµ1(x) equals

e1(x, ξ) = 1√
2

(−iς, 1)⊤, ς = |ξ|−1(ξ1, ξ2) ∈ S1. (6.1)

This is a smooth local eigenvector branch for the principal symbol over S∗X near ξ0,
the existence of which is declared by Condition A. Similarly,

e2(x, ξ) = (ς2, −ς1, 0)⊤, e3(x, ξ) = 1√
2

(iς, 1)⊤ (6.2)

are smooth local eigenvector branches corresponding to the eigenvalues
µµµ2(x, ξ), µµµ3(x, ξ)

By the construction in [9], there is a unitary operator T transforming A to a diagonal
form. The principal symbol of this operator can be chosen as the matrix composed of
the column vectors eι(x, ξ), ι = 1, 2, 3. The procedure in [9], see also [10] describes the
procedure of the construction of the consequent terms in the symbol of T, we, however,
do not need them.

The subprincipal symbol of the NP operator was calculated in [25]. To express
this symbol at the point x0 where the function k(x) has nondegenerate maximum,
a special co-ordinate system is chosen, namely, with ξ1, ξ2 directed along the principal
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curvature directions of the surface X (if x0 is an umbilical point, these directions
are chosen arbitrarily); for definiteness, these directions are chosen to form a right
co-ordinate system.

In such co-ordinates and the corresponding frame, it is found in [25] that the
subprincipal symbol is a linear combination of the principal curvatures κ1(x0), κ2(x0)
of X, with coefficients being universal (not depending on the geometry of X) order
−1 symbols, 3 × 3 matrices with entries depending linear fractionally on the material
constants. (We do not copy the explicit expressions here.)

Applying our general results, we arrive at the asymptotics of eigenvalues of the NP
operator in 3D elasticity. Namely, the counting function of the eigenvalues approach-
ing the nondegenerate maximum point x0 of the coefficient k(x) at the boundary,
k(x0) = 1, has the order n(1 + t,K) ∼ Ct−1 (here d

2 = 1), where the coefficient C
depends on the principal curvatures of X at the point x0 and material constants at
this point.

When determining the asymptotics of eigenvalues converging to other extremal
points of k and −k, one can make the linear fractional transform of the operator K
(as it was done, e.g., in [21]), so that this value becomes the maximal value of the
principal symbol of the transformed operator.

In comparison with the case of a homogeneous material, investigated in [21, 25],
where the asymptotics under discussion was found to have the order t−2, we have,
for the nonhomogeneous material, a faster eigenvalue convergence to the tip of the
essential spectrum.
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