
Opuscula Math. 43, no. 5 (2023), 689–701
https://doi.org/10.7494/OpMath.2023.43.5.689 Opuscula Mathematica

GLOBAL SOLUTIONS
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Abstract. In this paper we consider the existence and asymptotic behavior of solutions
of the following nonlinear Kirchhoff type problem

utt − M



∫

Ω

|∇u|2 dx


△u − δ△ut = µ|u|ρ−2u in Ω×]0, ∞[,

where

M(s) =
{

a − bs for s ∈ [0, a
b [,

0, for s ∈ [ a
b , +∞[.

If the initial energy is appropriately small, we derive the global existence theorem and
its exponential decay.
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1. INTRODUCTION

In this work we consider the following nonlocal problem

utt − M

( ∫

Ω

|∇u|2 dx

)
△u − δ△ut = µ|u|ρ−2u in Ω×]0, ∞[,

u = 0 on Γ×]0, ∞[,
u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω,

(1.1)

where Ω is a bounded domain in Rn with smooth boundary Γ, δ, µ > 0 and

M(s) =
{

a − bs for s ∈ [0, a
b [,

0 for s ∈ [ a
b , +∞[,

(1.2)

a, b > 0, ρ > 2.
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When M(s) = a + bs, s ≥ 0, a > 0, b ≥ 0, δ = 0 = µ and Ω is a finite open interval,
equation (1.1) was introduced by [16] in the study of nonlinear vibrations of the elastic
string and is called the wave equation of Kirchhoff type after his name. See also [17].
We should refer to [10,22] for a deduction of the model for a non-homogeneous material.
Moreover, it is said a degenerate equation when M(s) has zeros and a nondegenerate
one when M(s) ≥ m0 > 0 for all s ≥ 0. The global existence for real analytic initial
data was proved in [5] and [33], while the global existence of small C∞ and Sobolev
solutions was established in [9] and [13]. The question of global solutions for arbitrary
data from Sobolev spaces is still open. When equations have some dissipative terms ut,
(−△)ut, △2ut, etc., we can prove the existence of global solutions, and moreover some
decay properties. There are many contributions on various mathematical subjects
of the mixed problem (1.1) with M(s) > 0, δ > 0. The authors, in [21, 23, 28, 38]
studied existence results and decay rate of the solutions. Considering a polynomial
nonlinearity, global existence and stability results was proved in [43]. In [19], was
analyzed local existence and blow-up of the solution for nonlinear wave equations of
Higher-order Kirchhoff type. For a power logarithmic source, in [8,42] was shown global
existence and asymptotic behavior of solutions. For the degenerate case M(s) ≥ 0,
it was investigated global existence and asymptotic behavior in [25, 26, 30, 40]. Also in
this case, but with a more general nonlinearity, in [2] was considered the existence
and stability of the global solution. A large number of results on the solutions to
problem (1.1) have been established by many authors through various approaches and
assumptive conditions (see [1, 3, 4, 7, 11, 24, 31, 32, 41] and references therein). Some
papers with various kinds of Kirchhoff operators are shown in [34].

In [44] investigated the existence and multiplicity of nontrivial solution for the new
nonlocal problem

−


a − b

∫

Ω

|∇u|2 dx


△u = |u|ρ−2u in Ω,

u = 0 on Γ.

(1.3)

Also see [15,35,39] for generalizations of (1.3).
It is opportune to observe that when a = 0 = δ the equation (1.1) becomes the

quasilinear non well posed problem

utt +



∫

Ω

|∇u|2 dx


△u = µ|u|ρ−2u in Ω×]0, ∞[,

u = 0 on Γ×]0, ∞[,
u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω,

which can be seen as a boundary value problem for the potential equation as in [20].
The example of Hadamard [14] is the case of the potential equation in R2. This question
has some interest in the study of the optimal control for singular distributed system
and it seems to be essentially open.
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Motivated for their works, it is interesting to investigate the global solvability
of (1.1) with the nonlocal operator given in (1.3). More precisely, under appropriate
assumptions imposed on the initial data and the source term, we shall establish global
existence of solutions by using of Tartar method [37] combined with suitable a priori
estimates including |△u(t)| in addition to the usual energy estimate. To our best
knowledge, it is the first attempt to study the properties of the solutions for such kind
of equations.

The outline of this manuscript is the following. In Section 2, we prepare some
lemmas needed for our arguments and state the local existence theorem. In Section 3,
we prove the global existence of solutions and its exponential decay.

2. PRELIMINARIES

Throughout this paper the functions are all real valued and the notations are as usual,
in particular we shall denote the usual Lp-norm by ∥ ·∥p, (p ≥ 1) and the inner product
(u, v) =

∫

Ω

uv dx. Moreover, C, Ci (i = 1, 2, . . .) denote various positive constants and

they may be different at each appearance.
Lemma 2.1 ([12, Lemmas 7.12 and 7.16], Sobolev–Poincaré Inequality). Let ρ be
a number with 2 ≤ ρ < ∞ (n = 1, 2) or 2 ≤ ρ ≤ 2N

N−2 (n ≥ 3), then there is a positive
constant c∗ = c(Ω, ρ) such that

∥u∥ρ ≤ c∗∥∇u∥2 for u ∈ H1
0 (Ω). (2.1)

Thus, the norm ∥∇u∥2 is equivalent to the usual norm in H1
0 (Ω).

Lemma 2.2 ([6, Theorem 1], Gagliardo–Nirenberg Inequality). Let 1 ≤ r < q ≤ ∞
and q ≤ p. Then the inequality

∥u∥q ≤ C∥u∥θ
W m,q ∥u∥1−θ

r for u ∈ W m,q(Ω) ∩ Lr(Ω)

holds with some constant C > 0 and

θ =
(

1
r

− 1
p

)(
1
r

+ m

N
− 1

q

)−1
,

provided that 0 < θ ≤ 1 (0 < θ < 1 if p = ∞).
Lemma 2.3 ([27, Lemma 3]). Let Φ(t) be a bounded positive function on [0, +∞[
satisfying, for some constant k0 > 0,

Φ(t) ≤ k0(Φ(t) − Φ(t + 1)) on [0, +∞[.

Then, we have
Φ(t) ≤ Φ(0)e−k1t on [0, +∞[,

where k1 = log
(

k0
k0−1

)
.



692 Eugenio Cabanillas Lapa

Definition 2.4. A weak solution of (1.1) is a function u : [0, T [→ H1
0 (Ω) ∩ H2(Ω)

satisfying

d

dt
(u(t), w) + M



∫

Ω

|∇u|2 dx


 (∇u, ∇w) + δ(∇ut, w) = µ(|u|ρ−2u, w)

for all w ∈ H1
0 (Ω) ∩ H2(Ω) (see [36]).

For the sake of completeness, we recall the following local existence result, which
may be proved by the Banach contraction mapping principle (see [29]).
Theorem 2.5 (Local existence). Let M(s) be a nonnegative locally Lipschitz function
for s ≥ 0. We assume that f(u) is a nonlinear function such that f(0) = 0 and

|f(u) − f(v)| ≤ k1(|u|α + |v|α)|u − v|

with some constant k1, and

0 ≤ α ≤ 4/(N − 4) if N ≥ 5 (0 ≤ α < +∞ if N ≤ 4).

If the initial data {u0, u1} belong to (H1
0 (Ω) ∩ H2(Ω)) × L2(Ω) then there exists

T = T (∥△u0∥2, ∥∇u1∥2) > 0 such the problem (1.1) admits a unique local weak
solution u satisfying

u ∈ C0 ([0, T ); H1
0 (Ω) ∩ H2(Ω)

)

and
ut ∈ C0 ([0, T ); L2(Ω)

)
∩ L2 ([0, T ); H1

0 (Ω)
)

.

Moreover, at least one of the following statements is valid:
(i) T = +∞,
(ii) ∥ut(t)∥2

2 + ∥△u(t)∥2
2 → +∞ as t → T −.

Now, we set

Bρ = sup
u∈H1

0 (Ω)
u̸=0

∥u∥ρ

∥∇u∥2
, γ1 = b

4a
, γ2 =

Bρ
ρ

ρa
.

Following Tartar’s ideas, we define the function

h(λ) = 1
4λ2 − γ1λ4 − 3

2γ2λρ.

Then
h′(λ) = λ

(
1
2 − 4γ1λ2 − 3

2ργ2λρ−2
)

.

So, choosing λ ∈ R, such that

0 ≤ λ2 ≤ 1
16γ1

and 0 ≤ λρ−2 ≤ 1
6ργ2

,
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we get that these λ’s satisfy the inequality

1
2 − 4γ1λ2 − 3

2ργ2λρ−2 ≥ 0

and h′(λ) ≥ 0 for 0 ≤ λ ≤ λ1, where

λ1 = min
{

(16γ1)−1/2, (6ργ2)−1/(ρ−2)
}

.

Thus h(0) = 0 and h(λ) ≥ 0 for all λ ∈ [0, λ1].
From this, we get

h0(λ) = 1
2λ2 − γ1λ4 − γ2λρ ≥ 1

4λ2 + 1
2γ2λρ, ∀λ ∈ [0, λ1]. (2.2)

The energy associated with the problem (1.1) is given by

E(t) = 1
2∥ut(t)∥2

2 + J(u(t)) for u ∈ H1
0 (Ω),

where
J(u(t)) = a

2∥∇u(t)∥2
2 − b

4∥∇u(t)∥4
2 − 1

ρ
∥u(t)∥ρ

ρ.

Multiplying equation (1.1) by ut(t) and integrating it over Ω, we obtain

d

dt
E(t) + δ∥∇ut(t)∥2

2 = 0. (2.3)

Therefore, E(t) is a nonincreasing function on t, and

E(t) + δ

t∫

0

∥∇ut(s)∥2
2 ds = E(0). (2.4)

From now on, for simplicity, we will take δ = 1 = µ.

3. GLOBAL EXISTENCE AND EXPONENTIAL DECAY

In this section we state the main results of this paper. Firstly, we give the following
two propositions.

Proposition 3.1. If the local solution u(t) of (1.1) satisfies 0 < ∥∇u(t)∥2 < λ1
on [0, T0], then

J(u(t)) ≥ a

(
1
4∥∇u(t)∥2

2 + γ2
2 ∥∇u(t)∥ρ

2

)
(3.1)

and

∥∇u(t)∥2 ≤
[

4
a

E(t)
]1/2

. (3.2)
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Proof. It is obvious from (2.2). In fact,

J(u(t)) ≥ ah0(∥∇u(t)∥2) ≥ a

(
1
4∥∇u(t)∥2

2 + γ2
2 ∥∇u(t)∥ρ

2

)
.

So (3.1) holds. Also
E(u(t)) ≥ J(u(t)) ≥ a

4∥∇u(t)∥2
2,

which implies (3.2).

Proposition 3.2. Let u be a local solution of (1.1). Under the assumption of Propo-
sition 3.1, the energy E(t) satisfies

E(t) ≤ CEE(0)e−kt, (3.3)

where k = ln
(

k0
k0−1

)
, k0 is defined in (3.8) and CE = max{1, σ0}, with σ0 given

in (3.10).

Proof. First, we suppose that T0 > 1. Integrating (2.3) from t to t + 1,
0 < t < T0 − 1, we find

t+1∫

t

∥∇ut(s)∥2 ds = E(t) − E(t + 1) ≡ F 2(t).

Using the mean value theorem for integrals, there exist two points t1 ∈ [t, t + 1
4 ] and

t2 ∈ [t + 3
4 , t + 1] such that

∥∇ut(ti)∥2 ≤ 2F (t), i = 1, 2. (3.4)

Next, multiplying (1.1) by u and integrating over Ω, we obtain

a∥∇u(t)∥2
2 − b∥∇u(t)∥4

2 − ∥u(t)∥ρ
ρ

= ∥ut(t)∥2
2 − (∇ut(t), ∇u(t)) − d

dt
(ut(t), u(t)).

(3.5)

On the other hand, it follows from the Sobolev–Poincaré inequality and (3.2) that

∥u(t)∥ρ
ρ ≤ Bρ

ρ∥∇u(t)∥ρ
2 ≤ Bρ

ρ∥∇u(t)∥ρ−2
2 ∥∇u(t)∥2

2

≤ Bρ
ρ

[
4
a

E(0)
](ρ−2)/2

∥∇u(t)∥2
2

and
b∥∇u(t)∥4 ≤ b

[
4
a

E(0)
]

∥∇u(t)∥2
2.
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Thus, we get

b∥∇u(t)∥4
2 + ∥u(t)∥ρ

ρ ≤ 1
a

[
Bρ

ρ

(
4
a

E(0)
)(ρ−2)/2

+ 4b

a
E(0)

]
(a∥∇u(t)∥2

2)

≡ (1 − η0)(a∥∇u(t)∥2
2), 0 < η0 < 1. (3.6)

See Remark 3.4 for the justification of condition (3.6). Then

η0a∥∇u(t)∥2
2 ≤ a∥∇u(t)∥2

2 − b∥∇u(t)∥4
2 − ∥u(t)∥ρ

ρ ≡ I(t). (3.7)

From (2.4) and (3.5), integrating the resultant inequality over [t1, t2] we have

η0a

t2∫

t1

∥∇u(s)∥2
2 ds

≤
t2∫

t1

I(s) ds ≤ c2
∗

t2∫

t1

∥∇ut(s)∥2
2 ds +

t2∫

t1

|(∇ut(s), ∇u(s))| ds − (ut(t), u(t))|t2
t1

≤ c2
∗F 2(t) +

t2∫

t1

∥∇ut(s)∥2∥∇u(s)∥2 ds + c2
∗

2∑

i=1
∥∇ut(ti)∥2∥∇u(ti)∥2

≤ c2
∗F 2(t) +







t+1∫

t

∥∇ut(s)∥2
2 ds




1/2

+ c2
∗

2∑

i=1
∥∇ut(ti)∥


 sup

s∈[t,t+1]
∥∇u(s)∥2

≤ c2
∗F 2(t) + (4c2

∗ + 1)F (t)
(

4
a

E(t)
)1/2

,

where we have used (3.2) and (3.4) at the last inequality.
On the other hand, integrating (2.3) over [t, t2], noting that E(t2) ≤ 2

∫ t2
t1

E(s) ds

due to t2 − t1 ≥ 1
2 , using (3.8) and the Young inequality, we have

E(t) = E(t2) +
t2∫

t

∥∇ut(s)∥2
2 ds

≤ 2
t2∫

t1

E(s) ds +
t+1∫

t

∥∇ut(s)∥2
2 ds

≤ (c2
∗ + 1)

t+1∫

t

∥∇ut(s)∥2 ds + a

t2∫

t1

∥∇u(s)∥2
2 ds

≤
(

c2
∗ + c2

∗
η0

+ 1
)

F 2(t) + 1
2

(
2(4c2

∗ + 1)
η0

√
a

)2

F 2(t) + 1
2E(t).
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Thus
E(t) ≤ k0(E(t) − E(t + 1)),

where

k0 = 2
[(

(c2
∗ + c2

∗
η0

+ 1
)

+ 1
2

(
2(4c2

∗ + 1)
η0

√
a

)2 ]
+ 1. (3.8)

Then, noting (2.4) and applying Lemma 2.3 we have

E(t) ≤ E(0)e−kt for 0 ≤ t ≤ T0. (3.9)

In the case when 0 ≤ t ≤ 1, since E(t) is bounded, we have

E(t) ≤ σ0E(0)e−kt for some σ0 > 0. (3.10)

So, from (3.9) and (3.10) we obtain (3.3).

Theorem 3.3. Let N = 3 and 4 < ρ < 6. Assume further that {u0, u1} belong to
(H1

0 (Ω) ∩ H2(Ω)) × L2(Ω) with

∥∇u0∥ < min
{(a

b

)1/2
, λ1

}
, [4E(0)]1/2 < λ1, (3.11)

then problem (1.1) admits a unique global solution satisfying

u ∈ C([0, +∞[; H1
0 (Ω) ∩ H2(Ω)),

ut ∈ C([0, +∞[; L2(Ω)) ∩ L2((0, +∞[; H1
0 (Ω)),

and the energy satisfies
E(t) ≤ Ce−kt for t ≥ 0, (3.12)

with some constant k > 0.
Remark 3.4. It is easy to see that, from (2.2), the condition (4E(0))1/2

< λ1 implies

β = Bρ
ρ

(
4
a

E(0)
)(ρ−2)/2

+ 4b

a
E(0) < 1,

which will be used in the proof of Theorem 3.3.
Proof. Let u(t) be a unique solution of the problem (1.1) in the sense of Theorem 2.5
on [0, T0[, with T0 the maximal time where the solution exists. First, we note that
under the assumption (3.11) we get, from (3.7) that I(t) > 0 for t ∈ [0, T0[.

Multiplying (1.1) by −2△u and integrating over Ω we obtain

d

dt


∥△u∥2

2 − 2
∫

Ω

ut△u dx


+ 2a∥△u∥2

2

= −2
∫

Ω

|u|ρ−2u△u dx − 2∥∇ut∥2
2 + 2b∥∇u∥2

2∥△u∥2
2.

(3.13)
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Multiplying (3.13) by ϵ, 0 < ϵ ≤ 1 and multiplying (2.3) by 2 and adding them
together, we get

d

dt
E∗(t) + 2(1 − ϵ)∥∇ut(t)∥2

2 + 2aϵ∥△u(t)∥2
2

≤ −2ϵ

∫

Ω

|u|ρ−2u△u dx + 2ϵb∥∇u(t)∥2
2∥△u(t)∥2

2,
(3.14)

where
E∗(t) = 2E(t) −

∫

Ω

ut(t)△u(t) dx + ϵ∥△u(t)∥2
2.

As I(u(t)) > 0 and
∣∣∣∣∣∣
2ϵ

∫

Ω

ut(t)△u(t) dx

∣∣∣∣∣∣
≤ 2ϵ∥ut(t)∥2

2 + ϵ

2∥△u(t)∥2
2,

we have
E∗(t) ≥ (1 − 2ϵ)∥ut(t)∥2

2 + ϵ∥△u(t)∥2
2.

Now, choosing ϵ = 2
5 we have

E∗(t) ≥ 1
5(∥ut(t)∥2

2 + ∥△u(t)∥2
2).

On the other hand, we see from Lemma 2.2 and (3.2) that
∣∣∣∣∣∣
2
∫

Ω

|u|ρ−2u△u dx

∣∣∣∣∣∣
≤ 2(ρ − 2)∥u(t)∥ρ−2

3
2 (ρ−2)∥∇u(t)∥2

6

≤ 2cρ
∗(ρ − 2)∥∇u(t)∥ρ−2

2 ∥△u(t)∥2
2 ≤ C10E∗(t)

and
∥∇u(t)∥2

2∥△u(t)∥2
2 ≤ 4

a
E(0)E∗(t),

where

C10 = 10cρ
∗(ρ − 2)

(
4E(0)

a

)(ρ−2)/2
.

Hence, integrating (3.14) over ]0, t[ we get

E∗(t) ≤ E∗(0) +
t∫

0

C11E∗(s) ds

where C11 = 2
5

[
C10 + 10b

(
4E(0)

a

)]
. Then, by the Gronwall inequality, it follows that

E∗(t) ≤ E∗(0) exp(C11t).

Therefore, by Theorem 2.5, we have T0 = ∞. Moreover, from Proposition 3.2 we obtain
the decay estimate (3.12).
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Remark 3.5. It seems to be interesting to study a global solution for Kirchhoff
equation with nonlinear source and boundary damping term or with nonlinear boundary
damping and source term, i.e.

utt − M



∫

Ω

|∇u|2 dx


△u − △ut = |u|ρ−2u in Ω×]0, ∞[,

u = 0 on Γ0×]0, ∞[,

M



∫

Ω

|∇u|2 dx


 ∂

∂ν
u + ∂

∂ν
ut = g(ut) on Γ1×]0, ∞[,

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω,

and

utt − M



∫

Ω

|∇u|2 dx


△u − △ut = 0 in Ω×]0, ∞[,

u = 0 on Γ0×]0, ∞[,

M



∫

Ω

|∇u|2 dx


 ∂

∂ν
u + ∂

∂ν
ut = |u|ρ−2u on Γ1×]0, ∞[,

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω,

with M(s) given in (1.2). In [18] the authors considered the global solvability with
these boundary conditions, but with M(s) ≈ a + bsr, for all s ≥ 0, a, b > 0, r ≥ 1.
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