VOLTERRA INTEGRAL OPERATORS ON A FAMILY OF DIRICHLET-MORREY SPACES

Lian Hu and Xiaosong Liu
Communicated by Stevo Stević

Abstract

A family of Dirichlet-Morrey spaces $\mathcal{D}_{\lambda, K}$ of functions analytic in the open unit disk \mathbb{D} are defined in this paper. We completely characterize the boundedness of the Volterra integral operators T_{g}, I_{g} and the multiplication operator M_{g} on the space $\mathcal{D}_{\lambda, K}$. In addition, the compactness and essential norm of the operators T_{g} and I_{g} on $\mathcal{D}_{\lambda, K}$ are also investigated.

Keywords: Dirichlet-Morrey type space, Carleson measure, Volterra integral operators, bounded operator, essential norm.

Mathematics Subject Classification: 30H99, 47B38.

1. INTRODUCTION

Let \mathbb{D} be the open unit disc in the complex plane and $H(\mathbb{D})$ be the set of all analytic functions in \mathbb{D}. Let H^{∞} denote the space of all bounded analytic functions. For $\lambda>-1$, $0<p<\infty$, a function $f \in H(\mathbb{D})$ belongs to the weighted Dirichlet space $\mathcal{D}_{\lambda}^{p}$ if

$$
\|f\|_{\mathcal{D}_{\lambda}^{p}}=|f(0)|+\left(\int_{\mathbb{D}}\left|f^{\prime}(z)\right|^{p}\left(1-|z|^{2}\right)^{\lambda} d A(z)\right)^{1 / p}<\infty
$$

where $d A$ denotes the normalized area measure on \mathbb{D}. When $\lambda=1, p=2$, the space $\mathcal{D}_{\lambda}^{p}$ coincides with the classical Hardy space H^{2}. When $\lambda=p$, the space $\mathcal{D}_{\lambda}^{p}$ becomes the Bergman space, denoted by A^{p}.

Let $0<p<\infty,-2<q<\infty$ and $0 \leq s<\infty$. A function $f \in H(\mathbb{D})$ belongs to the space $F(p, q, s)$ if

$$
\|f\|_{F(p, q, s)}=|f(0)|+\sup _{\alpha \in \mathbb{D}}\left(\int_{\mathbb{D}}\left|f^{\prime}(z)\right|^{p}\left(1-|z|^{2}\right)^{q}\left(1-\left|\varphi_{\alpha}(z)\right|^{2}\right)^{s} d A(z)\right)^{1 / p}<\infty
$$

where $\varphi_{\alpha}=\frac{\alpha-z}{1-\bar{\alpha} z}$ is a Möbius map that interchanges 0 and α. The space $F(p, q, s)$ was introduced by Zhao in [37]. From [37], when $q=p-2$, the space $F(p, p-2, s)$ coincides with the Bloch space \mathcal{B} if $s>1$. Furthermore, $F(p, p-2,0)$ is just the Besov space B_{p}. When $p=2$, the space $F(p, p-2, s)$ becomes the Q_{s} space (see [32]). In particular, $F(2,0,1)$ is the BMOA space, the set of all analytic functions of bounded mean oscillation.

For $0<p<\infty,-2<q<\infty$ and $0 \leq s<\infty$, a function $f \in F(p, q, s)$ belongs to the little space $F_{0}(p, q, s)$ if

$$
\lim _{|\alpha| \rightarrow 1} \int_{\mathbb{D}}\left|f^{\prime}(z)\right|^{p}\left(1-|z|^{2}\right)^{q}\left(1-\left|\varphi_{\alpha}(z)\right|^{2}\right)^{s} d A(z)=0
$$

Let $g, f \in H(\mathbb{D})$. The Volterra integral operator T_{g} and its associated operator I_{g} are defined by

$$
T_{g} f(z)=\int_{0}^{z} f(\zeta) g^{\prime}(\zeta) d \zeta, \quad I_{g} f(z)=\int_{0}^{z} f^{\prime}(\zeta) g(\zeta) d \zeta, \quad z \in \mathbb{D}
$$

Obviously, $T_{g} f(z)=M_{g} f(z)-I_{g} f(z)-f(0) g(0)$, where $M_{g} f(z)=f(z) g(z)$ is the multiplication operator. These integral operators, as well as their various generalizations have attracted attention of many authors (see, e.g., $[1-11,15,17-23,26-28,36]$ and the related references therein).

For any arc $I \subset \partial \mathbb{D}$, let $|I|=\frac{1}{\pi} \int_{I}|d \xi|$ be the normalized arc length of I and

$$
S(I)=\left\{z=r e^{i \theta} \in \mathbb{D}: 1-|I| \leq r<1, e^{i \theta} \in I\right\}
$$

be the Carleson box based on I. For $0<s<\infty$, we say that a positive Borel measure μ on \mathbb{D} is an s-Carleson measure if (see [17])

$$
\|\mu\|_{s}=\sup _{I \subset \partial \mathbb{D}} \frac{\mu(S(I))}{|I|^{s}}<\infty
$$

For $0 \leq \lambda \leq 1$, a function $f \in H^{2}(\mathbb{D})$ belongs to the analytic Morrey space $\mathcal{L}^{2, \lambda}(\mathbb{D})$, which was introduced by Wu and Xie in [29], if

$$
\sup _{I \subset \partial \mathbb{D}} \frac{1}{|I|^{\lambda}} \int_{I}\left|f(\eta)-f_{I}\right|^{2} \frac{|d \eta|}{2 \pi}<\infty
$$

where

$$
f_{I}=\frac{1}{|I|} \int_{I} f(\eta) \frac{|d \eta|}{2 \pi}
$$

Li , Liu and Lou showed that T_{g} is bounded on Morrey space $\mathcal{L}^{2, \lambda}(\mathbb{D})$ if and only if $g \in B M O A$ for $0<\lambda<1$ in [10]. Let $K:[0, \infty) \rightarrow[0, \infty)$ be a nondecreasing and
right-continuous function, not identically equal to zero. In [28], Sun and Wulan defined a Morrey type space \mathcal{D}_{K}^{s}, which consists of all functions $f \in H(\mathbb{D})$ such that

$$
\|f\|_{\mathcal{D}_{K}^{s}}^{2}=|f(0)|^{2}+\sup _{\alpha \in \mathbb{D}} \frac{\left(1-|\alpha|^{2}\right)^{s}}{K\left(1-|\alpha|^{2}\right)}\left\|f \circ \varphi_{\alpha}-f(\alpha)\right\|_{\mathcal{D}_{s}^{2}}^{2}<\infty .
$$

They found some sufficient and necessary conditions for the identity operator I_{d} from \mathcal{D}_{K}^{s} to $\mathcal{T}_{K}^{s}(\mu)$ to be bounded. Here $\mathcal{T}_{K}^{s}(\mu)$ is the set of all $f \in H(\mathbb{D})$ such that

$$
\|f\|_{\mathcal{T}_{K}^{s}(\mu)}^{2}=\sup _{\alpha \in \mathbb{D}} \frac{1}{K\left(1-|\alpha|^{2}\right)} \int_{\mathbb{D}}|f(z)-f(\alpha)|^{2}\left(\frac{1-|\alpha|^{2}}{|1-\bar{\alpha} z|}\right)^{2 s} d \mu(z)<\infty,
$$

where $0<s<\infty$ and μ is a positive Borel measure on \mathbb{D}. Morrey type spaces have received lots of attention and studied by many authors. See [3,12,13,18, 28, 29, 31,33,34] and the references therein for more results on Morrey type spaces.

Motivated by [28], in this paper we define a new Morrey type space $\mathcal{D}_{\lambda, K}$ as follows: for $-1<\lambda<0$, the Dirichlet-Morrey type space $\mathcal{D}_{\lambda, K}$ is defined as the space of all functions $f \in H(\mathbb{D})$ such that

$$
\|f\|_{\mathcal{D}_{\lambda, K}}=|f(0)|+\sup _{\alpha \in \mathbb{D}} \frac{\left(1-|\alpha|^{2}\right)^{\lambda+1}}{K\left(1-|\alpha|^{2}\right)}\left\|f \circ \varphi_{\alpha}-f(\alpha)\right\|_{\mathcal{D}_{\lambda}^{1}}<\infty .
$$

For $0<s<1$, if $K(x)=x^{(\lambda+1) s}$, the space $\mathcal{D}_{\lambda, K}$ coincides with the Dirichlet-Morrey space $\mathcal{D}_{\lambda, s}$ (see [5]).

In this paper, we always suppose that the following condition on K holds (see [30]):

$$
\begin{equation*}
\int_{1}^{\infty} \frac{\varphi_{K}(x)}{x^{1+\delta}} d x<\infty, \quad \delta>0 \tag{1.1}
\end{equation*}
$$

where

$$
\varphi_{K}(x)=\sup _{0<s \leq 1} \frac{K(s x)}{K(s)}, \quad 0<x<\infty
$$

Obviously, $K(x)=x^{p}$ satisfies inequality (1.1) for $0<p<\delta$.
This paper is organized as follows: Section 2 characterizes some properties for the Dirichlet-Morrey space $\mathcal{D}_{\lambda, K}$. The boundedness of the Volterra integral operators T_{g}, I_{g} and the multiplication operator M_{g} on the space $\mathcal{D}_{\lambda, K}$ is given in Section 3. In the last section, we study the essential norm of the operators T_{g} and I_{g}.

For two quantities A and B, we use the abbreviation $A \lesssim B$ whenever there is a positive constant C (independent of the associated variables) such that $A \leq C B$. We write $A \approx B$, if $A \lesssim B \lesssim A$.

2. SOME BASIC PROPERTIES

In this section, some basic properties of the space $\mathcal{D}_{\lambda, K}$ are given. First, we state two lemmas as follows.

Lemma 2.1 ([16, Lemma 2.5]). Let $r, t>0, s>-1$ and $t+r-s>2$. If $t<2+s<r$, then

$$
\int_{\mathbb{D}} \frac{\left(1-|z|^{2}\right)^{s}}{|1-\bar{\alpha} z|^{r}|1-\bar{\beta} z|^{t}} d A(z) \lesssim \frac{1}{\left(1-|\alpha|^{2}\right)^{r-s-2}|1-\bar{\alpha} \beta|^{t}}
$$

for any $\alpha, \beta \in \mathbb{D}$.
Lemma 2.2 ([28, Remark 2.1]). Let $0<\alpha \leq \beta<\infty$ and K satisfy (1.1) for some $\delta>0$. Then for all sufficiently small positive constants $\varepsilon<\delta$,

$$
\frac{K(\beta)}{K(\alpha)} \leq\left(\frac{\beta}{\alpha}\right)^{\delta-\varepsilon} \leq\left(\frac{\beta}{\alpha}\right)^{\delta}
$$

Proposition 2.3. Let $-1<\lambda<0$. Then $\mathcal{D}_{\lambda, K} \subseteq \mathcal{D}_{\lambda}^{1}$. Moreover, $\mathcal{D}_{\lambda, K}=\mathcal{D}_{\lambda}^{1}$ if and only if $K(0)>0$.
Proof. Let $f \in \mathcal{D}_{\lambda, K}$. Using the change of variables $w=\varphi_{\alpha}(z)$,

$$
\begin{aligned}
\infty & >\sup _{\alpha \in \mathbb{D}} \frac{\left(1-|\alpha|^{2}\right)^{\lambda+1}}{K\left(1-|\alpha|^{2}\right)}\left\|f \circ \varphi_{\alpha}-f(\alpha)\right\|_{\mathcal{D}_{\lambda}^{1}} \\
& =\sup _{\alpha \in \mathbb{D}} \frac{\left(1-|\alpha|^{2}\right)^{\lambda+1}}{K\left(1-|\alpha|^{2}\right)} \int_{\mathbb{D}}\left|\left(f \circ \varphi_{\alpha}\right)^{\prime}(z)\right|\left(1-|z|^{2}\right)^{\lambda} d A(z) \\
& =\sup _{\alpha \in \mathbb{D}} \frac{\left(1-|\alpha|^{2}\right)^{\lambda+1}}{K\left(1-|\alpha|^{2}\right)} \int_{\mathbb{D}}\left|f^{\prime}(w)\right|\left(1-|w|^{2}\right)^{-1}\left(1-\left|\varphi_{\alpha}(w)\right|^{2}\right)^{\lambda+1} d A(w) \\
& \geq \frac{1}{K(1)} \int_{\mathbb{D}}\left|f^{\prime}(w)\right|\left(1-|w|^{2}\right)^{-1}\left(1-|w|^{2}\right)^{\lambda+1} d A(w) \\
& \gtrsim \int_{\mathbb{D}}\left|f^{\prime}(w)\right|\left(1-|w|^{2}\right)^{\lambda} d A(w) .
\end{aligned}
$$

So $f \in \mathcal{D}_{\lambda}^{1}$, that is, $\mathcal{D}_{\lambda, K} \subseteq \mathcal{D}_{\lambda}^{1}$.
Next, we prove that $\mathcal{D}_{\lambda, K}=\mathcal{D}_{\lambda}^{1}$ if and only if $K(0)>0$. First, we suppose that $f \in \mathcal{D}_{\lambda}^{1}$ and $K(0)>0$. Using the monotonicity of K, we obtain that

$$
\begin{aligned}
& \sup _{\alpha \in \mathbb{D}} \frac{\left(1-|\alpha|^{2}\right)^{\lambda+1}}{K\left(1-|\alpha|^{2}\right)}\left\|f \circ \varphi_{\alpha}-f(\alpha)\right\|_{\mathcal{D}_{\lambda}^{1}} \\
& \lesssim \frac{1}{K(0)} \int_{\mathbb{D}}\left|f^{\prime}(z)\right|\left(1-|z|^{2}\right)^{\lambda} \frac{\left(1-|\alpha|^{2}\right)^{2 \lambda+2}}{|1-\bar{\alpha} z|^{2 \lambda+2}} d A(z) \\
& \lesssim \int_{\mathbb{D}}\left|f^{\prime}(z)\right|\left(1-|z|^{2}\right)^{\lambda} d A(z)<\infty .
\end{aligned}
$$

Therefore, $f \in \mathcal{D}_{\lambda, K}$. Furthermore, $\mathcal{D}_{\lambda, K}=\mathcal{D}_{\lambda}^{1}$.

Conversely, assume that $\mathcal{D}_{\lambda, K}=\mathcal{D}_{\lambda}^{1}$. For any $\gamma \in \mathbb{D}$, consider the function

$$
f_{\gamma}(z)=\left(1-|\gamma|^{2}\right) \int_{0}^{z} \frac{d w}{(1-\bar{\gamma} w)^{3+\lambda}}, \quad z \in \mathbb{D}
$$

Applying Lemma 3.10 in [39], we get

$$
\left\|f_{\gamma}\right\|_{\mathcal{D}_{\lambda}^{1}} \approx \int_{\mathbb{D}}\left|f_{\gamma}^{\prime}(z)\right|\left(1-|z|^{2}\right)^{\lambda} d A(z)=\int_{\mathbb{D}} \frac{\left(1-|\gamma|^{2}\right)}{|1-\bar{\gamma} z|^{3+\lambda}}\left(1-|z|^{2}\right)^{\lambda} d A(z) \approx 1
$$

Thus, $f_{\gamma} \in \mathcal{D}_{\lambda}^{1}$. Then

$$
\begin{aligned}
\infty & >\left\|f_{\gamma}\right\|_{\mathcal{D}_{\lambda}^{1}} \gtrsim\left\|f_{\gamma}\right\|_{\mathcal{D}_{\lambda, K}} \\
& \approx \sup _{\alpha \in \mathbb{D}} \frac{\left(1-|\alpha|^{2}\right)^{\lambda+1}}{K\left(1-|\alpha|^{2}\right)} \int_{\mathbb{D}}\left|f_{\gamma}^{\prime}(z)\right|\left(1-|z|^{2}\right)^{-1}\left(1-\left|\varphi_{\alpha}(z)\right|^{2}\right)^{\lambda+1} d A(z) \\
& \gtrsim \frac{\left(1-|\gamma|^{2}\right)^{\lambda+1}}{K\left(1-|\gamma|^{2}\right)} \int_{\mathbb{D}}\left|f_{\gamma}^{\prime}(z)\right|\left(1-|z|^{2}\right)^{-1}\left(1-\left|\varphi_{\gamma}(z)\right|^{2}\right)^{\lambda+1} d A(z) \\
& \approx \frac{1}{K\left(1-|\gamma|^{2}\right)},
\end{aligned}
$$

which implies that $K(0)>0$.
Proposition 2.4. Let $-1<\lambda<0$ and K satisfy (1.1). Then $\mathcal{D}_{\lambda, K}=F(1,-1, \lambda+1)$ if and only if $K(x) \approx x^{\lambda+1}$.

Proof. Since

$$
\|f\|_{F(1,-1, \lambda+1)} \approx \sup _{\alpha \in \mathbb{D}}\left\|f \circ \varphi_{\alpha}-f(\alpha)\right\|_{\mathcal{D}_{\lambda}^{1}} \lesssim \frac{K\left(1-|\alpha|^{2}\right)}{\left(1-|\alpha|^{2}\right)^{\lambda+1}}\|f\|_{\mathcal{D}_{\lambda, K}}, \quad \alpha \in \mathbb{D}
$$

and

$$
\|f\|_{\mathcal{D}_{\lambda, K}} \lesssim \sup _{\alpha \in \mathbb{D}} \frac{\left(1-|\alpha|^{2}\right)^{\lambda+1}}{K\left(1-|\alpha|^{2}\right)}\|f\|_{F(1,-1, \lambda+1)},
$$

the desired result follows immediately.
Proposition 2.5. Let $-1<\lambda<0, \gamma \in \mathbb{D}$ and K satisfy (1.1) for some $\delta>0$ such that $\delta \leq 2 \lambda+2$. Then the function

$$
f_{\gamma}(z)=\frac{K\left(1-|\gamma|^{2}\right)\left(1-|\gamma|^{2}\right)^{\lambda+1}}{(1-\bar{\gamma} z)^{2 \lambda+2}}, \quad z \in \mathbb{D}
$$

belongs to $\mathcal{D}_{\lambda, K}$.

Proof. Using Lemmas 2.1 and 2.2, we have that

$$
\begin{aligned}
& \sup _{\alpha \in \mathbb{D}} \frac{\left(1-|\alpha|^{2}\right)^{\lambda+1}}{K\left(1-|\alpha|^{2}\right)} \int_{\mathbb{D}}\left|f_{\gamma}^{\prime}(z)\right|\left(1-|z|^{2}\right)^{-1}\left(1-\left|\varphi_{\alpha}(z)\right|^{2}\right)^{\lambda+1} d A(z) \\
& \approx \sup _{\alpha \in \mathbb{D}} \frac{\left(1-|\alpha|^{2}\right)^{2 \lambda+2} K\left(1-|\gamma|^{2}\right)\left(1-|\gamma|^{2}\right)^{\lambda+1}}{K\left(1-|\alpha|^{2}\right)} \int_{\mathbb{D}} \frac{\left(1-|z|^{2}\right)^{\lambda}}{|1-\bar{\gamma} z|^{2 \lambda+3}|1-\bar{\alpha} z|^{2 \lambda+2}} d A(z) \\
& \lesssim \sup _{\alpha \in \mathbb{D}} \frac{\left(1-|\alpha|^{2}\right)^{2 \lambda+2} K\left(1-|\gamma|^{2}\right)\left(1-|\gamma|^{2}\right)^{\lambda+1}}{K\left(1-|\alpha|^{2}\right)} \frac{1}{\left(1-|\gamma|^{2}\right)^{\lambda+1}|1-\bar{\alpha} \gamma|^{2 \lambda+2}} \\
& \lesssim \sup _{\alpha \in \mathbb{D}} \frac{K\left(1-|\gamma|^{2}\right)}{K\left(1-|\alpha|^{2}\right)}\left(\frac{1-|\alpha|^{2}}{|1-\bar{\alpha} \gamma|}\right)^{2 \lambda+2} \\
& \lesssim \sup _{\alpha \in \mathbb{D}}\left(\frac{1-|\alpha|^{2}}{|1-\bar{\alpha} \gamma|}\right)^{2 \lambda+2-\delta} \lesssim 1,
\end{aligned}
$$

which means that $f_{\gamma} \in \mathcal{D}_{\lambda, K}$.
Proposition 2.6. Let $-1<\lambda<0$ and K satisfy (1.1) for some $\delta>0$ such that $\delta \leq \lambda+1$. Then for any $f \in \mathcal{D}_{\lambda, K}$,

$$
|f(\alpha)| \lesssim \frac{K\left(1-|\alpha|^{2}\right)}{\left(1-|\alpha|^{2}\right)^{\lambda+1}}\|f\|_{\mathcal{D}_{\lambda, K}}, \quad \alpha \in \mathbb{D}
$$

Proof. It is obvious that

$$
\begin{aligned}
\left|f^{\prime}(\alpha)\right| & \lesssim \frac{1}{\left(1-|\alpha|^{2}\right)} \int_{\mathbb{D}(\alpha, r)}\left|f^{\prime}(z)\right|\left(1-|z|^{2}\right)^{-1} d A(z) \\
& \lesssim \frac{1}{\left(1-|\alpha|^{2}\right)} \int_{\mathbb{D}}\left|f^{\prime}(z)\right|\left(1-|z|^{2}\right)^{-1}\left(1-\left|\varphi_{\alpha}(z)\right|^{2}\right)^{\lambda+1} d A(z) \\
& \lesssim \frac{K\left(1-|\alpha|^{2}\right)}{\left(1-|\alpha|^{2}\right)^{\lambda+2}}\|f\|_{\mathcal{D}_{\lambda, K}}
\end{aligned}
$$

Then Lemma 2.2 yields that there exists a constant $c \in(0, \delta)$ such that

$$
\begin{aligned}
|f(\alpha)-f(0)| & =\left|\alpha \int_{0}^{1} f^{\prime}(\alpha z) d z\right| \lesssim\|f\|_{\mathcal{D}_{\lambda, K}} \int_{0}^{1} \frac{|\alpha| K\left(1-|\alpha z|^{2}\right)}{\left(1-|\alpha z|^{2}\right)^{\lambda+2}} d z \\
& \lesssim\|f\|_{\mathcal{D}_{\lambda, K}} \frac{K(1-|\alpha|)}{(1-|\alpha|)^{\delta-c}} \int_{0}^{1}(1-|\alpha z|)^{\delta-c-\lambda-2}|\alpha| d z \\
& \lesssim \frac{K(1-|\alpha|)}{(1-|\alpha|)^{\lambda+1}}\|f\|_{\mathcal{D}_{\lambda, K}},
\end{aligned}
$$

which implies the desired result.

3. BOUNDEDNESS

In this section, we characterize the boundedness of Volterra integral operators T_{g} and I_{g} on the space $\mathcal{D}_{\lambda, K}$. We begin this section with the definition of p-Carleson measure for $\mathcal{D}_{\lambda}^{1}$. For $-1<\lambda<0<p<\infty$, a positive Borel measure μ on \mathbb{D} is called a p-Carleson measure for $\mathcal{D}_{\lambda}^{1}$ if for any $f \in \mathcal{D}_{\lambda}^{1}$, the identity operator $I_{d}: \mathcal{D}_{\lambda}^{1} \rightarrow L^{p}(d \mu)$ is bounded, that is, there exists a positive constant C such that

$$
\int_{\mathbb{D}}|f(z)|^{p} d \mu(z) \leq C\|f\|_{\mathcal{D}_{\lambda}^{1}}^{p}
$$

for all functions $f \in \mathcal{D}_{\lambda}^{1}$. Using Theorem 9 in [14], we immediately obtain the following result.

Lemma 3.1. Let $-1<\lambda<0$ and μ be a positive Borel measure on \mathbb{D}. Then μ is $a(\lambda+1)$-Carleson measure if and only if μ is a 1-Carleson measure for $\mathcal{D}_{\lambda}^{1}$, that is, for all functions $f \in \mathcal{D}_{\lambda}^{1}$,

$$
\int_{\mathbb{D}}|f(z)| d \mu(z) \lesssim|f(0)|+\int_{\mathbb{D}}\left|f^{\prime}(z)\right|\left(1-|z|^{2}\right)^{\lambda} d A(z) \approx\|f\|_{\mathcal{D}_{\lambda}^{1}}
$$

The following theorem is the main result in this section.
Theorem 3.2. Let $-1<\lambda<0$ and K satisfy (1.1) for some $\delta>0$ such that $\delta \leq \lambda+1$. Then $T_{g}: \mathcal{D}_{\lambda, K} \rightarrow \mathcal{D}_{\lambda, K}$ is bounded if and only if

$$
g \in F(1,-1, \lambda+1) .
$$

Proof. First, assume that $T_{g}: \mathcal{D}_{\lambda, K} \rightarrow \mathcal{D}_{\lambda, K}$ is bounded. For each fixed arc $I \subset \partial \mathbb{D}$, let $\gamma=(1-|I|) \xi$, ξ be the midpoint of I. Then for $z \in S(I)$,

$$
|1-\bar{\gamma} z| \approx 1-|\gamma|^{2} \approx|I|=1-|\gamma| .
$$

Consider the test function f_{γ}, defined in Proposition 2.5. Then

$$
\begin{aligned}
\infty & >\sup _{\alpha \in \mathbb{D}} \frac{\left(1-|\alpha|^{2}\right)^{\lambda+1}}{K\left(1-|\alpha|^{2}\right)} \int_{\mathbb{D}}\left|\left(T_{g} f_{\gamma}\right)^{\prime}(z)\right|\left(1-|z|^{2}\right)^{-1}\left(1-\left|\varphi_{\alpha}(z)\right|^{2}\right)^{\lambda+1} d A(z) \\
& \approx \sup _{\alpha \in \mathbb{D}} \frac{\left(1-|\alpha|^{2}\right)^{\lambda+1}}{K\left(1-|\alpha|^{2}\right)} \int_{\mathbb{D}}\left|f_{\gamma}(z)\right|\left|g^{\prime}(z)\right|\left(1-|z|^{2}\right)^{-1}\left(1-\left|\varphi_{\alpha}(z)\right|^{2}\right)^{\lambda+1} d A(z) \\
& \gtrsim \frac{1}{|I|^{\lambda+1}} \int_{S(I)}\left|g^{\prime}(z)\right|\left(1-|z|^{2}\right)^{\lambda} d A(z),
\end{aligned}
$$

which implies that $g \in F(1,-1, \lambda+1)$ (see [37]).
Conversely, suppose that $g \in F(1,-1, \lambda+1)$. Then

$$
d \mu_{g}=\left|g^{\prime}(z)\right|\left(1-|z|^{2}\right)^{\lambda} d A(z)
$$

is a $(\lambda+1)$-Carleson measure (see [37]). Let $f \in \mathcal{D}_{\lambda, K}$. For each fixed arc $I \subset \partial \mathbb{D}$, let $\alpha=(1-|I|) \xi, \xi$ be the midpoint of I. Then

$$
\begin{aligned}
\left\|T_{g} f\right\|_{\mathcal{D}_{\lambda, K}} \approx & \sup _{a \in \mathbb{D}} \frac{\left(1-|a|^{2}\right)^{\lambda+1}}{K\left(1-|a|^{2}\right)} \\
& \times \int_{\mathbb{D}}\left|\left(T_{g} f\right)^{\prime}(z)\right|\left(1-|z|^{2}\right)^{-1}\left(1-\left|\varphi_{a}(z)\right|^{2}\right)^{\lambda+1} d A(z) \\
\approx & \sup _{a \in \mathbb{D}} \frac{\left(1-|a|^{2}\right)^{\lambda+1}}{K\left(1-|a|^{2}\right)} \\
& \times \int_{\mathbb{D}}|f(z)|\left|g^{\prime}(z)\right|\left(1-|z|^{2}\right)^{-1}\left(1-\left|\varphi_{a}(z)\right|^{2}\right)^{\lambda+1} d A(z) \\
\lesssim & \sup _{a \in \mathbb{D}} \frac{1}{K\left(1-|a|^{2}\right)} \int_{\mathbb{D}}|f(z)-f(a)|\left(\frac{1-|a|^{2}}{|1-\bar{a} z|}\right)^{2 \lambda+2} d \mu_{g}(z) \\
& +\sup _{a \in \mathbb{D}} \frac{\left(1-|a|^{2}\right)^{\lambda+1}}{K\left(1-|a|^{2}\right)} \\
& \times \int_{\mathbb{D}}|f(a)|\left|g^{\prime}(z)\right|\left(1-|z|^{2}\right)^{-1}\left(1-\left|\varphi_{a}(z)\right|^{2}\right)^{\lambda+1} d A(z) \\
\lesssim & E+F .
\end{aligned}
$$

Proposition 2.6 yields that

$$
\begin{aligned}
F & \lesssim\|f\|_{\mathcal{D}_{\lambda, K}} \sup _{a \in \mathbb{D}} \frac{\left(1-|a|^{2}\right)^{\lambda+1}}{K\left(1-|a|^{2}\right)} \\
& \times \int_{\mathbb{D}} \frac{K\left(1-|a|^{2}\right)}{\left(1-|a|^{2}\right)^{\lambda+1}}\left|g^{\prime}(z)\right|\left(1-|z|^{2}\right)^{-1}\left(1-\left|\varphi_{a}(z)\right|^{2}\right)^{\lambda+1} d A(z) \\
& \|f\|_{\mathcal{D}_{\lambda, K}}\|g\|_{F(1,-1, \lambda+1)} .
\end{aligned}
$$

Next, we need to prove that

$$
E \lesssim\|f\|_{\mathcal{D}_{\lambda, K}} .
$$

For this purpose, we consider the function

$$
F_{\alpha, K}(z)=\frac{\left(1-|\alpha|^{2}\right)^{2 \lambda+2}(f(z)-f(\alpha))}{K\left(1-|\alpha|^{2}\right)(1-\bar{\alpha} z)^{2 \lambda+2}}, \quad \alpha, z \in \mathbb{D}
$$

We will prove that $F_{\alpha, K} \in \mathcal{D}_{\lambda}^{1}$ and $\sup _{\alpha \in \mathbb{D}}\left\|F_{\alpha, K}\right\|_{\mathcal{D}_{\lambda}^{1}} \lesssim\|f\|_{\mathcal{D}_{\lambda, K}}$. It is obvious that

$$
\begin{aligned}
\sup _{\alpha \in \mathbb{D}}\left\|F_{\alpha, K}\right\|_{\mathcal{D}_{\lambda}^{1}}= & \sup _{\alpha \in \mathbb{D}} \frac{\left(1-|\alpha|^{2}\right)^{2 \lambda+2}}{K\left(1-|\alpha|^{2}\right)} \\
& \times\left(|f(\alpha)-f(0)|+\int_{\mathbb{D}}\left|\left(\frac{f(z)-f(\alpha)}{(1-\bar{\alpha} z)^{2 \lambda+2}}\right)^{\prime}\right|\left(1-|z|^{2}\right)^{\lambda} d A(z)\right) \\
= & \sup _{\alpha \in \mathbb{D}} \frac{\left(1-|\alpha|^{2}\right)^{2 \lambda+2}}{K\left(1-|\alpha|^{2}\right)}|f(\alpha)-f(0)|+G,
\end{aligned}
$$

where

$$
G=\sup _{\alpha \in \mathbb{D}} \frac{\left(1-|\alpha|^{2}\right)^{2 \lambda+2}}{K\left(1-|\alpha|^{2}\right)} \int_{\mathbb{D}}\left|\left(\frac{f(z)-f(\alpha)}{(1-\bar{\alpha} z)^{2 \lambda+2}}\right)^{\prime}\right|\left(1-|z|^{2}\right)^{\lambda} d A(z) .
$$

Applying Proposition 2.6, we obtain that

$$
\sup _{\alpha \in \mathbb{D}} \frac{\left(1-|\alpha|^{2}\right)^{2 \lambda+2}}{K\left(1-|\alpha|^{2}\right)}|f(\alpha)-f(0)| \lesssim \sup _{\alpha \in \mathbb{D}}\left(1-|\alpha|^{2}\right)^{\lambda+1}\|f\|_{\mathcal{D}_{\lambda, K}} \lesssim\|f\|_{\mathcal{D}_{\lambda, K}} .
$$

For the second term, we have that

$$
\begin{aligned}
G \lesssim & \sup _{\alpha \in \mathbb{D}} \frac{\left(1-|\alpha|^{2}\right)^{2 \lambda+2}}{K\left(1-|\alpha|^{2}\right)} \int_{\mathbb{D}}\left|\frac{f^{\prime}(z)}{(1-\bar{\alpha} z)^{2 \lambda+2}}\right|\left(1-|z|^{2}\right)^{\lambda} d A(z) \\
& +\sup _{\alpha \in \mathbb{D}} \frac{\left(1-|\alpha|^{2}\right)^{2 \lambda+2}}{K\left(1-|\alpha|^{2}\right)} \int_{\mathbb{D}}\left|\frac{f(z)-f(\alpha)}{(1-\bar{\alpha} z)^{2 \lambda+3}}\right|\left(1-|z|^{2}\right)^{\lambda} d A(z)=G_{1}+G_{2} .
\end{aligned}
$$

It is obvious that

$$
G_{1}=\sup _{\alpha \in \mathbb{D}} \frac{\left(1-|\alpha|^{2}\right)^{\lambda+1}}{K\left(1-|\alpha|^{2}\right)} \int_{\mathbb{D}}\left|f^{\prime}(z)\right|\left(1-|z|^{2}\right)^{-1}\left(1-\left|\varphi_{\alpha}(z)\right|^{2}\right)^{\lambda+1} d A(z) \lesssim\|f\|_{\mathcal{D}_{\lambda, K}}
$$

By the change of variables $z=\varphi_{\alpha}(w)$, we get that

$$
\begin{aligned}
G_{2} & =\sup _{\alpha \in \mathbb{D}} \frac{\left(1-|\alpha|^{2}\right)^{\lambda+1}}{K\left(1-|\alpha|^{2}\right)} \int_{\mathbb{D}}|f(z)-f(\alpha)| \frac{\left(1-|z|^{2}\right)^{-1}}{|1-\bar{\alpha} z|}\left(1-\left|\varphi_{\alpha}(z)\right|^{2}\right)^{\lambda+1} d A(z) \\
& =\sup _{\alpha \in \mathbb{D}} \frac{\left(1-|\alpha|^{2}\right)^{\lambda+1}}{K\left(1-|\alpha|^{2}\right)} \int_{\mathbb{D}}\left|f \circ \varphi_{\alpha}(w)-f(\alpha)\right| \frac{\left(1-|w|^{2}\right)^{\lambda}}{|1-\bar{\alpha} w|} d A(w) .
\end{aligned}
$$

It is well known that

$$
\left|f \circ \varphi_{\alpha}(z)-f(\alpha)\right| \lesssim \int_{\mathbb{D}}\left|\left(f \circ \varphi_{\alpha}\right)^{\prime}(u)\right| \frac{\left(1-|u|^{2}\right)^{2}}{|1-\bar{u} z|^{3}} d A(u) .
$$

Therefore, employing Fubini's theorem and Lemma 2.1, we have

$$
\begin{aligned}
& G_{2} \lesssim \sup _{\alpha \in \mathbb{D}} \frac{\left(1-|\alpha|^{2}\right)^{\lambda+1}}{K\left(1-|\alpha|^{2}\right)} \int_{\mathbb{D}} \int_{\mathbb{D}}\left|\left(f \circ \varphi_{\alpha}\right)^{\prime}(u)\right| \frac{\left(1-|u|^{2}\right)^{2}}{|1-\bar{u} z|^{3}} d A(u) \frac{\left(1-|z|^{2}\right)^{\lambda}}{|1-\bar{\alpha} z|} d A(z) \\
& \lesssim \sup _{\alpha \in \mathbb{D}} \frac{\left(1-|\alpha|^{2}\right)^{\lambda+1}}{K\left(1-|\alpha|^{2}\right)} \int_{\mathbb{D}}\left|\left(f \circ \varphi_{\alpha}\right)^{\prime}(u)\right|\left(1-|u|^{2}\right)^{2} d A(u) \\
& \times \int_{\mathbb{D}} \frac{\left(1-|z|^{2}\right)^{\lambda}}{|1-\bar{u} z|^{3}|1-\bar{\alpha} z|} d A(z) \\
& \lesssim \sup _{\alpha \in \mathbb{D}} \frac{\left(1-|\alpha|^{2}\right)^{\lambda+1}}{K\left(1-|\alpha|^{2}\right)} \int_{\mathbb{D}}\left|\left(f \circ \varphi_{\alpha}\right)^{\prime}(u)\right|\left(1-|u|^{2}\right)^{2} \frac{1}{\left(1-|u|^{2}\right)^{1-\lambda}|1-\bar{\alpha} u|} d A(u) \\
& \lesssim \sup _{\alpha \in \mathbb{D}} \frac{\left(1-|\alpha|^{2}\right)^{\lambda+1}}{K\left(1-|\alpha|^{2}\right)} \int_{\mathbb{D}}\left|\left(f \circ \varphi_{\alpha}\right)^{\prime}(u)\right|\left(1-|u|^{2}\right)^{\lambda} d A(u) \\
& \lesssim\|f\|_{\mathcal{D}_{\lambda, K}} .
\end{aligned}
$$

Thus, we see that $F_{\alpha, K} \in \mathcal{D}_{\lambda}^{1}$ and $\sup _{\alpha \in \mathbb{D}}\left\|F_{\alpha, K}\right\|_{\mathcal{D}_{\lambda}^{1}} \lesssim\|f\|_{\mathcal{D}_{\lambda, K}}$. Since μ_{g} is a $(\lambda+1)$-Carleson measure, using Lemma 3.1, we obtain that

$$
E=\sup _{\alpha \in \mathbb{D}} \int_{\mathbb{D}}\left|F_{\alpha, K}\right| d \mu_{g}(z) \leq C \sup _{\alpha \in \mathbb{D}}\left\|F_{\alpha, K}\right\|_{\mathcal{D}_{\lambda}^{1}} \lesssim\|f\|_{\mathcal{D}_{\lambda, K}}
$$

This means that $T_{g}: \mathcal{D}_{\lambda, K} \rightarrow \mathcal{D}_{\lambda, K}$ is bounded.

Theorem 3.3. Let $-1<\lambda<0$ and K satisfy (1.1) for some $\delta>0$ such that $\delta \leq \lambda+1$. Then $I_{g}: \mathcal{D}_{\lambda, K} \rightarrow \mathcal{D}_{\lambda, K}$ is bounded if and only if $g \in H^{\infty}$.

Proof. First, suppose that $I_{g}: \mathcal{D}_{\lambda, K} \rightarrow \mathcal{D}_{\lambda, K}$ is bounded. For $r>0$ and each $\gamma \in \mathbb{D}$, let $\mathbb{D}(\gamma, r)$ be the Bergman metric disc centered at γ with radius r, that is, $\mathbb{D}(\gamma, r)=\{z \in \mathbb{D}: \beta(\gamma, z)<r\}$. From [39] we have

$$
\frac{\left(1-|\gamma|^{2}\right)^{2}}{|1-\bar{\gamma} z|^{4}} \approx \frac{1}{\left(1-|\gamma|^{2}\right)^{2}} \approx \frac{1}{\left(1-|z|^{2}\right)^{2}}, \quad z \in \mathbb{D}(\gamma, r)
$$

Consider the function

$$
f_{\gamma}(z)=\frac{K\left(1-|\gamma|^{2}\right)\left(1-|\gamma|^{2}\right)^{\lambda+1}}{\bar{\gamma}(1-\bar{\gamma} z)^{2 \lambda+2}}, \quad \gamma, z \in \mathbb{D}
$$

Clearly, $f_{\gamma} \in \mathcal{D}_{\lambda, K}$ by Proposition 2.5. By the assumption we obtain that

$$
\begin{aligned}
\infty & >\sup _{\alpha \in \mathbb{D}} \frac{\left(1-|\alpha|^{2}\right)^{\lambda+1}}{K\left(1-|\alpha|^{2}\right)} \int_{\mathbb{D}}\left|\left(I_{g} f_{\gamma}\right)^{\prime}(z)\right|\left(1-|z|^{2}\right)^{-1}\left(1-\left|\varphi_{\alpha}(z)\right|^{2}\right)^{\lambda+1} d A(z) \\
& \gtrsim \frac{\left(1-|\gamma|^{2}\right)^{\lambda+1}}{K\left(1-|\gamma|^{2}\right)} \int_{\mathbb{D}}\left|f_{\gamma}^{\prime}(z)\right||g(z)|\left(1-|z|^{2}\right)^{-1}\left(1-\left|\varphi_{\gamma}(z)\right|^{2}\right)^{\lambda+1} d A(z) \\
& \approx \int_{\mathbb{D}} \frac{\left(1-|\gamma|^{2}\right)^{2 \lambda+2}}{|1-\bar{\gamma} z|^{2 \lambda+3}}|g(z)|\left(1-|z|^{2}\right)^{-1}\left(1-\left|\varphi_{\gamma}(z)\right|^{2}\right)^{\lambda+1} d A(z) \\
& \gtrsim \frac{1}{\left(1-|\gamma|^{2}\right)} \int_{\mathbb{D}(\gamma, r)}|g(z)|\left(1-|z|^{2}\right)^{-1} d A(z) \gtrsim|g(\gamma)| .
\end{aligned}
$$

The arbitrariness of γ implies $g \in H^{\infty}$.
Conversely, we suppose that $g \in H^{\infty}$. Let $f \in \mathcal{D}_{\lambda, K}$. Then

$$
\begin{aligned}
\left\|I_{g} f\right\|_{\mathcal{D}_{\lambda, K}} \approx & \sup _{\alpha \in \mathbb{D}} \frac{\left(1-|\alpha|^{2}\right)^{\lambda+1}}{K\left(1-|\alpha|^{2}\right)} \\
& \times \int_{\mathbb{D}}\left|\left(I_{g} f\right)^{\prime}(z)\right|\left(1-|z|^{2}\right)^{-1}\left(1-\left|\varphi_{\alpha}(z)\right|^{2}\right)^{\lambda+1} d A(z) \\
\approx & \sup _{\alpha \in \mathbb{D}} \frac{\left(1-|\alpha|^{2}\right)^{\lambda+1}}{K\left(1-|\alpha|^{2}\right)} \\
& \times \int_{\mathbb{D}}\left|f^{\prime}(z) \| g(z)\right|\left(1-|z|^{2}\right)^{-1}\left(1-\left|\varphi_{\alpha}(z)\right|^{2}\right)^{\lambda+1} d A(z) \\
\lesssim & \|g\|_{H^{\infty}} \sup _{\alpha \in \mathbb{D}} \frac{\left(1-|\alpha|^{2}\right)^{\lambda+1}}{K\left(1-|\alpha|^{2}\right)} \\
& \times \int_{\mathbb{D}}\left|f^{\prime}(z)\right|\left(1-|z|^{2}\right)^{-1}\left(1-\left|\varphi_{\alpha}(z)\right|^{2}\right)^{\lambda+1} d A(z) \\
\lesssim & \|g\|_{H^{\infty}}\|f\|_{\mathcal{D}_{\lambda, K}},
\end{aligned}
$$

which means that $I_{g}: \mathcal{D}_{\lambda, K} \rightarrow \mathcal{D}_{\lambda, K}$ is bounded.
Theorem 3.4. Let $-1<\lambda<0$ and K satisfy (1.1) for some $\delta>0$ such that $\delta \leq \lambda+1$. Then $M_{g}: \mathcal{D}_{\lambda, K} \rightarrow \mathcal{D}_{\lambda, K}$ is bounded if and only if $g \in F(1,-1, \lambda+1) \cap H^{\infty}$.

Proof. Suppose first that $g \in F(1,-1, \lambda+1) \cap H^{\infty}$. Employing Theorems 3.2 and 3.3, we obtain that both T_{g} and I_{g} are bounded on $\mathcal{D}_{\lambda, K}$. Therefore, $M_{g}: \mathcal{D}_{\lambda, K} \rightarrow \mathcal{D}_{\lambda, K}$ is bounded.

Conversely, suppose that $M_{g}: \mathcal{D}_{\lambda, K} \rightarrow \mathcal{D}_{\lambda, K}$ is bounded. For $\gamma \in \mathbb{D}$, set

$$
f_{\gamma}(z)=\frac{K\left(1-|\gamma|^{2}\right)\left(1-|\gamma|^{2}\right)^{\lambda+1}}{(1-\bar{\gamma} z)^{2 \lambda+2}}, \quad z \in \mathbb{D}
$$

By Proposition 2.5, f_{γ} is bounded in $\mathcal{D}_{\lambda, K}$. Applying the assumption we obtain that $M_{g} f_{a} \in \mathcal{D}_{\lambda, K}$. By Proposition 2.6, we have

$$
\begin{aligned}
\left|g(z) f_{\gamma}(z)\right|=\left|M_{g} f_{\gamma}(z)\right| & \lesssim \frac{K\left(1-|z|^{2}\right)\left\|M_{g} f_{\gamma}\right\|_{\mathcal{D}_{\lambda, K}}}{\left(1-|z|^{2}\right)^{\lambda+1}} \\
& \lesssim \frac{K\left(1-|z|^{2}\right)\left\|M_{g}\right\|_{\mathcal{D}_{\lambda, K} \rightarrow \mathcal{D}_{\lambda, K}}}{\left(1-|z|^{2}\right)^{\lambda+1}} .
\end{aligned}
$$

Since γ is arbitrary, by setting $\gamma=z$, we get

$$
|g(z)| \lesssim\left\|M_{g}\right\|_{\mathcal{D}_{\lambda, K} \rightarrow \mathcal{D}_{\lambda, K}}
$$

which means that $g \in H^{\infty}$. Theorem 3.3 yields that the operator I_{g} is bounded on $\mathcal{D}_{\lambda, K}$. Since $T_{g} f(z)=M_{g}(z)-I_{g} f(z)-f(0) g(0)$, then the operator T_{g} is also bounded on $\mathcal{D}_{\lambda, K}$. We immediately obtain that $g \in F(1,-1, \lambda+1)$.

4. ESSENTIAL NORM OF INTEGRAL OPERATORS

In this section, we study the essential norm of the operators T_{g} and I_{g} on $\mathcal{D}_{\lambda, K}$. Recall that the essential norm of a bounded linear operator $L: W \rightarrow Q$ is defined by

$$
\|L\|_{e, W \rightarrow Q}=\inf _{S}\left\{\|L-S\|_{W \rightarrow Q}: S \text { is compact from } W \text { to } Q\right\}
$$

where $\left(W,\|\cdot\|_{W}\right),\left(Q,\|\cdot\|_{Q}\right)$ are Banach spaces. Clearly, $L: W \rightarrow Q$ is compact if and only if $\|L\|_{e, W \rightarrow Q}=0$. For some resent works on estimating essential norms of integral-type and some related operators, we refer $[4,25,35,38]$.

Let A and W be Banach spaces such that $A \subset W$. Given $f \in W$, the distance of f to A denoted by $\operatorname{dist}_{W}(f, A)$, is defined by $\operatorname{dist}(f, A)=\inf _{g \in A}\|f-g\|_{W}$.

The following lemma gives the distance from the space $F(1,-1, \lambda+1)$ to its little space $F_{0}(1,-1, \lambda+1)($ see $[5])$.
Lemma 4.1. If $g \in F(1,-1, \lambda+1)$, then

$$
\begin{aligned}
& \limsup _{|\alpha| \rightarrow 1} \int_{\mathbb{D}}\left|g^{\prime}(z)\right|\left(1-|z|^{2}\right)^{-1}\left(1-\left|\varphi_{\alpha}(z)\right|^{2}\right)^{\lambda+1} d A(z) \\
& \approx \operatorname{dist}_{F(1,-1, \lambda+1)}\left(g, F_{0}(1,-1, \lambda+1)\right) \approx \limsup _{r \rightarrow 1^{-}}\left\|g-g_{r}\right\|_{F(1,-1, \lambda+1)}
\end{aligned}
$$

Here $g_{r}(z)=g(r z), 0<r<1, z \in \mathbb{D}$.
Lemma 4.2. Let $-1<\lambda<0$ and K satisfy (1.1) for some $\delta>0$ such that $\delta \leq \lambda+1$. If $g \in F_{0}(1,-1, \lambda+1)$, then $T_{g}: \mathcal{D}_{\lambda, K} \rightarrow \mathcal{D}_{\lambda, K}$ is compact.
Proof. Since $F_{0}(1,-1, \lambda+1)$ is the closure of polynomials in the norm of $F(1,-1, \lambda+1)$, there exist polynomials P_{n} such that $\left\|g-P_{n}\right\|_{F(1,-1, \lambda+1)} \rightarrow 0$. From the proof of Theorem 3.2, we see that

$$
\left\|T_{g}-T_{P_{n}}\right\|_{\mathcal{D}_{\lambda, K}}=\left\|T_{g-P_{n}}\right\|_{\mathcal{D}_{\lambda, K}} \lesssim\left\|g-P_{n}\right\|_{F(1,-1, \lambda+1)} \rightarrow 0
$$

as $n \rightarrow \infty$. For a polynomial P, noting that T_{P} is the product of the multiplication operator $f \rightarrow f P^{\prime}$, which is bounded by the boundedness of P^{\prime} on \mathbb{D}, with the integration operator $f \rightarrow \int_{0}^{z} f(\xi) d \xi$, which is compact on $\mathcal{D}_{\lambda, K}$ (see [1]), we obtain that $T_{g}: \mathcal{D}_{\lambda, K} \rightarrow \mathcal{D}_{\lambda, K}$ is compact.

Lemma 4.3. Let $-1<\lambda<0$ and K satisfy (1.1) for some $\delta>0$ such that $\delta \leq \lambda+1$. If $g \in F(1,-1, \lambda+1)$, then $T_{g_{r}}: \mathcal{D}_{\lambda, K} \rightarrow \mathcal{D}_{\lambda, K}$ is compact.

Proof. Since $g \in F(1,-1, \lambda+1)$, then $g_{r} \in F_{0}(1,-1, \lambda+1)$. Lemma 4.2 gives that $T_{g_{r}}: \mathcal{D}_{\lambda, K} \rightarrow \mathcal{D}_{\lambda, K}$ is compact.

Theorem 4.4. Let $-1<\lambda<0$ and K satisfy (1.1) for some $\delta>0$ such that $\delta \leq \lambda+1$. If $g \in H(\mathbb{D})$ and $T_{g}: \mathcal{D}_{\lambda, K} \rightarrow \mathcal{D}_{\lambda, K}$ is bounded, then

$$
\begin{aligned}
\left\|T_{g}\right\|_{e, \mathcal{D}_{\lambda, K} \rightarrow \mathcal{D}_{\lambda, K}} & \approx \operatorname{dist}_{F(1,-1, \lambda+1)}\left(g, F_{0}(1,-1, \lambda+1)\right) \\
& \approx \limsup _{r \rightarrow 1^{-}}\left\|g-g_{r}\right\|_{F(1,-1, \lambda+1)} .
\end{aligned}
$$

Proof. Let $\left\{\alpha_{n}\right\}$ be a bounded sequence in \mathbb{D} such that $\lim _{n \rightarrow \infty}\left|\alpha_{n}\right|=1$. Set

$$
f_{n}(z)=\frac{K\left(1-\left|\alpha_{n}\right|^{2}\right)\left(1-\left|\alpha_{n}\right|^{2}\right)^{\lambda+1}}{\left(1-\bar{\alpha}_{n} z\right)^{2 \lambda+2}}, \quad z \in \mathbb{D}
$$

Then $\left\{f_{n}\right\}$ is a bounded sequence in $\mathcal{D}_{\lambda, K}$ and $f_{n} \rightarrow 0$ uniformly on any compact subset of \mathbb{D} as $n \rightarrow \infty$. For each compact operator $S: \mathcal{D}_{\lambda, K} \rightarrow \mathcal{D}_{\lambda, K}$, similar to [24,25] we have that $\lim _{n \rightarrow \infty}\left\|S f_{n}\right\|_{\mathcal{D}_{\lambda, K}}=0$. Employing Proposition 4.13 in [39], we get that

$$
\begin{aligned}
& \left\|T_{g}-S\right\|_{\mathcal{D}_{\lambda, K} \rightarrow \mathcal{D}_{\lambda, K}} \\
& \gtrsim \limsup _{n \rightarrow \infty}\left\|\left(T_{g}-S\right)\left(f_{n}\right)\right\|_{\mathcal{D}_{\lambda, K}} \\
& \gtrsim \limsup _{n \rightarrow \infty}\left(\left\|T_{g} f_{n}\right\|_{\mathcal{D}_{\lambda, K}}-\left\|S f_{n}\right\|_{\mathcal{D}_{\lambda, K}}\right) \\
& =\limsup _{n \rightarrow \infty}\left\|T_{g} f_{n}\right\|_{\mathcal{D}_{\lambda, K}} \\
& \gtrsim \limsup _{n \rightarrow \infty} \frac{\left(1-\left|\alpha_{n}\right|^{2}\right)^{\lambda+1}}{K\left(1-\left|\alpha_{n}\right|^{2}\right)} \int_{\mathbb{D}}\left|f_{n}(z) \| g^{\prime}(z)\right|\left(1-|z|^{2}\right)^{-1}\left(1-\left|\varphi_{\alpha_{n}}(z)\right|^{2}\right)^{\lambda+1} d A(z) \\
& \gtrsim \limsup _{n \rightarrow \infty} \int_{\mathbb{D}\left(\alpha_{n}, r\right)}\left|g^{\prime}(z)\right|\left(1-|z|^{2}\right)^{-1}\left(1-\left|\varphi_{\alpha_{n}}(z)\right|^{2}\right)^{\lambda+1} d A(z) .
\end{aligned}
$$

Since α_{n} is arbitrary, we obtain that

$$
\left\|T_{g}\right\|_{e, \mathcal{D}_{\lambda, K} \rightarrow \mathcal{D}_{\lambda, K}} \gtrsim \limsup _{n \rightarrow \infty} \int_{\mathbb{D}}\left|g^{\prime}(z)\right|\left(1-|z|^{2}\right)^{-1}\left(1-\left|\varphi_{\alpha_{n}}(z)\right|^{2}\right)^{\lambda+1} d A(z) .
$$

Conversely, Lemma 4.3 yields that $T_{g_{r}}: \mathcal{D}_{\lambda, K} \rightarrow \mathcal{D}_{\lambda, K}$ is compact when $0<r<1$. So

$$
\begin{aligned}
\left\|T_{g}\right\|_{e, \mathcal{D}_{\lambda, K} \rightarrow \mathcal{D}_{\lambda, K}} & \leq\left\|T_{g}-T_{g_{r}}\right\|_{\mathcal{D}_{\lambda, K} \rightarrow \mathcal{D}_{\lambda, K}} \\
& =\left\|T_{g-g_{r}}\right\|_{\mathcal{D}_{\lambda, K} \rightarrow \mathcal{D}_{\lambda, K}} \\
& \lesssim\left\|g-g_{r}\right\|_{F(1,-1, \lambda+1)} .
\end{aligned}
$$

Employing Lemma 4.1, we get that

$$
\begin{aligned}
\left\|T_{g}\right\|_{e, \mathcal{D}_{\lambda, K} \rightarrow \mathcal{D}_{\lambda, K}} & \lesssim \limsup _{r \rightarrow 1}\left\|g-g_{r}\right\|_{F(1,-1, \lambda+1)} \\
& \approx \operatorname{dist}_{F(1,-1, \lambda+1)}\left(g, F_{0}(1,-1, \lambda+1)\right) .
\end{aligned}
$$

We immediately get the following corollary by Theorem 4.4.
Corollary 4.5. Let $-1<\lambda<0$ and K satisfy (1.1) for some $\delta>0$ such that $\delta \leq \lambda+1$. If $g \in H(\mathbb{D})$, then $T_{g}: \mathcal{D}_{\lambda, K} \rightarrow \mathcal{D}_{\lambda, K}$ is compact if and only if $g \in F_{0}(1,-1, \lambda+1)$.
Theorem 4.6. Let $-1<\lambda<0$ and K satisfy (1.1) for some $\delta>0$ such that $\delta \leq \lambda+1$. If $g \in H(\mathbb{D})$ and $I_{g}: \mathcal{D}_{\lambda, K} \rightarrow \mathcal{D}_{\lambda, K}$ is bounded, then

$$
\left\|I_{g}\right\|_{e, \mathcal{D}_{\lambda, K} \rightarrow \mathcal{D}_{\lambda, K}} \approx\|g\|_{H^{\infty}}
$$

Proof. We define S and $\left\{\alpha_{n}\right\}$ as in the proof of Theorem 4.4. Set

$$
F_{n}(z)=\frac{K\left(1-\left|\alpha_{n}\right|^{2}\right)\left(1-\left|\alpha_{n}\right|^{2}\right)^{\lambda+1}}{\bar{\alpha}_{n}\left(1-\bar{\alpha}_{n} z\right)^{2 \lambda+2}}, \quad z \in \mathbb{D}, \alpha_{n} \neq 0 .
$$

Then we have that $\left\|F_{n}\right\|_{\mathcal{D}_{\lambda, K}} \lesssim 1$ by Proposition 2.5. Since $S: \mathcal{D}_{\lambda, K} \rightarrow \mathcal{D}_{\lambda, K}$ is compact, we have that $\lim _{n \rightarrow \infty}\left\|S F_{n}\right\|_{\mathcal{D}_{\lambda, K}}=0$. Thus

$$
\begin{aligned}
\left\|I_{g}-S\right\|_{\mathcal{D}_{\lambda, K} \rightarrow \mathcal{D}_{\lambda, K}} & \gtrsim \limsup _{n \rightarrow \infty}\left\|\left(I_{g}-S\right)\left(F_{n}\right)\right\|_{\mathcal{D}_{\lambda, K}} \\
& \gtrsim \limsup _{n \rightarrow \infty}\left(\left\|I_{g} F_{n}\right\|_{\mathcal{D}_{\lambda, K}}-\left\|S F_{n}\right\|_{\mathcal{D}_{\lambda, K}}\right) \\
& =\limsup _{n \rightarrow \infty}\left\|I_{g} F_{n}\right\|_{\mathcal{D}_{\lambda, K}}
\end{aligned}
$$

From the proof of Theorem 3.3 we obtain that $\left\|I_{g} F_{n}\right\|_{\mathcal{D}_{\lambda, K}} \gtrsim\left|g\left(\alpha_{n}\right)\right|$. Then

$$
\left\|I_{g}\right\|_{e, \mathcal{D}_{\lambda, K} \rightarrow \mathcal{D}_{\lambda, K}} \gtrsim\|g\|_{H^{\infty}}
$$

Conversely, by Theorem 3.3 again, we have that

$$
\begin{aligned}
\left\|I_{g}\right\|_{e, \mathcal{D}_{\lambda, K} \rightarrow \mathcal{D}_{\lambda, K}} & =\inf _{S}\left\|I_{g}-S\right\|_{\mathcal{D}_{\lambda, K} \rightarrow \mathcal{D}_{\lambda, K}} \\
& \lesssim\left\|I_{g}\right\|_{\mathcal{D}_{\lambda, K} \rightarrow \mathcal{D}_{\lambda, K}} \lesssim\|g\|_{H^{\infty}}
\end{aligned}
$$

This finishes the proof.
By Theorem 4.6, we immediately get the following corollary.
Corollary 4.7. Let $-1<\lambda<0$ and K satisfy (1.1) for some $\delta>0$ such that $\delta \leq \lambda+1$. If $g \in H(\mathbb{D})$, then $I_{g}: \mathcal{D}_{\lambda, K} \rightarrow \mathcal{D}_{\lambda, K}$ is compact if and only if $g=0$.

REFERENCES

[1] A. Aleman, A. Siskakis, Integration operators on Bergman spaces, Indiana Univ. Math. J. 46 (1997), 337-356.
[2] D.C. Chang, S. Li, S. Stević, On some integral operators on the unit polydisk and the unit ball, Taiwanese J. Math. 11 (2007), no. 5, 1251-1286.
[3] P. Galanopoulos, N. Merchán, A. Siskakis, A family of Dirichlet-Morrey spaces, Complex Var. Elliptic Equ. 64 (2019), no. 10, 1686-1702.
[4] P. Galindo, M. Lindström, S. Stević, Essential norm of operators into weighted-type spaces on the unit ball, Abstr. Appl. Anal. 2011 (2011), Art. ID 939873, 13 pp.
[5] L. Hu, R. Yang, S. Li, Embedding and Volterra integral operators on a class of Dirichlet-Morrey spaces, AIMS Math. 6 (2021), no. 7, 7782-7797.
[6] L. Hu, R. Yang, S. Li, Dirichlet-Morrey type spaces and Volterra integral operators, J. Nonlinear Var. Anal. 5 (2021), 477-491.
[7] S. Li, S. Stević, Integral type operators from mixed-norm spaces to α-Bloch spaces, Integral Transforms Spec. Funct. 18 (2007), no. 7, 485-493.
[8] S. Li, S. Stević, Compactness of Riemann-Stieltjes operators between $F(p, q, s)$ spaces and α-Bloch spaces, Publ. Math. Debrecen 72 (2008), no. 1-2, 111-128.
[9] S. Li, S. Stević, Riemann-Stieltjes operators between different weighted Bergman spaces, Bull. Belg. Math. Soc. Simon Stevin 15 (2008), no. 4, 677-686.
[10] P. Li, J. Liu, Z. Lou, Integral operators on analytic Morrey spaces, Sci. China Math. 57 (2014), no. 9, 1961-1974.
[11] S. Li, J. Liu, C. Yuan, Embedding theorems for Dirichlet type spaces, Canad. Math. Bull. 63 (2020), no. 1, 106-117.
[12] J. Liu, Z. Lou, Carleson measure for analytic Morrey spaces, Nonlinear Anal. 125 (2015), 423-432.
[13] J. Liu, Z. Lou, Properties of analytic Morrey spaces and applications, Math. Nachr. 288 (2015), 1673-1693.
[14] J. Liu, Z. Lou, K. Zhu, Embedding of Möbius invariant function spaces into tent spaces, J. Geom. Anal. 27 (2017), no. 2, 1013-1028.
[15] X. Liu, S. Li, R. Qian, Volterra integral operators and Carleson embedding on Campanato spaces, J. Nonlinear Var. Anal. 5 (2021), 141-153.
[16] J. Ortega, J. Fàbrega, Pointwise multipliers and corona type decomposition in BMOA, Ann. Inst. Fourier (Grenoble) 46 (1996), no. 1, 111-137.
[17] J. Pau, R. Zhao, Carleson measures, Riemann-Stieltjes and multiplication operators on a general family of function spaces, Integral Equations Operator Theory 78 (2014), no. 4, 483-514.
[18] R. Qian, S. Li, Volterra type operators on Morrey type spaces, Math. Inequal. Appl. 18 (2015), no. 4, 1589-1599.
[19] R. Qian, S. Li, Carleson measure and Volterra type operators on weighted BMOA spaces, Georgian Math. J. 27 (2020), no. 3, 413-424.
[20] R. Qian, X. Zhu, Embedding of Q_{p} spaces into tent spaces and Volterra integral operator, AIMS Math. 6 (2020), 698-711.
[21] B. Sehba, S. Stević, On some product-type operators from Hardy-Orlicz and Bergman-Orlicz spaces to weighted-type spaces, Appl. Math. Comput. 233 (2014), 565-581.
[22] C. Shen, Z. Lou, S. Li, Embedding of BMOA $A_{\log }$ into tent spaces and Volterra integral operators, Comput. Meth. Funct. Theory 20 (2020), 1-18.
[23] Y. Shi, S. Li, Essential norm of integral operators on Morrey type spaces, Math. Ineq. Appl. 19 (2016), no. 1, 385-393.
[24] H.J. Schwartz, Composition operators on H^{p}, PhD Thesis, University of Toledo, 1969.
[25] S. Stević, Essential norms of weighted composition operators from the α-Bloch space to a weighted-type space on the unit ball, Abstr. Appl. Anal. 2008 (2008), Article ID 279691, 11 pp.
[26] S. Stević, On operator P_{φ}^{g} from the logarithmic Bloch-type space to the mixed-norm space on unit ball, Appl. Math. Comput. 215 (2010), no. 12, 4248-4255.
[27] S. Stević, S.I. Ueki, Integral-type operators acting between weighted-type spaces on the unit ball, Appl. Math. Comput. 215 (2009), no. 7, 2464-2471.
[28] F. Sun, H. Wulan, Characterizations of Morrey type spaces, Canad. Math. Bull. Canad. Math. Bull. 65 (2022), no. 2, 328-344.
[29] Z. Wu, C. Xie, Q spaces and Morrey spaces, J. Funct. Anal. 201 (2003), no. 1, 282-297.
[30] H. Wulan, K. Zhu, Möbius Invariant Q_{K} Spaces, Springer, Cham, 2017.
[31] H. Wulan, J. Zhou, Q_{K} and Morrey type spaces, Ann. Acad. Sci. Fenn. Math. 38 (2013), no. 1, 193-207.
[32] J. Xiao, Holomorphic Q Classes, Lecture Notes in Mathematics, vol. 1767, Springer-Verlag, Berlin, 2001.
[33] J. Xiao, W. Xu, Composition operators between analytic Campanato spaces, J. Geom. Anal. 24 (2014), no. 2, 649-666.
[34] J. Xiao, C. Yuan, Analytic Campanato spaces and their compositions, Indiana Univ. Math. J. 64 (2015), no. 4, 1001-1025.
[35] L. Yang, R. Qian, Volterra integral operator and essential norm on Dirichlet type spaces, AIMS Math. 6 (2021), no. 9, 10092-10104.
[36] R. Yang, X. Zhu, Besov-Morrey spaces and Volterra integral operator, Math. Inequal. Appl. 24 (2021), no. 3, 857-871.
[37] R. Zhao, On a general family of function spaces, Ann. Acad. Sci. Fenn. Math. Diss. 105 (1996), 56 pp .
[38] J. Zhou, X. Zhu, Essential norm of a Volterra-type integral operator from Hardy spaces to some analytic function spaces, J. Integral Equations Appl. 28 (2016), no. 4, 581-593.
[39] K. Zhu, Operator Theory in Function Spaces, 2nd ed., American Mathematical Society, Providence, 2007.

Lian Hu
hl152808@163.com

Institute of Fundamental and Frontier Sciences
University of Electronic Science and Technology of China 610054, Chengdu, Sichuan, P.R. China

Xiaosong Liu (corresponding author)
gdxsliu@163.com
Department of Mathematics
JiaYing University
514015, Meizhou, Guangdong, P.R. China
Received: April 11, 2023.
Revised: May 17, 2023.
Accepted: May 18, 2023.

