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Abstract. The purpose of this work is to analyze the blow-up of solutions of a nonlinear
parabolic equation with a forcing term depending on both time and space variables

ut − ∆u = |x|α|u|p + a(t) w(x) for (t, x) ∈ (0,∞) × RN ,

where α ∈ R, p > 1, and a(t) as well as w(x) are suitable given functions. We generalize
and somehow improve earlier existing works by considering a wide class of forcing
terms that includes the most common investigated example tσ w(x) as a particular
case. Using the test function method and some differential inequalities, we obtain
sufficient criteria for the nonexistence of global weak solutions. This criterion mainly
depends on the value of the limit limt→∞ 1

t

∫ t

0 a(s) ds. The main novelty lies in our
treatment of the nonstandard condition on the forcing term.
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inequalities.
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1. INTRODUCTION

This paper is concerned with the finite time blow-up of solutions of the following
inhomogeneous parabolic equation

{
ut − ∆u = |x|α|u|p + a(t) w(x), (t, x) ∈ S := (0,∞) × RN ,

u(0, x) = u0(x), x ∈ RN ,
(1.1)

where w : RN → R is a continuous and globally integrable function, a : (0,∞) → [0,∞)
is a continuous locally integrable function, α ∈ R, and p > 1.
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It is well known that many biological processes and chemical reactions are frequently
described by reaction-diffusion equations, consisting of the heat equation modified by
a reaction term:

ut − ∆u = f(t, x, u), (1.2)

where u(t, x) stands for the density function at time t and position x in a diffusion
medium, and f(t, x, u) represents the rate of change due to reaction; see [25] for more
details and examples. For a survey on physical models arising from various fields and
their mathematical studies, we refer to [7, 9, 10, 21–23,28, 30, 30, 33] and the references
therein.

In the case a(t)w(x) = 0, problem (1.1) reduces to
{
ut − ∆u = |x|α|u|p, (t, x) ∈ S,
u(0, x) = u0(x), x ∈ RN .

(1.3)

In [5, 6] Fujita considered the initial value problem (1.3) with α = 0 and u0(x) ≥ 0.
He established the following results:

– If p < 1 + 2
N , then all nontrivial solutions of (1.3) blow up in finite time.

– If p > 1+ 2
N , then (1.3) has both bounded global solutions and solutions which blow

up in finite time. More precisely, for initial values u0(x) bounded by a sufficiently
small Gaussian εe−|x|2 the solution is global. See, for instance, [30, Theorem 20.1,
p. 129].

In the borderline case, p = 1 + 2
N , it was shown by Hayakawa [8] for dimensions

N = 1, 2 and by Kobayashi, Sino, and Tanaka [16] and Aronson and Weinberger [1]
for all N ≥ 1 that all nontrivial solutions to (1.3) blow up in finite time. The number
pF := 1 + 2

N is nowadays usually known as the Fujita exponent for problem (1.3).
The case α ̸= 0 was investigated in [29] (see also [2, 18]). It is shown that the

Cauchy problem (1.3) has no global solution if p < 1 + 2+α
N , but global solutions

exist when p > 1 + 2+α
N provided that α > −1 for N = 1 and α > −2 for N ≥ 2.

See [29, Theorem 1.1, p. 125] for a precise statement. Nonetheless, the critical case
p = 1 + 2+α

N is open.
Note that the case α = 0 and a(t) = 1 was investigated by Bandle, Levine and

Zhang in [3]. They showed that (1.1) has no global solutions provided that p < N
N−2

and
∫
RN w(x) dx > 0. In [11], the authors consider (1.1) with α = 0 and a(t) = tσ

where σ > −1. They showed that the critical exponent is given by

p∗(σ) =
{

N−2σ
N−2σ−2 if − 1 < σ < 0,
∞ if σ > 0.

Recently in [19], the author shows that blow-up depends on the behavior of a(t)
at infinity by considering the case

a(t) ∼
{

a0 t
σ as t → 0,

a∞ tm as t → ∞,
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where a0, a∞ > 0, σ > −1 and m ∈ R. Here the notation u(t) ∼ v(t) as t → t0 means
that limt→t0

u(t)
v(t) = 1. It was shown that the critical exponent is given by

p∗(m,α) =
{

N−2m+α
N−2m−2 if m ≤ 0, α > −2,
∞ if m > 0, α > −2,

provided that
∫
RN w(x) dx > 0. In addition, some local and global existence results

was obtained in [19]. Let us mention that the fractional counterpart was considered
in [20].

There exist several well-known methods of the study of the blow-up effect, which
have their specific domain of applicability to corresponding problems of mathematical
physics. For a survey of blow-up results for solutions of first-order nonlinear evolution
inequalities and related Cauchy problems we refer to [3, 4, 7, 12–15,17,26, 27] and the
references therein. See also the books [10,25,30,34].

We adopt the following definition of solution.

Definition 1.1. We say that u is a global weak solution of (1.1) if it satisfies the
conditions

u0 ∈ L1
loc(RN ), |x|α|u|p ∈ L1

loc((0,∞) × RN ),

and, for all ψ ∈ C∞
0 ((0,∞) × RN ),

∞∫

0

∫

RN

u(−∂tψ − ∆ψ)dxdt =
∫

RN

u0(x)ψ(0, x)dx+
∞∫

0

∫

RN

|x|α|u|pψdx dt

+
∞∫

0

∫

RN

a(t)w(x)ψ dx dt.

As is a standard practice, (1.1) is equivalent in an appropriate framework to the
Duhamel formulation

u(x, t) = et∆ u0 +
t∫

0

e(t−s)∆ (| · |α|u(s)|p) ds+
t∫

0

a(s) e(t−s)∆w ds, (1.4)

where et∆ is the linear semi-group generated by the Laplace operator ∆. A solution
to the integral equation (1.4) is often called mild solution of (1.1). Let us mention
that the existence and regularity for some parabolic and ultraparabolic problems was
carried out in [31,32].

In the present article, we generalize and somehow improve earlier existing works
[3, 11, 19] by considering a wide class of functions a(t) that includes the most common
investigated example a(t) = tσ. One of the novelties here is the non-standard assump-
tions on the time-dependent term a(t) which cover the hypotheses in earlier works
[3, 11,19].
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Roughly speaking, our main results say that the blow-up occurs if one of the
following conditions is satisfied:

(a) 0 < ℓ < ∞, p∗(N,α) < p < p∗(N,α) and
∫
RN w(x) dx > 0,

(b) ℓ = ∞, p > p∗(N,α) and
∫
RN w(x) dx > 0,

(c) ℓ = 0, J ̸= ∅ and
∫
RN w(x) dx > 0,

where ℓ, p∗(N,α), p∗(N,α), J are respectively given by (2.1), (2.2) and (2.3) below.
We conclude the introduction with an outline of the paper. The next section contains

our main results, that is Theorem 2.1, Theorem 2.4 and Theorem 2.8. In Section 3,
we give the proofs of Theorems 2.1-2.4. The fourth section is devoted to the proof of
Theorem 2.8. In the sequel, C will be used to denote a constant which may vary from
line to line.

2. MAIN RESULTS

In order to present our main results clearly, we define the function

A(t) = 1
t

t∫

0

a(s) ds,

and assume that
lim

t→∞
A(t) = ℓ ∈ [0,∞]. (2.1)

We also define

p∗(N,α) = 1 + α

N
, p∗(N,α) = N + α

N − 2

(
p∗(N,α) = ∞ if N = 1, 2

)
. (2.2)

Theorem 2.1. Suppose 0 < ℓ < ∞, p∗(N,α) < p < p∗(N,α) and
∫
RN w(x) dx > 0.

Then (1.1) has no global solutions on S in the sense of Definition 1.1.

Remark 2.2. Clearly, the condition p > p∗(N,α) makes sense only for α > 0.

Examples 2.3. Some examples of functions a(t) satisfying (2.1) with ℓ ∈ (0,∞) are
listed below.

(i) Constant at infinity: a(t) = a∞ + o(1) as t → ∞, where a∞ > 0.
(ii) Oscillating: a(t) = cos2(t) or a(t) = sin2(t). Other combinations are allowed.
(iii) Periodic: More generally, if a(t) is ϑ-periodic then by (5.4) a(t) satisfies (2.1) with

ℓ = 1
ϑ

ϑ∫

0

a(s) ds.

Theorem 2.4. Suppose ℓ = ∞, p > p∗(N,α) and
∫
RN w(x) dx > 0. Then (1.1) has

no global solutions on S in the sense of Definition 1.1.
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Examples 2.5. Some examples of functions a(t) satisfying (2.1) with ℓ = ∞ are
listed below.

(i) Power functions: a(t) = a∞tm + o(1) as t → ∞, where a∞,m > 0.
(ii) Power-Log functions: a(t) = a∞tm(ln t)q + o(1) as t → ∞, where a∞ > 0 and

either m > 0, q ∈ R or m = 0, q > 0.
(iii) Oscillating: a(t) = tm ψ(t) + o(1) as t → ∞ with m > 0 and ψ is a continuous

ϑ-periodic function such that
∫ ϑ

0 ψ(s)ds > 0. It follows by (5.4) that a(t) satisfies
(2.1) with ℓ = ∞.

As it will be clear in the proofs, our method doesn’t cover the case ℓ = 0. To handle
this case, we introduce the set

J =
{
q ∈ R : lim

T →∞
T q

2
3 T∫

T
2

a(t) dt = ∞
}
. (2.3)

Note that the choice of ( T
2 ,

2T
3 ) is technical and is related to the test function method

used here. It can be any interval (λT, µ T ) with 0 < λ < µ < 1.
The following description of the set J is straightforward.

Proposition 2.6. Suppose that J ̸= ∅. Then, we have J = (q0,∞), where

q0 = inf J ∈ [−∞,∞).

Remark 2.7.

1. If a(t) = 1
t then J = (0,∞).

2. If a(t) = et then J = R.
3. We may have J = ∅ if we take, for example, a(t) = e−t.

The following theorem covers the case ℓ = 0 and can be seen as a general statement
for blow-up.

Theorem 2.8. Suppose
∫
RN w(x)dx > 0 and J ̸= ∅.

1. If J = R then (1.1) has no global solutions on S in the sense of Definition 1.1
provided that p > p∗(N,α).

2. If J = (q0,∞) with q0 ∈ R then (1.1) has no global solutions on S in the sense of
Definition 1.1 provided that

2p+ α

2(p− 1) − N

2 − 1 > q0. (2.4)

Remark 2.9. Theorem 2.8 partially covers earlier results given in [3, 11, 19] as
explained below.

For a(t) ≡ 1, we have q0 = −1. The condition (2.4) with α = 0 translates to
p < N

N−2 (p < ∞ for N = 1, 2). Hence, we recover [3, Theorem 2.1, Part (a)].
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Let a(t) = tσ with σ > −1 and α = 0. The condition σ > −1 ensure the local
integrability of a(t) on (0,∞). Clearly q0 = −1 − σ. Owing to (2.4), we see that
blow-up occurs for 2p

p−1 > N − 2σ. We conjecture that

p∗(σ) =
{

N−2σ
N−2σ−2 if − 1 < σ < N

2 − 1,
∞ if σ ≥ N

2 − 1.

Suppose now that a(t) ∈ L1
loc(0,∞) and a(t) ∼ a∞ tm as t → ∞ for some constants

a∞ > 0 and m ∈ R. Clearly q0 = −1 −m. Thanks to (2.4), we conjecture that

p∗(m,α) =
{

N−2m+α
N−2m−2 if m < N

2 − 1,
∞ if m ≥ N

2 − 1.

Remark 2.10. While Theorem 2.1 and Theorem 2.4 cover the cases 0 < ℓ < ∞ and
ℓ = ∞ respectively, Theorem 2.8 treats the remainder case ℓ = 0 and can be seen as
a more general statement for blow-up.

Open Problem 2.11. The validity of Theorem 2.8 in the case J = ∅ remains an
interesting open problem. For example, we have no clue how to handle the case
a(t) = tσe−t, σ > −1. This will be investigated in a forthcoming paper.

3. PROOFS OF THEOREM 2.1 AND THEOREM 2.4

As one will see, our proof borrows some arguments from [3]. Let φ ∈ C2(RN ) be
a smooth function such that:

φ = 1 in B1(0), φ = 0 in BC
2 (0) and 0 ≤ φ ≤ 1 everywhere, (3.1)

∂φ

∂n
= 0 on ∂

(
B2(0) −B1(0)

)
, (3.2)

|∆φ| ≤ Cθφ
θ in B2(0) −B1(0) for all θ ∈ (0, 1), (3.3)

where, for r > 0, Br(0) stands for the euclidean ball in RN centered at 0 and with
radius r.

An example of a function φ satisfying (3.1)–(3.3) is given by (see [3])

φ(x) =





1 if |x| ≤ 1,
exp

(
1 − 1

1−(1−|x|)4

)
if 1 < |x| < 2,

0 if |x| ≥ 2.
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Define the functions

FR(t) =
∫

RN

u(t, x)φR(x)dx,

GR(t) =
∫

RN

|x|α |u(t, x)|p φR(x)dx,

HR(t) =
∫

RN

|u(t, x)|φR(x)dx,

KR(t) =
t∫

t0

Hp
R(s)ds,

where φR(x) = φ( x
R ), R > 0 and t0 > 0. The following propositions summarize

the main properties of functions FR, GR, HR,KR that will be crucial in our proofs.

Proposition 3.1. For R > 0 we have

F ′
R(t) ≥ GR(t) − C R−2+ N

p (p−p∗(N,α)) G
1
p

R(t) + a(t)
∫

RN

w(x)φR(x) dx, (3.4)

where p∗(N,α) is given by (2.2).

Proof. Multiply the first equation in (1.1) by φR and making an integration by parts,
we get

F ′
R(t) =

∫

RN

u∆φRdx+
∫

RN

|x|α|u|pφRdx+ a(t)
∫

RN

w(x)φRdx.

Using Hölder’s inequality, we infer

∣∣∣
∫

RN

u∆φRdx
∣∣∣ ≤

( ∫

RN

|x|α|u|pφR dx

) 1
p

( ∫

R≤|x|≤2R

|x|−
αq
p φ

− q
p

R |∆φR|q dx
) 1

q

≤
(
GR(t)

) 1
p

( ∫

R≤|x|≤2R

|x|−
αq
p φ

− q
p

R |∆φR|q dx
) 1

q

,

where 1
p + 1

q = 1.

From (3.3), one easily verifies that φ− q
p

R |∆φR|q ≤ C R−2q. Hence,
∫

R≤|x|≤2R

|x|−
αq
p φ

− q
p

R |∆φR|q dx ≤ C R−2q RN− α q
p ,

which in turn completes the proof of (3.4).
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Proposition 3.2. For R > 0, we have

F ′
R(t) ⩾ a(t)

∫

RN

w(x)φR(x)dx− C R
p(N−2)−(N+α)

p−1 . (3.5)

Proof. The proof of (3.5) immediately follows from (5.1) by choosing Z = GR(t),
λ = C R−2+ N

p (p−p∗(N,α)) and θ = 1
p . Note that

1
1 − θ

(
−2 + N

p
(p− p∗(N,α))

)
= p(N − 2) − (N + α)

p− 1 ,

where p∗(N,α) is given by (2.2).

Proposition 3.3. There exist R0 > 0 and δ > 0 such that, for all R ≥ R0, one has

F ′
R(t) ⩾ δa(t) − C R

p(N−2)−(N+α)
p−1 . (3.6)

Proof. Taking into consideration w ∈ L1(RN ), one obtains thanks to Lebesgue theorem∫
RN w(x)φR(x) dx →

∫
RN w(x) dx > 0 as R → ∞. This obviously leads to (3.6).

Proposition 3.4. Let R ≥ R0 where R0 is as in Proposition 3.3. Suppose either

ℓ = ∞, (3.7)

or
ℓ ∈ (0,∞) and p < p∗(N,α). (3.8)

Then, we have
lim

t→∞
FR(t) = ∞. (3.9)

Proof. Integrating (3.6) with respect to t yields

FR(t) ≥ FR(0) + t

(
δA(t) − C R

p(N−2)−(N+α)
p−1

)
. (3.10)

Observe that
p(N − 2) − (N + α)

p− 1 = N − 2
p− 1 (p− p∗(N,α)) , N ≥ 3,

so that (3.9) follows from (3.10) under the assumption (3.8). The case (3.7) is easier.
This finishes the proof of Proposition 3.4.

Proposition 3.5. Let p > p∗(N,α) and R ≥ R0 where R0 is as in Proposition 3.3.
Then, we have

FR(t) ⩽ HR(t) ⩽ CR
N(p−1)−α

p

(
GR(t)

) 1
p

. (3.11)

In particular
lim

t→∞
GR(t) = ∞. (3.12)
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Proof. Clearly FR(t) ⩽ HR(t). Next, by invoking Hölder’s inequality together
with (3.1), we get

HR(t) =
∫

RN

(
|u(t, x)||x| α

p φ
1
p

R(x)
)(

|x|− α
p φ

1− 1
p

R (x)
)
dx

⩽
( ∫

RN

|x|− α
p−1φR(x)dx

)1− 1
p

( ∫

RN

|u(t, x)|p|x|αφR(x)dx
) 1

p

⩽
( ∫

{|x|≤2R}

|x|− α
p−1 dx

)1− 1
p

(
GR(t)

) 1
p

⩽ CR
N(p−1)−α

p

(
GR(t)

) 1
p

.

The proof of Proposition 3.5 is now complete.

Proposition 3.6. There exists t0 > 0 such that, for all t ⩾ t0 and R ⩾ R0,

F ′
R(t) ⩾ δ a(t) + 1

2GR(t), (3.13)

where R0 is as in Proposition 3.3.
Proof. Owing to (3.4) and granted (3.12), one can write

F ′
R(t) ≥ δa(t) +GR(t) − C R−2+ N

p (p−p∗(N,α)) G
1
p

R(t)

≥ δa(t) +GR(t)
[
1 − C R−2+ N

p (p−p∗(N,α)) G
1
p −1
R (t)

]

≥ δ a(t) + 1
2GR(t),

for t ≥ t0 > 0 large enough. This finishes the proof.

Proposition 3.7. For t ⩾ t0 and R ⩾ R0, we have

K ′
R(t) ⩾ C Rp(α−N(p−1))

(
KR(t)

)p

. (3.14)

Proof. Using (3.13) and (3.11), we find that

F ′
R(t) ⩾ δa(t) + C Rα−N(p−1) Hp

R(t). (3.15)

Upon integrating (3.15) on [t0, t], we obtain

FR(t) ⩾ FR(t0) + δ

t∫

t0

a(s)ds+ C Rα−N(p−1) KR(t) ⩾ C Rα−N(p−1) KR(t).

Recalling (3.11) yields (3.14) as desired.
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End of proofs of Theorems 2.4 and 2.8. Suppose that assumptions of Theorem 2.4
(respectively Theorem 2.8) are fulfilled. Since the differential inequality (3.14) blows
up in finite time, we deduce that the solution of (1.1) cannot be global in time. This
completes the proofs.

4. PROOF OF THEOREM 2.8

We will focus in this section on blow-up results stated in Theorems 2.8. Suppose that
the maximal solution u of (1.1) is global in time. In order to obtain a contradiction
we use the so-called test function method [3, 11, 19, 24]. Pick two cut-off functions
f, g ∈ C∞([0,∞)) such that 0 ≤ f, g ≤ 1,

f(τ) =
{

1 if 1/2 ≤ τ ≤ 2/3,
0 if τ ∈ [0, 1/4] ∪ [3/4,∞),

(4.1)

and

g(τ) =
{

1 if 0 ≤ τ ≤ 1,
0 if τ ≥ 2.

(4.2)

For T,R > 0, we introduce ψT,R(t, x) = fT (t) gR(x), where

fT (t) =
(
f

(
t

T

)) p
p−1

and gR(x) =
(
g

( |x|2
R2

)) 2p
p−1

.

Multiplying both sides of the differential equation in (1.1) by ψT,R and integrating
over (0, T ) × RN yields

T∫

0

∫

RN

|x|α |u|p ψT,R dx dt+
T∫

0

∫

RN

a(t)w(x)ψT,R dx dt+
∫

RN

u0(x)ψT,R(0, x) dx

= −
T∫

0

∫

RN

u∆ψT,R dx dt−
T∫

0

∫

RN

u ∂tψT,R dx dt.

Granted to ψT,R(0, x) = 0, we obtain that

(I) + (II) ≤ (III) + (IV ),
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where

(I) =
T∫

0

∫

RN

|x|α |u|p fT (t)gR(x) dx dt,

(II) =
T∫

0

∫

RN

a(t)w(x) fT (t)gR(x) dx dt,

(III) =
T∫

0

∫

RN

|u| fT (t)|∆ gR(x)| dx dt,

(IV ) =
T∫

0

∫

RN

|u| gR(x)|∂t fT (t)| dx dt.

Next, applying Young’s inequality as in [19], we infer

(III) ≤ 1
2(I) + A(T,R),

(IV ) ≤ 1
2(I) + B(T,R),

where

A(T,R) = C

T∫

0

∫

RN

|x|− α
p−1 fT (t)g− 1

p−1
R (x)|∆gR(x)|

p
p−1 dx dt,

B(T,R) = C

T∫

0

∫

RN

|x|− α
p−1 f

− 1
p−1

T (t)gR(x)|∂tfT (t)|
p

p−1 dx dt,

where we have used (4.1), (4.2) and the fact that

|∆ gR(x)| ≲ R−2 g
1/p
R (x).

Arguing as in [19], we find that

A(T,R) ≲ TRN− 2p+α
p−1 ,

B(T,R) ≲ T 1− p
p−1RN− α

p−1 ,

provided that p > p∗(N,α). Plugging all estimates above together, we find that

T∫

0

∫

RN

a(t)w(x)ψT,R(t, x) dx dt ≲ TRN− 2p
p−1 − α

(p−1) + T 1− p
p−1RN− α

(p−1) .
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Now, since w ∈ L1(RN ) and gR(x) → g(0) = 1 as R → ∞, we obtain by the Lebesgue
theorem that ∫

RN

w(x)gR(x) dx −→
R→∞

∫

RN

w(x) dx > 0.

It follows that there exists R0 > 0 such that for all R ≥ R0 and T > 0, we have

( T∫

0

a(t)
(
f

(
t

T

)) p
p−1

dt

)( ∫

RN

w(x) dx
)

≲ TRN− 2p
p−1 − α

(p−1) + T 1− p
p−1RN− α

p−1 .

Owing to (4.1), the above estimate translates to

∫

RN

w(x) dx ≲ RN− 2p+α
p−1 + T− p

p−1RN− α
p−1

1
T

2T
3∫

T
2

a(t)dt

. (4.3)

End of the proof of Theorem 2.8. Taking R =
√
T in (4.3), we deduce that for large

enough T > 0, one has ∫

RN

w(x) dx ≲ 1

T q

2T
3∫

T
2

a(t)dt

, (4.4)

where q = α+2p
2(p−1) − 1 − N

2 .
If J = R, we obtain a contradiction by letting T → ∞ in (4.4). This proves Part (i)

in Theorem 2.8. Next, if J = (q0,∞) for some q0 ∈ R, and α+2p
2(p−1) −1− N

2 > q0, we obtain
a contradiction by letting T → ∞ in (4.4). This proves Part (ii) in Theorem 2.8. This
finishes the proof of Theorem 2.8.

Remark 4.1. Note that we use in our proof (4.3) with R =
√
T , that is (4.4), instead

of (4.3). Nevertheless, (4.3) is useful to give an alternative proof of Theorems 2.1–2.4.

5. APPENDIX

The following technical results are classical. For the sake of completeness, we give their
proofs here.

Lemma 5.1. Let λ > 0 and θ ∈ (0, 1). Then

min
Z⩾0

(
Z − λZθ

)
= (θ − 1) θ θ

1−θ λ
1

1−θ . (5.1)
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Proof. Define F (Z) = Z − λZθ. Then F is differentiable on (0,∞) and F ′(Z) =
1−θλZθ−1. It follows that F is decreasing on (0, Z0) and increasing on (Z0,∞), where
Z0 = (θλ) 1

1−θ . Consequently, F achieves its minimum at Z = Z0, that is

min
Z≥0

F (Z) = F (Z0) = (θλ) 1
1−θ − λ (θλ) θ

1−θ = (θ − 1) θ θ
1−θ λ

1
1−θ .

The proof of Lemma 5.1 is now complete.

Lemma 5.2. Let y : [t0, T ) → (0,∞) be a differentiable function such that

y′(t) ⩾ C yp(t), t0 ≤ t < T, (5.2)

where C > 0 and p > 1. Then

T ≤ t0 + y1−p(t0)
C(p− 1) < ∞.

Proof. From (5.2) we get

d

dt

[
y1−p(t)
1 − p

]
= y′(t)y−p(t) ≥ C. (5.3)

By integrating (5.3) in time, we infer

y1−p(t0)
p− 1 − y1−p(t)

p− 1 ≥ C(t− t0), t0 ≤ t < T.

Keeping in mind that y(t) > 0 and p > 1, we obtain that

C(t− t0) ≤ y1−p(t0)
p− 1 .

Therefore,

t ≤ t0 + y1−p(t0)
C(p− 1) .

Since t0 ≤ t < T is arbitrary, we get

T ≤ t0 + y1−p(t0)
C(p− 1) .

This finishes the proof of Lemma 5.2.

Lemma 5.3. Let g : [a, b] → R be a C1−function and ψ : R → R be a continuous
periodic function with period ϑ > 0. Then

lim
λ→∞

b∫

a

g(s)ψ(λ s) ds =
(

1
ϑ

ϑ∫

0

ψ(s) ds
) ( b∫

a

g(s) ds
)
. (5.4)
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Proof. Define

I(λ) =
b∫

a

g(s)ψ(λ s) ds−
(

1
ϑ

ϑ∫

0

ψ(s) ds
) ( b∫

a

g(s) ds
)
.

Obviously, one can write

I(λ) =
b∫

a

g(s) f(λ s) ds,

where

f(s) = ψ(s) − 1
ϑ

ϑ∫

0

ψ(s) ds.

We also define

F (s) =
s∫

0

f(τ) dτ.

Note that f is ϑ-periodic and
∫ ϑ

0 f(τ) dτ = 0. Hence, F is also ϑ-periodic and
consequently bounded, that is

M = sup
s∈R

|F (s)| < ∞. (5.5)

By performing an integration by parts, we infer

I(λ) =
b∫

a

g(s) f(λ s) ds =
b∫

a

g(s) 1
λ

d

ds
[F (λ s)] ds

= 1
λ

(
g(b)F (λ b) − g(a)F (λ a)

)
− 1
λ

b∫

a

g′(s)F (λ s) ds.

Owing to (5.5), we deduce that

|I(λ)| ≤ M

λ

(
|g(b)| + |g(a)| +

b∫

a

|g′(s)| ds
)
. (5.6)

From (5.6) we easily deduce that I(λ) → 0 as λ → ∞ which is exactly the desired
conclusion (5.4). This ends the proof of Lemma 5.3.
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