VOLTERRA INTEGRAL OPERATORS ON A FAMILY OF DIRICHLET–MORREY SPACES

Lian Hu and Xiaosong Liu

Communicated by Stevo Stević

Abstract. A family of Dirichlet–Morrey spaces $\mathcal{D}_{\lambda,K}$ of functions analytic in the open unit disk $\mathbb D$ are defined in this paper. We completely characterize the boundedness of the Volterra integral operators T_g , I_g and the multiplication operator M_g on the space $\mathcal{D}_{\lambda,K}$. In addition, the compactness and essential norm of the operators T_g and I_g on $\mathcal{D}_{\lambda,K}$ are also investigated.

Keywords: Dirichlet–Morrey type space, Carleson measure, Volterra integral operators, bounded operator, essential norm.

Mathematics Subject Classification: 30H99, 47B38.

1. INTRODUCTION

Let $\mathbb D$ be the open unit disc in the complex plane and $H(\mathbb D)$ be the set of all analytic functions in $\mathbb D$. Let H^∞ denote the space of all bounded analytic functions. For $\lambda > -1$, $0 , a function <math>f \in H(\mathbb D)$ belongs to the weighted Dirichlet space $\mathcal D^p_\lambda$ if

$$||f||_{\mathcal{D}^p_{\lambda}} = |f(0)| + \left(\int_{\mathbb{D}} |f'(z)|^p (1-|z|^2)^{\lambda} dA(z)\right)^{1/p} < \infty,$$

where dA denotes the normalized area measure on \mathbb{D} . When $\lambda = 1$, p = 2, the space \mathcal{D}^p_{λ} coincides with the classical Hardy space H^2 . When $\lambda = p$, the space \mathcal{D}^p_{λ} becomes the Bergman space, denoted by A^p .

Let $0 and <math>0 \le s < \infty$. A function $f \in H(\mathbb{D})$ belongs to the space F(p,q,s) if

$$||f||_{F(p,q,s)} = |f(0)| + \sup_{\alpha \in \mathbb{D}} \left(\int_{\mathbb{D}} |f'(z)|^p (1 - |z|^2)^q (1 - |\varphi_{\alpha}(z)|^2)^s dA(z) \right)^{1/p} < \infty,$$

where $\varphi_{\alpha} = \frac{\alpha - z}{1 - \bar{\alpha}z}$ is a Möbius map that interchanges 0 and α . The space F(p,q,s) was introduced by Zhao in [37]. From [37], when q = p - 2, the space F(p,p-2,s) coincides with the Bloch space \mathcal{B} if s > 1. Furthermore, F(p,p-2,0) is just the Besov space B_p . When p = 2, the space F(p,p-2,s) becomes the Q_s space (see [32]). In particular, F(2,0,1) is the BMOA space, the set of all analytic functions of bounded mean oscillation.

For $0 , <math>-2 < q < \infty$ and $0 \le s < \infty$, a function $f \in F(p,q,s)$ belongs to the little space $F_0(p,q,s)$ if

$$\lim_{|\alpha| \to 1} \int_{\mathbb{D}} |f'(z)|^p (1 - |z|^2)^q (1 - |\varphi_{\alpha}(z)|^2)^s dA(z) = 0.$$

Let $g, f \in H(\mathbb{D})$. The Volterra integral operator T_g and its associated operator I_g are defined by

$$T_g f(z) = \int_0^z f(\zeta) g'(\zeta) d\zeta, \quad I_g f(z) = \int_0^z f'(\zeta) g(\zeta) d\zeta, \quad z \in \mathbb{D}.$$

Obviously, $T_g f(z) = M_g f(z) - I_g f(z) - f(0)g(0)$, where $M_g f(z) = f(z)g(z)$ is the multiplication operator. These integral operators, as well as their various generalizations have attracted attention of many authors (see, e.g., [1–11, 15, 17–23, 26–28, 36] and the related references therein).

For any arc $I \subset \partial \mathbb{D}$, let $|I| = \frac{1}{\pi} \int_I |d\xi|$ be the normalized arc length of I and

$$S(I) = \{z = re^{i\theta} \in \mathbb{D} : 1 - |I| \le r < 1, e^{i\theta} \in I\}$$

be the Carleson box based on I. For $0 < s < \infty$, we say that a positive Borel measure μ on \mathbb{D} is an s-Carleson measure if (see [17])

$$\|\mu\|_s = \sup_{I \subset \partial \mathbb{D}} \frac{\mu(S(I))}{|I|^s} < \infty.$$

For $0 \le \lambda \le 1$, a function $f \in H^2(\mathbb{D})$ belongs to the analytic Morrey space $\mathcal{L}^{2,\lambda}(\mathbb{D})$, which was introduced by Wu and Xie in [29], if

$$\sup_{I\subset\partial\mathbb{D}}\frac{1}{|I|^{\lambda}}\int_{I}|f(\eta)-f_{I}|^{2}\frac{|d\eta|}{2\pi}<\infty,$$

where

$$f_I = \frac{1}{|I|} \int_I f(\eta) \frac{|d\eta|}{2\pi}.$$

Li, Liu and Lou showed that T_g is bounded on Morrey space $\mathcal{L}^{2,\lambda}(\mathbb{D})$ if and only if $g \in BMOA$ for $0 < \lambda < 1$ in [10]. Let $K : [0, \infty) \to [0, \infty)$ be a nondecreasing and

right-continuous function, not identically equal to zero. In [28], Sun and Wulan defined a Morrey type space \mathcal{D}_K^s , which consists of all functions $f \in H(\mathbb{D})$ such that

$$||f||_{\mathcal{D}_{K}^{s}}^{2} = |f(0)|^{2} + \sup_{\alpha \in \mathbb{D}} \frac{(1 - |\alpha|^{2})^{s}}{K(1 - |\alpha|^{2})} ||f \circ \varphi_{\alpha} - f(\alpha)||_{\mathcal{D}_{s}^{2}}^{2} < \infty.$$

They found some sufficient and necessary conditions for the identity operator I_d from \mathcal{D}_K^s to $\mathcal{T}_K^s(\mu)$ to be bounded. Here $\mathcal{T}_K^s(\mu)$ is the set of all $f \in H(\mathbb{D})$ such that

$$||f||_{\mathcal{T}_{K}^{s}(\mu)}^{2} = \sup_{\alpha \in \mathbb{D}} \frac{1}{K(1 - |\alpha|^{2})} \int_{\mathbb{D}} |f(z) - f(\alpha)|^{2} \left(\frac{1 - |\alpha|^{2}}{|1 - \bar{\alpha}z|}\right)^{2s} d\mu(z) < \infty,$$

where $0 < s < \infty$ and μ is a positive Borel measure on \mathbb{D} . Morrey type spaces have received lots of attention and studied by many authors. See [3,12,13,18,28,29,31,33,34] and the references therein for more results on Morrey type spaces.

Motivated by [28], in this paper we define a new Morrey type space $\mathcal{D}_{\lambda,K}$ as follows: for $-1 < \lambda < 0$, the Dirichlet–Morrey type space $\mathcal{D}_{\lambda,K}$ is defined as the space of all functions $f \in H(\mathbb{D})$ such that

$$||f||_{\mathcal{D}_{\lambda,K}} = |f(0)| + \sup_{\alpha \in \mathbb{D}} \frac{(1 - |\alpha|^2)^{\lambda + 1}}{K(1 - |\alpha|^2)} ||f \circ \varphi_{\alpha} - f(\alpha)||_{\mathcal{D}_{\lambda}^1} < \infty.$$

For 0 < s < 1, if $K(x) = x^{(\lambda+1)s}$, the space $\mathcal{D}_{\lambda,K}$ coincides with the Dirichlet–Morrey space $\mathcal{D}_{\lambda,s}$ (see [5]).

In this paper, we always suppose that the following condition on K holds (see [30]):

$$\int_{1}^{\infty} \frac{\varphi_K(x)}{x^{1+\delta}} dx < \infty, \quad \delta > 0, \tag{1.1}$$

where

$$\varphi_K(x) = \sup_{0 < s \le 1} \frac{K(sx)}{K(s)}, \quad 0 < x < \infty.$$

Obviously, $K(x) = x^p$ satisfies inequality (1.1) for 0 .

This paper is organized as follows: Section 2 characterizes some properties for the Dirichlet–Morrey space $\mathcal{D}_{\lambda,K}$. The boundedness of the Volterra integral operators T_g , I_g and the multiplication operator M_g on the space $\mathcal{D}_{\lambda,K}$ is given in Section 3. In the last section, we study the essential norm of the operators T_g and I_g .

For two quantities A and B, we use the abbreviation $A \lesssim B$ whenever there is a positive constant C (independent of the associated variables) such that $A \leq CB$. We write $A \approx B$, if $A \lesssim B \lesssim A$.

2. SOME BASIC PROPERTIES

In this section, some basic properties of the space $\mathcal{D}_{\lambda,K}$ are given. First, we state two lemmas as follows.

Lemma 2.1 ([16, Lemma 2.5]). Let r, t > 0, s > -1 and t + r - s > 2. If t < 2 + s < r, then

$$\int_{\mathbb{D}} \frac{(1-|z|^2)^s}{|1-\bar{\alpha}z|^r |1-\bar{\beta}z|^t} dA(z) \lesssim \frac{1}{(1-|\alpha|^2)^{r-s-2} |1-\bar{\alpha}\beta|^t}$$

for any $\alpha, \beta \in \mathbb{D}$.

Lemma 2.2 ([28, Remark 2.1]). Let $0 < \alpha \le \beta < \infty$ and K satisfy (1.1) for some $\delta > 0$. Then for all sufficiently small positive constants $\varepsilon < \delta$,

$$\frac{K(\beta)}{K(\alpha)} \le \left(\frac{\beta}{\alpha}\right)^{\delta - \varepsilon} \le \left(\frac{\beta}{\alpha}\right)^{\delta}.$$

Proposition 2.3. Let $-1 < \lambda < 0$. Then $\mathcal{D}_{\lambda,K} \subseteq \mathcal{D}^1_{\lambda}$. Moreover, $\mathcal{D}_{\lambda,K} = \mathcal{D}^1_{\lambda}$ if and only if K(0) > 0.

Proof. Let $f \in \mathcal{D}_{\lambda,K}$. Using the change of variables $w = \varphi_{\alpha}(z)$,

$$\infty > \sup_{\alpha \in \mathbb{D}} \frac{(1 - |\alpha|^2)^{\lambda + 1}}{K(1 - |\alpha|^2)} \| f \circ \varphi_{\alpha} - f(\alpha) \|_{\mathcal{D}_{\lambda}^{1}} \\
= \sup_{\alpha \in \mathbb{D}} \frac{(1 - |\alpha|^2)^{\lambda + 1}}{K(1 - |\alpha|^2)} \int_{\mathbb{D}} |(f \circ \varphi_{\alpha})'(z)| (1 - |z|^2)^{\lambda} dA(z) \\
= \sup_{\alpha \in \mathbb{D}} \frac{(1 - |\alpha|^2)^{\lambda + 1}}{K(1 - |\alpha|^2)} \int_{\mathbb{D}} |f'(w)| (1 - |w|^2)^{-1} (1 - |\varphi_{\alpha}(w)|^2)^{\lambda + 1} dA(w) \\
\ge \frac{1}{K(1)} \int_{\mathbb{D}} |f'(w)| (1 - |w|^2)^{-1} (1 - |w|^2)^{\lambda + 1} dA(w) \\
\gtrsim \int_{\mathbb{D}} |f'(w)| (1 - |w|^2)^{\lambda} dA(w).$$

So $f \in \mathcal{D}^1_{\lambda}$, that is, $\mathcal{D}_{\lambda,K} \subseteq \mathcal{D}^1_{\lambda}$.

Next, we prove that $\mathcal{D}_{\lambda,K} = \mathcal{D}^1_{\lambda}$ if and only if K(0) > 0. First, we suppose that $f \in \mathcal{D}^1_{\lambda}$ and K(0) > 0. Using the monotonicity of K, we obtain that

$$\sup_{\alpha \in \mathbb{D}} \frac{(1 - |\alpha|^2)^{\lambda + 1}}{K(1 - |\alpha|^2)} \| f \circ \varphi_{\alpha} - f(\alpha) \|_{\mathcal{D}_{\lambda}^{1}}$$

$$\lesssim \frac{1}{K(0)} \int_{\mathbb{D}} |f'(z)| (1 - |z|^2)^{\lambda} \frac{(1 - |\alpha|^2)^{2\lambda + 2}}{|1 - \bar{\alpha}z|^{2\lambda + 2}} dA(z)$$

$$\lesssim \int_{\mathbb{D}} |f'(z)| (1 - |z|^2)^{\lambda} dA(z) < \infty.$$

Therefore, $f \in \mathcal{D}_{\lambda,K}$. Furthermore, $\mathcal{D}_{\lambda,K} = \mathcal{D}_{\lambda}^1$.

Conversely, assume that $\mathcal{D}_{\lambda,K} = \mathcal{D}^1_{\lambda}$. For any $\gamma \in \mathbb{D}$, consider the function

$$f_{\gamma}(z) = (1 - |\gamma|^2) \int_{0}^{z} \frac{dw}{(1 - \bar{\gamma}w)^{3+\lambda}}, \quad z \in \mathbb{D}.$$

Applying Lemma 3.10 in [39], we get

$$||f_{\gamma}||_{\mathcal{D}^{1}_{\lambda}} \approx \int_{\mathbb{D}} |f'_{\gamma}(z)|(1-|z|^{2})^{\lambda} dA(z) = \int_{\mathbb{D}} \frac{(1-|\gamma|^{2})}{|1-\bar{\gamma}z|^{3+\lambda}} (1-|z|^{2})^{\lambda} dA(z) \approx 1.$$

Thus, $f_{\gamma} \in \mathcal{D}^{1}_{\lambda}$. Then

$$\infty > \|f_{\gamma}\|_{\mathcal{D}_{\lambda}^{1}} \gtrsim \|f_{\gamma}\|_{\mathcal{D}_{\lambda,K}}
\approx \sup_{\alpha \in \mathbb{D}} \frac{(1 - |\alpha|^{2})^{\lambda+1}}{K(1 - |\alpha|^{2})} \int_{\mathbb{D}} |f_{\gamma}'(z)| (1 - |z|^{2})^{-1} (1 - |\varphi_{\alpha}(z)|^{2})^{\lambda+1} dA(z)
\gtrsim \frac{(1 - |\gamma|^{2})^{\lambda+1}}{K(1 - |\gamma|^{2})} \int_{\mathbb{D}} |f_{\gamma}'(z)| (1 - |z|^{2})^{-1} (1 - |\varphi_{\gamma}(z)|^{2})^{\lambda+1} dA(z)
\approx \frac{1}{K(1 - |\gamma|^{2})},$$

which implies that K(0) > 0.

Proposition 2.4. Let $-1 < \lambda < 0$ and K satisfy (1.1). Then $\mathcal{D}_{\lambda,K} = F(1,-1,\lambda+1)$ if and only if $K(x) \approx x^{\lambda+1}$.

Proof. Since

$$||f||_{F(1,-1,\lambda+1)} \approx \sup_{\alpha \in \mathbb{D}} ||f \circ \varphi_{\alpha} - f(\alpha)||_{\mathcal{D}^{1}_{\lambda}} \lesssim \frac{K(1-|\alpha|^{2})}{(1-|\alpha|^{2})^{\lambda+1}} ||f||_{\mathcal{D}_{\lambda,K}}, \quad \alpha \in \mathbb{D},$$

and

$$||f||_{\mathcal{D}_{\lambda,K}} \lesssim \sup_{\alpha \in \mathbb{D}} \frac{(1-|\alpha|^2)^{\lambda+1}}{K(1-|\alpha|^2)} ||f||_{F(1,-1,\lambda+1)},$$

the desired result follows immediately.

Proposition 2.5. Let $-1 < \lambda < 0$, $\gamma \in \mathbb{D}$ and K satisfy (1.1) for some $\delta > 0$ such that $\delta \leq 2\lambda + 2$. Then the function

$$f_{\gamma}(z) = \frac{K(1-|\gamma|^2)(1-|\gamma|^2)^{\lambda+1}}{(1-\bar{\gamma}z)^{2\lambda+2}}, \quad z \in \mathbb{D},$$

belongs to $\mathcal{D}_{\lambda,K}$.

Proof. Using Lemmas 2.1 and 2.2, we have that

$$\begin{split} \sup_{\alpha\in\mathbb{D}} \frac{(1-|\alpha|^2)^{\lambda+1}}{K(1-|\alpha|^2)} &\int\limits_{\mathbb{D}} |f_\gamma'(z)| (1-|z|^2)^{-1} (1-|\varphi_\alpha(z)|^2)^{\lambda+1} dA(z) \\ &\approx \sup_{\alpha\in\mathbb{D}} \frac{(1-|\alpha|^2)^{2\lambda+2} K(1-|\gamma|^2) (1-|\gamma|^2)^{\lambda+1}}{K(1-|\alpha|^2)} &\int\limits_{\mathbb{D}} \frac{(1-|z|^2)^{\lambda}}{|1-\bar{\gamma}z|^{2\lambda+3} |1-\bar{\alpha}z|^{2\lambda+2}} dA(z) \\ &\lesssim \sup_{\alpha\in\mathbb{D}} \frac{(1-|\alpha|^2)^{2\lambda+2} K(1-|\gamma|^2) (1-|\gamma|^2)^{\lambda+1}}{K(1-|\alpha|^2)} &\frac{1}{(1-|\gamma|^2)^{\lambda+1} |1-\bar{\alpha}\gamma|^{2\lambda+2}} \\ &\lesssim \sup_{\alpha\in\mathbb{D}} \frac{K(1-|\gamma|^2)}{K(1-|\alpha|^2)} \left(\frac{1-|\alpha|^2}{|1-\bar{\alpha}\gamma|}\right)^{2\lambda+2} \\ &\lesssim \sup_{\alpha\in\mathbb{D}} \left(\frac{1-|\alpha|^2}{|1-\bar{\alpha}\gamma|}\right)^{2\lambda+2-\delta} \lesssim 1, \end{split}$$

which means that $f_{\gamma} \in \mathcal{D}_{\lambda,K}$.

Proposition 2.6. Let $-1 < \lambda < 0$ and K satisfy (1.1) for some $\delta > 0$ such that $\delta \leq \lambda + 1$. Then for any $f \in \mathcal{D}_{\lambda,K}$,

$$|f(\alpha)| \lesssim \frac{K(1-|\alpha|^2)}{(1-|\alpha|^2)^{\lambda+1}} ||f||_{\mathcal{D}_{\lambda,K}}, \quad \alpha \in \mathbb{D}.$$

Proof. It is obvious that

$$|f'(\alpha)| \lesssim \frac{1}{(1-|\alpha|^2)} \int_{\mathbb{D}(\alpha,r)} |f'(z)| (1-|z|^2)^{-1} dA(z)$$

$$\lesssim \frac{1}{(1-|\alpha|^2)} \int_{\mathbb{D}} |f'(z)| (1-|z|^2)^{-1} (1-|\varphi_{\alpha}(z)|^2)^{\lambda+1} dA(z)$$

$$\lesssim \frac{K(1-|\alpha|^2)}{(1-|\alpha|^2)^{\lambda+2}} ||f||_{\mathcal{D}_{\lambda,K}}.$$

Then Lemma 2.2 yields that there exists a constant $c \in (0, \delta)$ such that

$$|f(\alpha) - f(0)| = \left| \alpha \int_{0}^{1} f'(\alpha z) dz \right| \lesssim ||f||_{\mathcal{D}_{\lambda,K}} \int_{0}^{1} \frac{|\alpha|K(1 - |\alpha z|^{2})}{(1 - |\alpha z|^{2})^{\lambda + 2}} dz$$

$$\lesssim ||f||_{\mathcal{D}_{\lambda,K}} \frac{K(1 - |\alpha|)}{(1 - |\alpha|)^{\delta - c}} \int_{0}^{1} (1 - |\alpha z|)^{\delta - c - \lambda - 2} |\alpha| dz$$

$$\lesssim \frac{K(1 - |\alpha|)}{(1 - |\alpha|)^{\lambda + 1}} ||f||_{\mathcal{D}_{\lambda,K}},$$

which implies the desired result.

3. BOUNDEDNESS

In this section, we characterize the boundedness of Volterra integral operators T_g and I_g on the space $\mathcal{D}_{\lambda,K}$. We begin this section with the definition of p-Carleson measure for \mathcal{D}^1_{λ} . For $-1 < \lambda < 0 < p < \infty$, a positive Borel measure μ on \mathbb{D} is called a p-Carleson measure for \mathcal{D}^1_{λ} if for any $f \in \mathcal{D}^1_{\lambda}$, the identity operator $I_d : \mathcal{D}^1_{\lambda} \to L^p(d\mu)$ is bounded, that is, there exists a positive constant C such that

$$\int_{\mathbb{D}} |f(z)|^p d\mu(z) \le C \|f\|_{\mathcal{D}_{\lambda}^1}^p$$

for all functions $f \in \mathcal{D}^1_{\lambda}$. Using Theorem 9 in [14], we immediately obtain the following result.

Lemma 3.1. Let $-1 < \lambda < 0$ and μ be a positive Borel measure on \mathbb{D} . Then μ is a $(\lambda + 1)$ -Carleson measure if and only if μ is a 1-Carleson measure for \mathcal{D}^1_{λ} , that is, for all functions $f \in \mathcal{D}^1_{\lambda}$,

$$\int_{\mathbb{D}} |f(z)| d\mu(z) \lesssim |f(0)| + \int_{\mathbb{D}} |f'(z)| (1 - |z|^2)^{\lambda} dA(z) \approx ||f||_{\mathcal{D}^{1}_{\lambda}}.$$

The following theorem is the main result in this section.

Theorem 3.2. Let $-1 < \lambda < 0$ and K satisfy (1.1) for some $\delta > 0$ such that $\delta \leq \lambda + 1$. Then $T_q : \mathcal{D}_{\lambda,K} \to \mathcal{D}_{\lambda,K}$ is bounded if and only if

$$q \in F(1, -1, \lambda + 1).$$

Proof. First, assume that $T_g: \mathcal{D}_{\lambda,K} \to \mathcal{D}_{\lambda,K}$ is bounded. For each fixed arc $I \subset \partial \mathbb{D}$, let $\gamma = (1 - |I|)\xi$, ξ be the midpoint of I. Then for $z \in S(I)$,

$$|1 - \bar{\gamma}z| \approx 1 - |\gamma|^2 \approx |I| = 1 - |\gamma|.$$

Consider the test function f_{γ} , defined in Proposition 2.5. Then

$$\infty > \sup_{\alpha \in \mathbb{D}} \frac{(1 - |\alpha|^2)^{\lambda + 1}}{K(1 - |\alpha|^2)} \int_{\mathbb{D}} |(T_g f_{\gamma})'(z)| (1 - |z|^2)^{-1} (1 - |\varphi_{\alpha}(z)|^2)^{\lambda + 1} dA(z)
\approx \sup_{\alpha \in \mathbb{D}} \frac{(1 - |\alpha|^2)^{\lambda + 1}}{K(1 - |\alpha|^2)} \int_{\mathbb{D}} |f_{\gamma}(z)| |g'(z)| (1 - |z|^2)^{-1} (1 - |\varphi_{\alpha}(z)|^2)^{\lambda + 1} dA(z)
\gtrsim \frac{1}{|I|^{\lambda + 1}} \int_{S(I)} |g'(z)| (1 - |z|^2)^{\lambda} dA(z),$$

which implies that $g \in F(1, -1, \lambda + 1)$ (see [37]).

Conversely, suppose that $g \in F(1, -1, \lambda + 1)$. Then

$$d\mu_q = |g'(z)|(1 - |z|^2)^{\lambda} dA(z)$$

is a $(\lambda + 1)$ -Carleson measure (see [37]). Let $f \in \mathcal{D}_{\lambda,K}$. For each fixed arc $I \subset \partial \mathbb{D}$, let $\alpha = (1 - |I|)\xi$, ξ be the midpoint of I. Then

$$\begin{split} \|T_g f\|_{\mathcal{D}_{\lambda,K}} &\approx \sup_{a \in \mathbb{D}} \frac{(1-|a|^2)^{\lambda+1}}{K(1-|a|^2)} \\ &\times \int_{\mathbb{D}} |(T_g f)'(z)| (1-|z|^2)^{-1} (1-|\varphi_a(z)|^2)^{\lambda+1} dA(z) \\ &\approx \sup_{a \in \mathbb{D}} \frac{(1-|a|^2)^{\lambda+1}}{K(1-|a|^2)} \\ &\times \int_{\mathbb{D}} |f(z)| |g'(z)| (1-|z|^2)^{-1} (1-|\varphi_a(z)|^2)^{\lambda+1} dA(z) \\ &\lesssim \sup_{a \in \mathbb{D}} \frac{1}{K(1-|a|^2)} \int_{\mathbb{D}} |f(z)-f(a)| \left(\frac{1-|a|^2}{|1-\bar{a}z|}\right)^{2\lambda+2} d\mu_g(z) \\ &+ \sup_{a \in \mathbb{D}} \frac{(1-|a|^2)^{\lambda+1}}{K(1-|a|^2)} \\ &\times \int_{\mathbb{D}} |f(a)| |g'(z)| (1-|z|^2)^{-1} (1-|\varphi_a(z)|^2)^{\lambda+1} dA(z) \\ &\lesssim E+F. \end{split}$$

Proposition 2.6 yields that

$$\begin{split} F &\lesssim \|f\|_{\mathcal{D}_{\lambda,K}} \sup_{a \in \mathbb{D}} \frac{(1-|a|^2)^{\lambda+1}}{K(1-|a|^2)} \\ &\times \int\limits_{\mathbb{D}} \frac{K(1-|a|^2)}{(1-|a|^2)^{\lambda+1}} |g'(z)| (1-|z|^2)^{-1} (1-|\varphi_a(z)|^2)^{\lambda+1} dA(z) \\ &\lesssim \|f\|_{\mathcal{D}_{\lambda,K}} \|g\|_{F(1,-1,\lambda+1)}. \end{split}$$

Next, we need to prove that

$$E \lesssim ||f||_{\mathcal{D}_{\lambda,K}}.$$

For this purpose, we consider the function

$$F_{\alpha,K}(z) = \frac{(1 - |\alpha|^2)^{2\lambda + 2} (f(z) - f(\alpha))}{K(1 - |\alpha|^2)(1 - \bar{\alpha}z)^{2\lambda + 2}}, \quad \alpha, z \in \mathbb{D}.$$

We will prove that $F_{\alpha,K} \in \mathcal{D}^1_{\lambda}$ and $\sup_{\alpha \in \mathbb{D}} \|F_{\alpha,K}\|_{\mathcal{D}^1_{\lambda}} \lesssim \|f\|_{\mathcal{D}_{\lambda,K}}$. It is obvious that

$$\sup_{\alpha \in \mathbb{D}} \|F_{\alpha,K}\|_{\mathcal{D}_{\lambda}^{1}} = \sup_{\alpha \in \mathbb{D}} \frac{(1 - |\alpha|^{2})^{2\lambda + 2}}{K(1 - |\alpha|^{2})}
\times \left(|f(\alpha) - f(0)| + \int_{\mathbb{D}} \left| \left(\frac{f(z) - f(\alpha)}{(1 - \bar{\alpha}z)^{2\lambda + 2}} \right)' \right| (1 - |z|^{2})^{\lambda} dA(z) \right)
= \sup_{\alpha \in \mathbb{D}} \frac{(1 - |\alpha|^{2})^{2\lambda + 2}}{K(1 - |\alpha|^{2})} |f(\alpha) - f(0)| + G,$$

where

$$G = \sup_{\alpha \in \mathbb{D}} \frac{(1 - |\alpha|^2)^{2\lambda + 2}}{K(1 - |\alpha|^2)} \int_{\mathbb{D}} \left| \left(\frac{f(z) - f(\alpha)}{(1 - \bar{\alpha}z)^{2\lambda + 2}} \right)' \right| (1 - |z|^2)^{\lambda} dA(z).$$

Applying Proposition 2.6, we obtain that

$$\sup_{\alpha \in \mathbb{D}} \frac{(1-|\alpha|^2)^{2\lambda+2}}{K(1-|\alpha|^2)} |f(\alpha)-f(0)| \lesssim \sup_{\alpha \in \mathbb{D}} (1-|\alpha|^2)^{\lambda+1} ||f||_{\mathcal{D}_{\lambda,K}} \lesssim ||f||_{\mathcal{D}_{\lambda,K}}.$$

For the second term, we have that

$$G \lesssim \sup_{\alpha \in \mathbb{D}} \frac{(1 - |\alpha|^2)^{2\lambda + 2}}{K(1 - |\alpha|^2)} \int_{\mathbb{D}} \left| \frac{f'(z)}{(1 - \bar{\alpha}z)^{2\lambda + 2}} \right| (1 - |z|^2)^{\lambda} dA(z)$$

$$+ \sup_{\alpha \in \mathbb{D}} \frac{(1 - |\alpha|^2)^{2\lambda + 2}}{K(1 - |\alpha|^2)} \int_{\mathbb{D}} \left| \frac{f(z) - f(\alpha)}{(1 - \bar{\alpha}z)^{2\lambda + 3}} \right| (1 - |z|^2)^{\lambda} dA(z) = G_1 + G_2.$$

It is obvious that

$$G_1 = \sup_{\alpha \in \mathbb{D}} \frac{(1 - |\alpha|^2)^{\lambda + 1}}{K(1 - |\alpha|^2)} \int_{\mathbb{D}} |f'(z)| (1 - |z|^2)^{-1} (1 - |\varphi_{\alpha}(z)|^2)^{\lambda + 1} dA(z) \lesssim ||f||_{\mathcal{D}_{\lambda, K}}.$$

By the change of variables $z = \varphi_{\alpha}(w)$, we get that

$$G_{2} = \sup_{\alpha \in \mathbb{D}} \frac{(1 - |\alpha|^{2})^{\lambda + 1}}{K(1 - |\alpha|^{2})} \int_{\mathbb{D}} |f(z) - f(\alpha)| \frac{(1 - |z|^{2})^{-1}}{|1 - \bar{\alpha}z|} (1 - |\varphi_{\alpha}(z)|^{2})^{\lambda + 1} dA(z)$$

$$= \sup_{\alpha \in \mathbb{D}} \frac{(1 - |\alpha|^{2})^{\lambda + 1}}{K(1 - |\alpha|^{2})} \int_{\mathbb{D}} |f \circ \varphi_{\alpha}(w) - f(\alpha)| \frac{(1 - |w|^{2})^{\lambda}}{|1 - \bar{\alpha}w|} dA(w).$$

It is well known that

$$|f\circ \varphi_{\alpha}(z)-f(\alpha)|\lesssim \int\limits_{\mathbb{D}}|(f\circ \varphi_{\alpha})'(u)|rac{(1-|u|^2)^2}{|1-ar{u}z|^3}dA(u).$$

Therefore, employing Fubini's theorem and Lemma 2.1, we have

$$\begin{split} G_2 &\lesssim \sup_{\alpha \in \mathbb{D}} \frac{(1-|\alpha|^2)^{\lambda+1}}{K(1-|\alpha|^2)} \int\limits_{\mathbb{D}} \int\limits_{\mathbb{D}} |(f \circ \varphi_\alpha)'(u)| \frac{(1-|u|^2)^2}{|1-\bar{u}z|^3} dA(u) \frac{(1-|z|^2)^{\lambda}}{|1-\bar{\alpha}z|} dA(z) \\ &\lesssim \sup_{\alpha \in \mathbb{D}} \frac{(1-|\alpha|^2)^{\lambda+1}}{K(1-|\alpha|^2)} \int\limits_{\mathbb{D}} |(f \circ \varphi_\alpha)'(u)| (1-|u|^2)^2 dA(u) \\ &\times \int\limits_{\mathbb{D}} \frac{(1-|z|^2)^{\lambda}}{|1-\bar{u}z|^3|1-\bar{\alpha}z|} dA(z) \\ &\lesssim \sup_{\alpha \in \mathbb{D}} \frac{(1-|\alpha|^2)^{\lambda+1}}{K(1-|\alpha|^2)} \int\limits_{\mathbb{D}} |(f \circ \varphi_\alpha)'(u)| (1-|u|^2)^2 \frac{1}{(1-|u|^2)^{1-\lambda}|1-\bar{\alpha}u|} dA(u) \\ &\lesssim \sup_{\alpha \in \mathbb{D}} \frac{(1-|\alpha|^2)^{\lambda+1}}{K(1-|\alpha|^2)} \int\limits_{\mathbb{D}} |(f \circ \varphi_\alpha)'(u)| (1-|u|^2)^{\lambda} dA(u) \\ &\lesssim \|f\|_{\mathcal{D}_{\lambda,K}}. \end{split}$$

Thus, we see that $F_{\alpha,K} \in \mathcal{D}^1_{\lambda}$ and $\sup_{\alpha \in \mathbb{D}} \|F_{\alpha,K}\|_{\mathcal{D}^1_{\lambda}} \lesssim \|f\|_{\mathcal{D}_{\lambda,K}}$. Since μ_g is a $(\lambda + 1)$ -Carleson measure, using Lemma 3.1, we obtain that

$$E = \sup_{\alpha \in \mathbb{D}} \int_{\mathbb{D}} |F_{\alpha,K}| d\mu_g(z) \le C \sup_{\alpha \in \mathbb{D}} ||F_{\alpha,K}||_{\mathcal{D}^1_{\lambda}} \lesssim ||f||_{\mathcal{D}_{\lambda,K}}.$$

This means that $T_g: \mathcal{D}_{\lambda,K} \to \mathcal{D}_{\lambda,K}$ is bounded.

Theorem 3.3. Let $-1 < \lambda < 0$ and K satisfy (1.1) for some $\delta > 0$ such that $\delta \leq \lambda + 1$. Then $I_g : \mathcal{D}_{\lambda,K} \to \mathcal{D}_{\lambda,K}$ is bounded if and only if $g \in H^{\infty}$.

Proof. First, suppose that $I_g: \mathcal{D}_{\lambda,K} \to \mathcal{D}_{\lambda,K}$ is bounded. For r > 0 and each $\gamma \in \mathbb{D}$, let $\mathbb{D}(\gamma,r)$ be the Bergman metric disc centered at γ with radius r, that is, $\mathbb{D}(\gamma,r) = \{z \in \mathbb{D} : \beta(\gamma,z) < r\}$. From [39] we have

$$\frac{(1-|\gamma|^2)^2}{|1-\bar{\gamma}z|^4} \approx \frac{1}{(1-|\gamma|^2)^2} \approx \frac{1}{(1-|z|^2)^2}, \quad z \in \mathbb{D}(\gamma, r).$$

Consider the function

$$f_{\gamma}(z) = \frac{K(1-|\gamma|^2)(1-|\gamma|^2)^{\lambda+1}}{\bar{\gamma}(1-\bar{\gamma}z)^{2\lambda+2}}, \quad \gamma, z \in \mathbb{D}.$$

Clearly, $f_{\gamma} \in \mathcal{D}_{\lambda,K}$ by Proposition 2.5. By the assumption we obtain that

$$\infty > \sup_{\alpha \in \mathbb{D}} \frac{(1 - |\alpha|^2)^{\lambda + 1}}{K(1 - |\alpha|^2)} \int_{\mathbb{D}} |(I_g f_{\gamma})'(z)| (1 - |z|^2)^{-1} (1 - |\varphi_{\alpha}(z)|^2)^{\lambda + 1} dA(z)
\gtrsim \frac{(1 - |\gamma|^2)^{\lambda + 1}}{K(1 - |\gamma|^2)} \int_{\mathbb{D}} |f_{\gamma}'(z)| |g(z)| (1 - |z|^2)^{-1} (1 - |\varphi_{\gamma}(z)|^2)^{\lambda + 1} dA(z)
\approx \int_{\mathbb{D}} \frac{(1 - |\gamma|^2)^{2\lambda + 2}}{|1 - \bar{\gamma}z|^{2\lambda + 3}} |g(z)| (1 - |z|^2)^{-1} (1 - |\varphi_{\gamma}(z)|^2)^{\lambda + 1} dA(z)
\gtrsim \frac{1}{(1 - |\gamma|^2)} \int_{\mathbb{D}(\gamma, r)} |g(z)| (1 - |z|^2)^{-1} dA(z) \gtrsim |g(\gamma)|.$$

The arbitrariness of γ implies $g \in H^{\infty}$.

Conversely, we suppose that $g \in H^{\infty}$. Let $f \in \mathcal{D}_{\lambda,K}$. Then

$$||I_{g}f||_{\mathcal{D}_{\lambda,K}} \approx \sup_{\alpha \in \mathbb{D}} \frac{(1 - |\alpha|^{2})^{\lambda+1}}{K(1 - |\alpha|^{2})}$$

$$\times \int_{\mathbb{D}} |(I_{g}f)'(z)|(1 - |z|^{2})^{-1}(1 - |\varphi_{\alpha}(z)|^{2})^{\lambda+1}dA(z)$$

$$\approx \sup_{\alpha \in \mathbb{D}} \frac{(1 - |\alpha|^{2})^{\lambda+1}}{K(1 - |\alpha|^{2})}$$

$$\times \int_{\mathbb{D}} |f'(z)||g(z)|(1 - |z|^{2})^{-1}(1 - |\varphi_{\alpha}(z)|^{2})^{\lambda+1}dA(z)$$

$$\lesssim ||g||_{H^{\infty}} \sup_{\alpha \in \mathbb{D}} \frac{(1 - |\alpha|^{2})^{\lambda+1}}{K(1 - |\alpha|^{2})}$$

$$\times \int_{\mathbb{D}} |f'(z)|(1 - |z|^{2})^{-1}(1 - |\varphi_{\alpha}(z)|^{2})^{\lambda+1}dA(z)$$

$$\lesssim ||g||_{H^{\infty}} ||f||_{\mathcal{D}_{\lambda,K}},$$

which means that $I_g: \mathcal{D}_{\lambda,K} \to \mathcal{D}_{\lambda,K}$ is bounded.

Theorem 3.4. Let $-1 < \lambda < 0$ and K satisfy (1.1) for some $\delta > 0$ such that $\delta \leq \lambda + 1$. Then $M_g : \mathcal{D}_{\lambda,K} \to \mathcal{D}_{\lambda,K}$ is bounded if and only if $g \in F(1,-1,\lambda+1) \cap H^{\infty}$.

Proof. Suppose first that $g \in F(1, -1, \lambda + 1) \cap H^{\infty}$. Employing Theorems 3.2 and 3.3, we obtain that both T_g and I_g are bounded on $\mathcal{D}_{\lambda,K}$. Therefore, $M_g : \mathcal{D}_{\lambda,K} \to \mathcal{D}_{\lambda,K}$ is bounded.

Conversely, suppose that $M_g: \mathcal{D}_{\lambda,K} \to \mathcal{D}_{\lambda,K}$ is bounded. For $\gamma \in \mathbb{D}$, set

$$f_{\gamma}(z) = \frac{K(1-|\gamma|^2)(1-|\gamma|^2)^{\lambda+1}}{(1-\bar{\gamma}z)^{2\lambda+2}}, \quad z \in \mathbb{D}.$$

By Proposition 2.5, f_{γ} is bounded in $\mathcal{D}_{\lambda,K}$. Applying the assumption we obtain that $M_g f_a \in \mathcal{D}_{\lambda,K}$. By Proposition 2.6, we have

$$|g(z)f_{\gamma}(z)| = |M_g f_{\gamma}(z)| \lesssim \frac{K(1 - |z|^2) ||M_g f_{\gamma}||_{\mathcal{D}_{\lambda,K}}}{(1 - |z|^2)^{\lambda + 1}}$$

$$\lesssim \frac{K(1 - |z|^2) ||M_g||_{\mathcal{D}_{\lambda,K} \to \mathcal{D}_{\lambda,K}}}{(1 - |z|^2)^{\lambda + 1}}.$$

Since γ is arbitrary, by setting $\gamma = z$, we get

$$|g(z)| \lesssim ||M_g||_{\mathcal{D}_{\lambda,K} \to \mathcal{D}_{\lambda,K}},$$

which means that $g \in H^{\infty}$. Theorem 3.3 yields that the operator I_g is bounded on $\mathcal{D}_{\lambda,K}$. Since $T_g f(z) = M_g(z) - I_g f(z) - f(0)g(0)$, then the operator T_g is also bounded on $\mathcal{D}_{\lambda,K}$. We immediately obtain that $g \in F(1,-1,\lambda+1)$.

4. ESSENTIAL NORM OF INTEGRAL OPERATORS

In this section, we study the essential norm of the operators T_g and I_g on $\mathcal{D}_{\lambda,K}$. Recall that the essential norm of a bounded linear operator $L: W \to Q$ is defined by

$$||L||_{e,W\to Q} = \inf_{S} \{||L - S||_{W\to Q} : S \text{ is compact from } W \text{ to } Q\},\$$

where $(W, \|\cdot\|_W)$, $(Q, \|\cdot\|_Q)$ are Banach spaces. Clearly, $L: W \to Q$ is compact if and only if $\|L\|_{e,W\to Q} = 0$. For some resent works on estimating essential norms of integral-type and some related operators, we refer [4, 25, 35, 38].

Let A and W be Banach spaces such that $A \subset W$. Given $f \in W$, the distance of f to A denoted by $\operatorname{dist}_W(f, A)$, is defined by $\operatorname{dist}(f, A) = \inf_{g \in A} \|f - g\|_W$.

The following lemma gives the distance from the space $F(1, -1, \lambda + 1)$ to its little space $F_0(1, -1, \lambda + 1)$ (see [5]).

Lemma 4.1. *If* $g \in F(1, -1, \lambda + 1)$ *, then*

$$\lim_{|\alpha| \to 1} \sup_{\mathbb{D}} \int_{\mathbb{D}} |g'(z)| (1 - |z|^2)^{-1} (1 - |\varphi_{\alpha}(z)|^2)^{\lambda + 1} dA(z)
\approx \operatorname{dist}_{F(1, -1, \lambda + 1)} (g, F_0(1, -1, \lambda + 1)) \approx \lim_{r \to 1^-} \sup_{T \to 1^-} |g - g_r||_{F(1, -1, \lambda + 1)}.$$

Here $g_r(z) = g(rz), 0 < r < 1, z \in \mathbb{D}$.

Lemma 4.2. Let $-1 < \lambda < 0$ and K satisfy (1.1) for some $\delta > 0$ such that $\delta \leq \lambda + 1$. If $g \in F_0(1, -1, \lambda + 1)$, then $T_g : \mathcal{D}_{\lambda,K} \to \mathcal{D}_{\lambda,K}$ is compact.

Proof. Since $F_0(1,-1,\lambda+1)$ is the closure of polynomials in the norm of $F(1,-1,\lambda+1)$, there exist polynomials P_n such that $||g-P_n||_{F(1,-1,\lambda+1)} \to 0$. From the proof of Theorem 3.2, we see that

$$||T_q - T_{P_n}||_{\mathcal{D}_{\lambda,K}} = ||T_{q-P_n}||_{\mathcal{D}_{\lambda,K}} \lesssim ||g - P_n||_{F(1,-1,\lambda+1)} \to 0$$

as $n \to \infty$. For a polynomial P, noting that T_P is the product of the multiplication operator $f \to fP'$, which is bounded by the boundedness of P' on \mathbb{D} , with the integration operator $f \to \int_0^z f(\xi)d\xi$, which is compact on $\mathcal{D}_{\lambda,K}$ (see [1]), we obtain that $T_g: \mathcal{D}_{\lambda,K} \to \mathcal{D}_{\lambda,K}$ is compact.

Lemma 4.3. Let $-1 < \lambda < 0$ and K satisfy (1.1) for some $\delta > 0$ such that $\delta \leq \lambda + 1$. If $g \in F(1, -1, \lambda + 1)$, then $T_{g_r} : \mathcal{D}_{\lambda, K} \to \mathcal{D}_{\lambda, K}$ is compact.

Proof. Since $g \in F(1, -1, \lambda + 1)$, then $g_r \in F_0(1, -1, \lambda + 1)$. Lemma 4.2 gives that $T_{q_r}: \mathcal{D}_{\lambda,K} \to \mathcal{D}_{\lambda,K}$ is compact.

Theorem 4.4. Let $-1 < \lambda < 0$ and K satisfy (1.1) for some $\delta > 0$ such that $\delta \leq \lambda + 1$. If $g \in H(\mathbb{D})$ and $T_g : \mathcal{D}_{\lambda,K} \to \mathcal{D}_{\lambda,K}$ is bounded, then

$$||T_g||_{e,\mathcal{D}_{\lambda,K}\to\mathcal{D}_{\lambda,K}} \approx \operatorname{dist}_{F(1,-1,\lambda+1)}(g,F_0(1,-1,\lambda+1))$$

$$\approx \limsup_{r\to 1^-} ||g-g_r||_{F(1,-1,\lambda+1)}.$$

Proof. Let $\{\alpha_n\}$ be a bounded sequence in \mathbb{D} such that $\lim_{n\to\infty} |\alpha_n| = 1$. Set

$$f_n(z) = \frac{K(1 - |\alpha_n|^2)(1 - |\alpha_n|^2)^{\lambda + 1}}{(1 - \bar{\alpha}_n z)^{2\lambda + 2}}, \quad z \in \mathbb{D}.$$

Then $\{f_n\}$ is a bounded sequence in $\mathcal{D}_{\lambda,K}$ and $f_n \to 0$ uniformly on any compact subset of \mathbb{D} as $n \to \infty$. For each compact operator $S: \mathcal{D}_{\lambda,K} \to \mathcal{D}_{\lambda,K}$, similar to [24,25] we have that $\lim_{n\to\infty} \|Sf_n\|_{\mathcal{D}_{\lambda,K}} = 0$. Employing Proposition 4.13 in [39], we get that

$$\begin{split} &\|T_g - S\|_{\mathcal{D}_{\lambda,K} \to \mathcal{D}_{\lambda,K}} \\ &\gtrsim \limsup_{n \to \infty} \|(T_g - S)(f_n)\|_{\mathcal{D}_{\lambda,K}} \\ &\gtrsim \limsup_{n \to \infty} (\|T_g f_n\|_{\mathcal{D}_{\lambda,K}} - \|S f_n\|_{\mathcal{D}_{\lambda,K}}) \\ &= \limsup_{n \to \infty} \|T_g f_n\|_{\mathcal{D}_{\lambda,K}} \\ &\gtrsim \limsup_{n \to \infty} \frac{(1 - |\alpha_n|^2)^{\lambda + 1}}{K(1 - |\alpha_n|^2)} \int_{\mathbb{D}} |f_n(z)| |g'(z)| (1 - |z|^2)^{-1} (1 - |\varphi_{\alpha_n}(z)|^2)^{\lambda + 1} dA(z) \\ &\gtrsim \limsup_{n \to \infty} \int_{\mathbb{D}(\alpha, r)} |g'(z)| (1 - |z|^2)^{-1} (1 - |\varphi_{\alpha_n}(z)|^2)^{\lambda + 1} dA(z). \end{split}$$

Since α_n is arbitrary, we obtain that

$$||T_g||_{e,\mathcal{D}_{\lambda,K}\to\mathcal{D}_{\lambda,K}} \gtrsim \limsup_{n\to\infty} \int_{\mathbb{D}} |g'(z)|(1-|z|^2)^{-1}(1-|\varphi_{\alpha_n}(z)|^2)^{\lambda+1}dA(z).$$

Conversely, Lemma 4.3 yields that $T_{g_r}: \mathcal{D}_{\lambda,K} \to \mathcal{D}_{\lambda,K}$ is compact when 0 < r < 1. So

$$||T_g||_{e,\mathcal{D}_{\lambda,K}\to\mathcal{D}_{\lambda,K}} \leq ||T_g - T_{g_r}||_{\mathcal{D}_{\lambda,K}\to\mathcal{D}_{\lambda,K}}$$

$$= ||T_{g-g_r}||_{\mathcal{D}_{\lambda,K}\to\mathcal{D}_{\lambda,K}}$$

$$\leq ||g - g_r||_{F(1,-1,\lambda+1)}.$$

Employing Lemma 4.1, we get that

$$||T_g||_{e,\mathcal{D}_{\lambda,K}\to\mathcal{D}_{\lambda,K}} \lesssim \limsup_{r\to 1} ||g-g_r||_{F(1,-1,\lambda+1)}$$

 $\approx \operatorname{dist}_{F(1,-1,\lambda+1)}(g,F_0(1,-1,\lambda+1)).$

We immediately get the following corollary by Theorem 4.4.

Corollary 4.5. Let $-1 < \lambda < 0$ and K satisfy (1.1) for some $\delta > 0$ such that $\delta \leq \lambda + 1$. If $g \in H(\mathbb{D})$, then $T_g : \mathcal{D}_{\lambda,K} \to \mathcal{D}_{\lambda,K}$ is compact if and only if $g \in F_0(1,-1,\lambda+1)$.

Theorem 4.6. Let $-1 < \lambda < 0$ and K satisfy (1.1) for some $\delta > 0$ such that $\delta \leq \lambda + 1$. If $g \in H(\mathbb{D})$ and $I_g : \mathcal{D}_{\lambda,K} \to \mathcal{D}_{\lambda,K}$ is bounded, then

$$||I_g||_{e,\mathcal{D}_{\lambda,K}\to\mathcal{D}_{\lambda,K}} \approx ||g||_{H^{\infty}}.$$

Proof. We define S and $\{\alpha_n\}$ as in the proof of Theorem 4.4. Set

$$F_n(z) = \frac{K(1 - |\alpha_n|^2)(1 - |\alpha_n|^2)^{\lambda + 1}}{\bar{\alpha}_n (1 - \bar{\alpha}_n z)^{2\lambda + 2}}, \quad z \in \mathbb{D}, \alpha_n \neq 0.$$

Then we have that $||F_n||_{\mathcal{D}_{\lambda,K}} \lesssim 1$ by Proposition 2.5. Since $S: \mathcal{D}_{\lambda,K} \to \mathcal{D}_{\lambda,K}$ is compact, we have that $\lim_{n\to\infty} ||SF_n||_{\mathcal{D}_{\lambda,K}} = 0$. Thus

$$\begin{split} \|I_g - S\|_{\mathcal{D}_{\lambda,K} \to \mathcal{D}_{\lambda,K}} &\gtrsim \limsup_{n \to \infty} \|(I_g - S)(F_n)\|_{\mathcal{D}_{\lambda,K}} \\ &\gtrsim \limsup_{n \to \infty} (\|I_g F_n\|_{\mathcal{D}_{\lambda,K}} - \|S F_n\|_{\mathcal{D}_{\lambda,K}}) \\ &= \limsup_{n \to \infty} \|I_g F_n\|_{\mathcal{D}_{\lambda,K}}. \end{split}$$

From the proof of Theorem 3.3 we obtain that $||I_gF_n||_{\mathcal{D}_{\lambda,K}} \gtrsim |g(\alpha_n)|$. Then

$$||I_g||_{e,\mathcal{D}_{\lambda,K}\to\mathcal{D}_{\lambda,K}}\gtrsim ||g||_{H^\infty}.$$

Conversely, by Theorem 3.3 again, we have that

$$\begin{aligned} \|I_g\|_{e,\mathcal{D}_{\lambda,K}\to\mathcal{D}_{\lambda,K}} &= \inf_{S} \|I_g - S\|_{\mathcal{D}_{\lambda,K}\to\mathcal{D}_{\lambda,K}} \\ &\lesssim \|I_g\|_{\mathcal{D}_{\lambda,K}\to\mathcal{D}_{\lambda,K}} \lesssim \|g\|_{H^{\infty}}. \end{aligned}$$

This finishes the proof.

By Theorem 4.6, we immediately get the following corollary.

Corollary 4.7. Let $-1 < \lambda < 0$ and K satisfy (1.1) for some $\delta > 0$ such that $\delta \leq \lambda + 1$. If $g \in H(\mathbb{D})$, then $I_g : \mathcal{D}_{\lambda,K} \to \mathcal{D}_{\lambda,K}$ is compact if and only if g = 0.

REFERENCES

- A. Aleman, A. Siskakis, Integration operators on Bergman spaces, Indiana Univ. Math. J. 46 (1997), 337–356.
- [2] D.C. Chang, S. Li, S. Stević, On some integral operators on the unit polydisk and the unit ball, Taiwanese J. Math. 11 (2007), no. 5, 1251–1286.
- [3] P. Galanopoulos, N. Merchán, A. Siskakis, A family of Dirichlet–Morrey spaces, Complex Var. Elliptic Equ. **64** (2019), no. 10, 1686–1702.
- [4] P. Galindo, M. Lindström, S. Stević, Essential norm of operators into weighted-type spaces on the unit ball, Abstr. Appl. Anal. 2011 (2011), Art. ID 939873, 13 pp.
- [5] L. Hu, R. Yang, S. Li, Embedding and Volterra integral operators on a class of Dirichlet-Morrey spaces, AIMS Math. 6 (2021), no. 7, 7782-7797.
- [6] L. Hu, R. Yang, S. Li, Dirichlet-Morrey type spaces and Volterra integral operators,
 J. Nonlinear Var. Anal. 5 (2021), 477–491.
- [7] S. Li, S. Stević, Integral type operators from mixed-norm spaces to α-Bloch spaces, Integral Transforms Spec. Funct. 18 (2007), no. 7, 485–493.
- [8] S. Li, S. Stević, Compactness of Riemann–Stieltjes operators between F(p, q, s) spaces and α -Bloch spaces, Publ. Math. Debrecen **72** (2008), no. 1–2, 111–128.
- [9] S. Li, S. Stević, Riemann-Stieltjes operators between different weighted Bergman spaces, Bull. Belg. Math. Soc. Simon Stevin 15 (2008), no. 4, 677-686.
- [10] P. Li, J. Liu, Z. Lou, Integral operators on analytic Morrey spaces, Sci. China Math. 57 (2014), no. 9, 1961–1974.
- [11] S. Li, J. Liu, C. Yuan, Embedding theorems for Dirichlet type spaces, Canad. Math. Bull. 63 (2020), no. 1, 106–117.
- [12] J. Liu, Z. Lou, Carleson measure for analytic Morrey spaces, Nonlinear Anal. 125 (2015), 423–432.
- [13] J. Liu, Z. Lou, Properties of analytic Morrey spaces and applications, Math. Nachr. 288 (2015), 1673–1693.
- [14] J. Liu, Z. Lou, K. Zhu, Embedding of Möbius invariant function spaces into tent spaces, J. Geom. Anal. 27 (2017), no. 2, 1013–1028.
- [15] X. Liu, S. Li, R. Qian, Volterra integral operators and Carleson embedding on Campanato spaces, J. Nonlinear Var. Anal. 5 (2021), 141–153.
- [16] J. Ortega, J. Fàbrega, Pointwise multipliers and corona type decomposition in BMOA, Ann. Inst. Fourier (Grenoble) 46 (1996), no. 1, 111–137.
- [17] J. Pau, R. Zhao, Carleson measures, Riemann-Stieltjes and multiplication operators on a general family of function spaces, Integral Equations Operator Theory 78 (2014), no. 4, 483-514.
- [18] R. Qian, S. Li, Volterra type operators on Morrey type spaces, Math. Inequal. Appl. 18 (2015), no. 4, 1589–1599.
- [19] R. Qian, S. Li, Carleson measure and Volterra type operators on weighted BMOA spaces, Georgian Math. J. 27 (2020), no. 3, 413–424.

- [20] R. Qian, X. Zhu, Embedding of Q_p spaces into tent spaces and Volterra integral operator, AIMS Math. 6 (2020), 698–711.
- [21] B. Sehba, S. Stević, On some product-type operators from Hardy-Orlicz and Bergman-Orlicz spaces to weighted-type spaces, Appl. Math. Comput. 233 (2014), 565–581.
- [22] C. Shen, Z. Lou, S. Li, Embedding of BMOA_{log} into tent spaces and Volterra integral operators, Comput. Meth. Funct. Theory 20 (2020), 1–18.
- [23] Y. Shi, S. Li, Essential norm of integral operators on Morrey type spaces, Math. Ineq. Appl. 19 (2016), no. 1, 385–393.
- [24] H.J. Schwartz, Composition operators on H^p , PhD Thesis, University of Toledo, 1969.
- [25] S. Stević, Essential norms of weighted composition operators from the α -Bloch space to a weighted-type space on the unit ball, Abstr. Appl. Anal. **2008** (2008), Article ID 279691, 11 pp.
- [26] S. Stević, On operator P^g_φ from the logarithmic Bloch-type space to the mixed-norm space on unit ball, Appl. Math. Comput. 215 (2010), no. 12, 4248–4255.
- [27] S. Stević, S.I. Ueki, Integral-type operators acting between weighted-type spaces on the unit ball, Appl. Math. Comput. 215 (2009), no. 7, 2464-2471.
- [28] F. Sun, H. Wulan, Characterizations of Morrey type spaces, Canad. Math. Bull. Canad. Math. Bull. 65 (2022), no. 2, 328–344.
- [29] Z. Wu, C. Xie, Q spaces and Morrey spaces, J. Funct. Anal. **201** (2003), no. 1, 282–297.
- [30] H. Wulan, K. Zhu, Möbius Invariant Q_K Spaces, Springer, Cham, 2017.
- [31] H. Wulan, J. Zhou, Q_K and Morrey type spaces, Ann. Acad. Sci. Fenn. Math. 38 (2013), no. 1, 193–207.
- [32] J. Xiao, Holomorphic Q Classes, Lecture Notes in Mathematics, vol. 1767, Springer-Verlag, Berlin, 2001.
- [33] J. Xiao, W. Xu, Composition operators between analytic Campanato spaces, J. Geom. Anal. 24 (2014), no. 2, 649–666.
- [34] J. Xiao, C. Yuan, Analytic Campanato spaces and their compositions, Indiana Univ. Math. J. 64 (2015), no. 4, 1001–1025.
- [35] L. Yang, R. Qian, Volterra integral operator and essential norm on Dirichlet type spaces, AIMS Math. 6 (2021), no. 9, 10092–10104.
- [36] R. Yang, X. Zhu, Besov-Morrey spaces and Volterra integral operator, Math. Inequal. Appl. 24 (2021), no. 3, 857–871.
- [37] R. Zhao, On a general family of function spaces, Ann. Acad. Sci. Fenn. Math. Diss. 105 (1996), 56 pp.
- [38] J. Zhou, X. Zhu, Essential norm of a Volterra-type integral operator from Hardy spaces to some analytic function spaces, J. Integral Equations Appl. 28 (2016), no. 4, 581–593.
- [39] K. Zhu, Operator Theory in Function Spaces, 2nd ed., American Mathematical Society, Providence, 2007.

 $\begin{array}{c} {\rm Lian~Hu} \\ {\rm hl152808@163.com} \end{array}$

Institute of Fundamental and Frontier Sciences University of Electronic Science and Technology of China 610054, Chengdu, Sichuan, P.R. China

Xiaosong Liu (corresponding author) gdxsliu@163.com

Department of Mathematics JiaYing University 514015, Meizhou, Guangdong, P.R. China

Received: April 11, 2023. Revised: May 17, 2023. Accepted: May 18, 2023.