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Abstract. A technique is developed to establish a new oscillation criterion for
a first-order linear difference equation with several delays and non-negative coefficients.
Our result improves recent oscillation criteria and covers the cases of monotone and
non-monotone delays. Moreover, the paper is concluded with an illustrative example
to show the applicability and strength of our result.
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1. INTRODUCTION

In this paper, we study the oscillation of the first order delay difference equation with
several retarded arguments of the form

∆y(n) +
m∑

i=1
pi(n)y(τi(n)) = 0, n ∈ N0, (1.1)

where (pi(n)), 1 ≤ i ≤ m are sequences of non-negative real numbers and (τi(n)) is
a sequence of integers for each 1 ≤ i ≤ m such that

τi(n) ≤ n − 1, n ∈ N0 and lim
n→∞

τi(n) = ∞, 1 ≤ i ≤ m. (1.2)

Here, ∆ denotes the forward difference operator ∆y(n) = y(n + 1) − y(n) and N0 is
the set of non-negative integers. In view of (1.2), the number

w = − min
n≥0

1≤i≤m

τi(n)

is a finite positive integer.
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By a solution of Eq. (1.1), we mean a sequence of real numbers (y(n))n≥−w

which satisfies Eq. (1.1) for all n ≥ 0. Clearly, for each choice of real numbers
c−w, c−w+1, . . . , c−1, c0, there exists a unique solution (y(n))n≥−w of Eq. (1.1) which
satisfies the initial conditions

y(−w) = c−w, y(−w + 1) = c−w+1, . . . , y(−1) = c−1, y(0) = c0.

Such a solution is called oscillatory if the terms y(n) of the sequence are neither
eventually positive nor eventually negative; otherwise it is called non-oscillatory.
The equation is oscillatory if all its solutions oscillate.

Assume that the arguments τi(n), 1 ≤ i ≤ m, are not necessarily monotone,

τ(n) := max
1≤i≤m

τi(n), γi(n) := max
0≤s≤n

τi(s)

and γ(n) := max
1≤i≤m

γi(n), for all n ∈ N0.
(1.3)

Throughout this work, we will consider the following:
r−1∑

i=r

A(i) = 0 and
r−1∏

i=r

A(i) = 1, where A(i) ∈ R+,

p̃(n) :=
m∑

i=1
pi(n),

α := lim inf
n→∞

n−1∑

j=τ(n)

p̃(j), (1.4)

and

D(ω) :=
{

0, if ω > 1/e,
1−ω−

√
1−2ω−ω2

2 , if ω ∈ [0, 1/e] .
(1.5)

Also, λ0 stands for the smaller root of the transcendental equation λ = eαλ.
Our aim in this work is to improve recent oscillation criteria of the limsup type.

The first of this type of conditions appeared in [9] for Eq. (1.1) with m = 1 in the form

lim sup
n→∞

n∑

j=γ(n)

p̃(j) > 1. (1.6)

This condition is working also for Eq. (1.1), see [11]. Other interesting nonoscillation
criteria can be found in [4]. The reader is referred to [1–3, 5–11, 13, 14] for several
improvements of (1.6) for Eq. (1.1) with general delay arguments. One of these im-
provements (see [6]) states that (1.1) is oscillatory if

lim sup
n→∞

n∑

l=γ(n)

p̃(l) exp




γ(n)−1∑

j=τ(l)

p̃(j)
j−1∏

u=τ(j)

1
1 − Zw(u)


 > 1 − D(α), for some w ∈ N,

(1.7)
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where

Zw(n) = p̃(n)


1 +

n−1∑

l=τ(n)

p̃(l) exp




n−1∑

j=τ(l)

p̃(j)
j−1∏

u=τ(j)

1
1 − Zw−1(u)






with

Z0(n) = p̃(n)


1 +

n−1∑

l=τ(n)

p̃(l) exp(λ0

n−1∑

j=τ(l)

p̃(j))


 .

In this paper not only an essential improvement of (1.7) is established but also
a criterion that works on certain equations when other known criteria fail to do so.

The following lemmas will be used in our proof.

Lemma 1.1 ([5]). Assume that (1.2) holds and α is defined by (1.4) with α > 0. Then
we have

lim inf
n→∞

n−1∑

j=γ(n)

p̃(j) = lim inf
n→∞

n−1∑

j=τ(n)

p̃(j) = α,

where γ(n), τ(n) are defined by (1.3).

Lemma 1.2 ([5]). Assume that (1.2) holds, α is defined by (1.4) with 0 < α ≤ 1/e,
and y(n) is an eventually positive solution of (1.1). Then we have

lim inf
n→∞

y(γ(n))
y(n) ≥ λ0, (1.8)

where γ(n) is defined by (1.3).

Let y(n) be an eventually positive solution of (1.1). Then y(n) will be an eventually
positive nonincreasing solution of the inequality

∆y(n) + p̃(n)y(γ(n)) ≤ 0.

On the other hand, a close look at the proof of [12, Lemma 2.1] shows that it can be
carried out verbatim on this inequality. This leads to the following result; see also
[6, Lemma 3].

Lemma 1.3. Assume that (1.2) holds, γ(n) is defined by (1.3), α is defined by (1.4)
with 0 < α ≤ 1/e and y(n) is an eventually positive solution of (1.1). Then

lim inf
n→∞

y(n + 1)
y(γ(n)) ≥ D(α),

where D(α) is defined by (1.5).
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2. MAIN RESULTS

Lemma 2.1. Assume that y(n) is an eventually positive solution of (1.1) for all
n ≥ n0 > 0. Then there exists a sub-sequence {nk} such that nk ≥ nk−1, τ(n) > nk−1
for n ≥ nk, k = 1, 2, . . . and

y(n + 1)
y(n) ≤ v(n, k) for all n ≥ nk, (2.1)

where

v(n, k) = 1 − p̃(n)
n−1∏

j=τ(n)

v−1(j, k − 1) for all n ≥ nk+1, k = 1, 2, . . . , (2.2)

and v(n, 0) = 1 for all n ≥ n1.

Proof. Since y(n) > 0 for all n ≥ n0, then ∆y(n) ≤ 0 as long as τi(n) > n0, for all
i = 1, 2, . . . , m. Since limn→∞ τi(n) = ∞, 1 ≤ i ≤ m, then there exists n1 ≥ n0 such
that τi(n) > n0 for each i and all n ≥ n1. Then (1.1) implies that

y(n + 1) − y(n) + p̃(n)y(τ(n)) ≤ 0, for all n ≥ n1. (2.3)

Dividing by y(n), and using the product representation of the quotient y(τ(n))
y(n) ,

we obtain

y(n + 1)
y(n) − 1 + p̃(n)

n−1∏

j=τ(n)

y(j)
y(j + 1) ≤ 0, for all n ≥ n1.

Let u(n) = y(n+1)
y(n) for all n ≥ n0. Then

u(n) ≤ 1 − p̃(n)
n−1∏

j=τ(n)

u−1(j), n ≥ n1. (2.4)

Since u(n) < 1 = v(n, 0) for n ≥ n1, then (2.4) yields

u(n) ≤ 1 − p̃(n)
n−1∏

j=τ(n)

v−1(j, 0) = v(n, 1), n ≥ n2, (2.5)

where n2 ≥ n1 is so large that τ(n) ≥ n1 for all n ≥ n2. Substituting from (2.5)
in (2.4), we obtain

u(n) ≤ 1 − p̃(n)
n−1∏

j=τ(n)

v−1(j, 1) = v(n, 2), n ≥ n3,
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where n3 ≥ n2 and τ(n) ≥ n2 for all n ≥ n3. Continuing this way, we arrive at

u(n) ≤ 1 − p̃(n)
n−1∏

j=τ(n)

v−1(j, k − 1) = v(n, k), n ≥ nk+1, k = 1, 2, . . .

The proof is complete.

Theorem 2.2. Assume that there exist l, k ∈ N0 and ϵ > 0 such that

lim sup
n→∞




n∑

i1=γ(n)

p̃(i1) exp
( γ(n)−1∑

j=τ(i1)

p̃(j)
j−1∏

i2=τ(j)

1
1 − 𭟋l(i2, ϵ) + A(γ(n), τ(i1), k)

)



> 1 − D(α),
(2.6)

where

𭟋l(n, ϵ)

= p̃(n)


1 +

n−1∑

i1=τ(n)

p̃(i1) exp
( n−1∑

j=τ(i1)

p̃(j)
j−1∏

i2=τ(j)

1
1 − 𭟋l−1(i2, ϵ) + A(n, τ(i1), k)

)

 ,

𭟋0(n, ϵ) = p̃(n)


1 +

n−1∑

i1=τ(n)

p̃(i1) exp
(

(λ0 − ϵ)
n−1∑

j=τ(i1)

p̃(j) + A(n, τ(i1), k)
)

 .

and

A(n, r, k) =
n−1∑

j=r

(
v(j, k) − ln v(j, k) − 1

)
, r ≥ nk, k = 1, 2, . . . ,

where v(n, k) is defined by (2.2). Then Eq. (1.1) is oscillatory.

Proof. Assume that y(n) is an eventually positive solution of (1.1) for sufficiently
large n. Let n0 ≥ 0 be an integer such that y(n) > 0, for all n ≥ n0. Then, there exists
n1 ≥ n0 such that (2.3) holds, which yields

∆y(n) ≤ −
m∑

i=1
pi(n)y(τ(n)) = −p̃(n)y(τ(n)), for all n ≥ n1. (2.7)

Now, dividing Eq. (2.7) by y(n) and summing up from r to n − 1, we get

n−1∑

j=r

∆y(j)
y(j) ≤ −

n−1∑

j=r

p̃(j)y(τ(j))
y(j) . (2.8)
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Notice that ex ≥ x+ea−a, for all x ≤ a ≤ 0. Moreover, the sequence {nk} of Lemma 2.1
exists. Then using (2.1), we have

exp
(

ln y(j + 1)
y(j)

)
≥ ln y(j + 1)

y(j) + exp(ln v(j, k)) − ln v(j, k)

= ln y(j + 1)
y(j) + v(j, k) − ln v(j, k), j ≥ nk.

Now, using the above inequality, we get
n−1∑

j=r

∆y(j)
y(j) =

n−1∑

j=r

(y(j + 1)
y(j) − 1

)

=
n−1∑

j=r

(
exp

(
ln y(j + 1)

y(j)

)
− 1
)

≥
n−1∑

j=r

(
ln y(j + 1)

y(j) + v(j, k) − ln v(j, k) − 1
)

= ln y(n)
y(r) + A(n, r, k), r ≥ nk.

Combining this together with (2.8), we obtain

ln y(n)
y(r) + A(n, r, k) ≤ −

n−1∑

j=r

p̃(j)y(τ(j))
y(j) , r ≥ nk.

Hence,

y(r) ≥ y(n) exp
( n−1∑

j=r

p̃(j)y(τ(j))
y(j) + A(n, r, k)

)
, n ≥ r ≥ nk. (2.9)

Summing up (2.7) from τ(n) to n − 1 and rearranging, we obtain

y(n) − y(τ(n)) +
n−1∑

i1=τ(n)

p̃(i1)y(τ(i1)) ≤ 0. (2.10)

From (2.9) and the fact that τ(i1) ≤ n, the last inequality takes the form

y(n) − y(τ(n)) + y(n)
n−1∑

i1=τ(n)

p̃(i1) exp
( n−1∑

j=τ(i1)

p̃(j)y(τ(j))
y(j)

+ A(n, τ(i1), k)
)

≤ 0, n ≥ nk.

Moreover, multiplying the above inequality by p̃(n), for n ≥ nk we get

p̃(n)y(n) − p̃(n)y(τ(n)) + p̃(n)y(n)
n−1∑

i1=τ(n)

p̃(i1) exp
( n−1∑

j=τ(i1)

p̃(j)y(τ(j))
y(j)

+ A(n, τ(i1), k)
)

≤ 0.
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This and (2.7) give

∆y(n) + p̃(n)
(

1 +
n−1∑

i1=τ(n)

p̃(i1) exp
( n−1∑

j=τ(i1)

p̃(j)y(τ(j))
y(j)

+ A(n, τ(i1), k)
))

y(n) ≤ 0, n ≥ nk.

(2.11)

Assuming that n0 is sufficiently large that

y(γ(n)) > (λ0 − ϵ)y(n), for all n ≥ n(ϵ) ≥ nk

and each ϵ > 0. Then

y(τ(n)) > (λ0 − ϵ)y(n), for all n ≥ nk. (2.12)

Combining (2.11) and (2.12), we get

∆y(n) + 𭟋0(n, ϵ)y(n) ≤ 0, n ≥ nk,

where

𭟋0(n, ϵ) = p̃(n)


1 +

n−1∑

i1=τ(n)

p̃(i1) exp
(

(λ0 − ϵ)
n−1∑

j=τ(i1)

p̃(j) + A(n, τ(i1), k)
)

 .

That is, 0 < y(n+1)
y(n) ≤ 1 − 𭟋0(n, ϵ), for n ≥ nk. Taking the product on both sides,

we obtain

y(r) ≥ y(n)
n−1∏

j=r

1
1 − 𭟋0(j, ϵ) , for all n ≥ r ≥ nk.

It follows that y(τ(j)) ≥ y(j)
∏j−1

i2=τ(j)
1

1−𭟋0(i2,ϵ) , for all j ≥ nk+1. Substituting into
(2.9), we have

y(r) ≥ y(n) exp
( n−1∑

j=r

p̃(j)
j−1∏

i2=τ(j)

1
1 − 𭟋0(i2, ϵ) + A(n, r, k)

)
, r ≥ nk+1. (2.13)

From (2.10) and (2.13), we obtain

y(n) − y(τ(n)) + y(n)
n−1∑

i1=τ(n)

p̃(i1) exp
( n−1∑

j=τ(i1)

p̃(j)
j−1∏

i2=τ(j)

1
1 − 𭟋0(i2, ϵ)

+ A(n, τ(i1), k)
)

≤ 0, n ≥ nk+3.

Multiplying the above inequality by p̃(n), for n ≥ nk+3 we get

p̃(n)y(n) − p̃(n)y(τ(n)) + p̃(n)y(n)
n−1∑

i1=τ(n)

p̃(i1) exp
( n−1∑

j=τ(i1)

p̃(j)
j−1∏

i2=τ(j)

1
1 − 𭟋0(i2, ϵ)

+ A(n, τ(i1), k)
)

≤ 0.
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This and (2.7) give

∆y(n) + p̃(n)
(

1 +
n−1∑

i1=τ(n)

p̃(i1) exp
( n−1∑

j=τ(i1)

p̃(j)
j−1∏

i2=τ(j)

1
1 − 𭟋0(i2, ϵ)

+ A(n, τ(i1), k)
))

y(n) ≤ 0,

for n ≥ nk+3. Then

∆y(n) + 𭟋1(n, ϵ)y(n) ≤ 0, n ≥ nk+3, (2.14)

where

𭟋1(n, ϵ) = p̃(n)
(

1 +
n−1∑

i1=τ(n)

p̃(i1) exp
( n−1∑

j=τ(i1)

p̃(j)
j−1∏

i2=τ(j)

1
1 − 𭟋0(i2, ϵ)

+ A(n, τ(i1), k)
))

.

That is, 0 < y(n+1)
y(n) ≤ 1 −𭟋1(n, ϵ), for all n ≥ nk+3. Taking the product on both sides,

we have

y(r) ≥ y(n)
n−1∏

j=r

1
1 − 𭟋1(j, ϵ) , for all n ≥ r ≥ nk+3.

It follows that

y(τ(j)) ≥ y(j)
j−1∏

i2=τ(j)

1
1 − 𭟋1(i2, ϵ) , j ≥ nk+4.

Substituting into (2.9), we obtain

y(r) ≥ y(n) exp
( n−1∑

j=r

p̃(j)
j−1∏

i2=τ(j)

1
1 − 𭟋1(i2, ϵ) + A(n, r, k)

)
, r ≥ nk+4. (2.15)

Applying the same strategy implying (2.14), we arrive at the inequality

∆y(n) + 𭟋2(n, ϵ)y(n) ≤ 0, n ≥ nk+6.

Now, by induction, we obtain ∆y(n) + 𭟋l(n, ϵ)y(n) ≤ 0, for all n ≥ nk+3l, where

𭟋l(n, ϵ) = p̃(n)
(

1 +
n−1∑

i1=τ(n)

p̃(i1) exp
( n−1∑

j=τ(i1)

p̃(j)
j−1∏

i2=τ(j)

1
1 − 𭟋l−1(i2, ϵ)

+ A(n, τ(i1), k)
))

.
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Therefore, in a similar fashion as (2.15), we obtain

y(r) ≥ y(n) exp
( n−1∑

j=r

p̃(j)
j−1∏

i2=τ(j)

1
1 − 𭟋l(i2, ϵ) + A(n, r, k)

)
, n ≥ nk+3l+1. (2.16)

Again, summing up (2.7) from γ(n) to n and rearranging, we obtain

y(n + 1) − y(γ(n)) +
n∑

i1=γ(n)

p̃(i1)y(τ(i1)) ≤ 0.

From (2.16), taking into account the fact τ(i1) ≤ γ(i1) ≤ γ(n), we obtain

y(n + 1) − y(γ(n)) + y(γ(n))
n∑

i1=γ(n)

p̃(i1) exp
( γ(n)−1∑

j=τ(i1)

p̃(j)
j−1∏

i2=τ(j)

1
1 − 𭟋l(i2, ϵ)

+ A(γ(n), τ(i1), k)
)

≤ 0,

that is,

n∑

i1=γ(n)

p̃(i1) exp
( γ(n)−1∑

j=τ(i1)

p̃(j)
j−1∏

i2=τ(j)

1
1 − 𭟋l(i2, ϵ) + A(γ(n), τ(i1), k)

)
≤ 1 − y(n + 1)

y(γ(n)) ,

for n ≥ nk+2(l+1). Therefore,

lim sup
n→∞

( n∑

i1=γ(n)

p̃(i1) exp
( γ(n)−1∑

j=τ(i1)

p̃(j)
j−1∏

i2=τ(j)

1
1 − 𭟋l(i2, ϵ)

+ A(γ(n), τ(i1), k)
))

≤ 1 − D(α).

This contradicts (2.6). The proof is complete.

Remark 2.3. Since A(γ(n), τ(i1), k) is positive and 𭟋l(n, ϵ) increases in
A(γ(n), τ(i1), k), then its lower bound, with respect to A, equals Zw(n) for sufficiently
small ϵ. This means that the left-hand side of (2.6) is greater than the left-hand side
of (1.7). Thus condition (2.6) is a substantial improvement of (1.7).

In the next example we show the strength of our condition over some known
oscillation criteria including (1.7). First, we collect those criteria as follows:

(1) Chatzarakis, Horvat-Dmitrović and Pašić [8]:

lim sup
n→∞

n∑

j=γ(n)

p̃(j)
γ(n)−1∏

i=τ(j)

1
1 − p̃w(i) > 1, (2.17)
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where w ∈ N and

p̃w(n) = p̃(n)


1 +

n−1∑

i=τ(n)

p̃(i)
γ(n)−1∏

j=τ(i)

1
1 − p̃w−1(j)


 ,

with p̃0(n) = p̃(n).
(2) Chatzarakis and Pašić [7]:

lim sup
n→∞

n∑

l=γ(n)

p̃(l) exp




γ(n)−1∑

j=τ(l)

p̃(j)
j−1∏

i=τ(j)

1
1 − R̃w(i)


 > 1, for some w ∈ N,

(2.18)
where

R̃w(n) = p̃(n)


1 +

n−1∑

l=τ(n)

p̃(l) exp




n−1∑

j=τ(ℓ)

p̃(j)
j−1∏

i=τ(j)

1
1 − R̃w−1(i)






with R̃0(n) = p̃(n)
[
1 + λ0

∑n−1
l=τ(n) p̃(ℓ)

]
.

(3) Kilic and Ocalan [14]:

lim inf
n→∞




n−1∑

j=τ(n)




m∑

i=1


pi(j)

γ(j)−1∏

l=τi(j)

(1 − p̃(l))−1






 >

1
e . (2.19)

Example 2.4. Consider the first order difference equation with several delays

∆y(n) + p1(n)y(τ1(n)) + p2(n)y(τ2(n)) = 0, (2.20)

where p1(n) = 0.17, p2(n) = 0.005,

τ1(n) =





n − 1, if n = 3k,

n − 3, if n = 3k + 1,

n − 1, if n = 3k + 2,

and τ2(n) = τ1(n) − 1, where k ∈ N0. Clearly,

γ1(n) =





n − 1, if n = 3k,

n − 2, if n = 3k + 1,

n − 1, if n = 3k + 2,

and

α := lim inf
n→∞

3k−1∑

j=τ(3k)

p̃(j) = 0.175 < 1.
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It follows that λ0 ≈ 1.242995532 and 1 − D(α) ≈ 0.9810019060. Since v(n, 0) = 1
and (2.2), we get

v(n, 1) = 1 − p̃(n)
3k−1∏

j=τ(3k)

v−1(j, 0) = 1 −
2∑

j=1
pj(n) = 1 − 0.175 = 0.825.

Then

A(n, r, 1) =
n−1∑

j=r

(
v(j, 1) − ln v(j, 1) − 1

)
= 0.0173718926(n − r).

Also, for ϵ = 0.0001, we have

lim sup
n→∞

n∑

i1=γ(n)

p̃(i1) exp
( γ(n)−1∑

j=τ(i1)

p̃(j)
j−1∏

i2=τ(j)

1
1 − 𭟋1(i2, ϵ) + A(γ(n), τ(i1), 1)

)

= lim
k→∞

3k+2∑

i1=γ(3k+2)

p̃(i1) exp
(

γ(3k+2)−1∑

j=τ(i1)

p̃(j)
j−1∏

i2=τ(j)

1
1 − 𭟋1(i2, ϵ)

+ A(γ(3k + 2), τ(i1), 1)
)

= 1.06 > 1 − D(α).

Then according to Theorem 2.2, for l = 1 the equation is oscillatory.
Now we show that other criteria fail to show that (2.20) is oscillatory. All calculation

are done using Mathematica software. First, we see that (2.17) fails, for w = 2, since

lim sup
n→∞

n∑

l=γ1(n)

p̃(l)
γ(n)−1∏

i=τ(ℓ)

1
1 − p̃w(i) = lim

k→∞

3k+2∑

l=γ1(3k+2)

0.175
γ(3k+2)−1∏

i=τ(ℓ)

1
1 − p̃2(i) < 0.638.

Second, (2.18) fails, for w = 1, since

lim sup
n→∞

n∑

l=γ(n)

p̃(l) exp




γ(n)−1∑

j=τ(l)

p̃(j)
j−1∏

i=τ(j)

1
1 − R̃w(i)




= lim
k→∞

3k+2∑

l=γ1(3k+2)

0.175 exp




γ1(3k+2)−1∑

j=τ(l)

0.175
j−1∏

i=τ(j)

1
1 − R̃1(i)


 < 0.814.

Also, (1.7) fails, for w = 1, since

lim sup
n→∞

n∑

ℓ=γ1(n)

p̃(l) exp




γ1(n)−1∑

j=τ(l)

p̃(j)
j−1∏

u=τ(j)

1
1 − Z1(u)




= lim
k→∞

3k+1∑

ℓ=γ1(3k+1)

p̃(l) exp




γ1(3k+1)−1∑

j=τ(l)

p̃(j)
j−1∏

u=τ(j)

1
1 − Z1(u)


 < 0.908.
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Finally,

lim inf
n→∞

n−1∑

j=τ(n)




2∑

i=1


pi(j)

γ1(j)−1∏

l=τ(j)

(1 − p̃(l))−1






= lim
k→∞

3 k−1∑

j=τ(3 k)




2∑

i=1


pi(j)

γ1(j)−1∏

l=τ(j)

(1 − p̃(l))−1




 = 0.175 <

1
e .

Thus, (2.19), which is a limit inferior type criterion, fails. This highlights the broad
applicability and strength of our criterion.
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