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Abstract. In this paper we consider secondary dominating sets, also named as
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1. INTRODUCTION AND PRELIMINARY RESULTS

In general we use the standard terminology and notation of graph theory, see [7].
For domination related concepts not defined here see [11].

Let G be a finite, simple, undirected graph with the vertex set V (G) and the edge set
E(G). The set of all vertices which are adjacent to x ∈ V (G) is named the neighbourhood
of x and denoted by NG(x). By dG(x) we denote the degree of the vertex x. A vertex
of the degree one is called a leaf, every neighbour of a leaf is called a support vertex. If
a vertex is adjacent to at least two leaves, it is said to be a strong support vertex. For
a graph G, let S(G) denote the set of support vertices of G and L(G) the set of leaves
of G.

By dG(x, y) we denote the distance between vertices x and y in the graph G. The
eccentricity of the vertex x ∈ V (G) is the maximum distance between x and any
other vertex in G. Every vertex of the smallest eccentricity in the graph G is called
the central vertex of G.

Let G be a connected graph and let x be a certain vertex of G such that
dG(x) = k ≥ 2. By a branch B at a vertex x in a graph G we mean a maximal
(with respect to inclusion) subtree, which includes x and exactly one edge incident
to x. A branch, which is a path, is named a pendant path.
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By Pn, n ≥ 2 and Cn, n ≥ 3 we denote a path and a cycle of order n, respectively.
Moreover, Km,n is a complete bipartite graph.

Let n ≥ 3 and k be positive integers, n > k, Pk a path of order k with a leaf u
and K1,n−k a star with central vertex v. Then the graph of order n obtained from
Pk and K1,n−k by identifying the vertices u and v is called a broom and denoted by
B(n, k). If n − k = 1, then the broom is a path, while if k = 1 or k = 2, it is a star.

The join of two graphs G and H is the graph G + H such that V (G + H) =
V (G) ∪ V (H) and E(G + H) = E(G) ∪ E(H) ∪ {xy : x ∈ V (G) and y ∈ V (H)}.

The corona of two graphs G and H is the graph G ◦ H obtained by taking one copy
of the graph G and |V (G)| copies of H and joining the i-th vertex of the graph G to
every vertex in the i-th copy of H, i ∈ {1, 2, . . . , |V (G)|}.

A subset D ⊆ V (G) is a dominating set of G if every vertex belonging to V (G)\D
has at least one neighbour in D. Dominating sets are one of the most intesively
studied concepts in graph theory and may be applied in many practical problems, for
example facility location problems, monitoring communication and electrical networks,
see [10]. The subject of dominating sets has historical roots dating back to 1862, when
C.F. de Jaenish in [13] attempted to determine the minimum number of queens which
are necessary to cover an n × n chess board. Over a hundred years later, the concept
of dominating sets was introduced by O. Ore in [18].

Apart from classical dominating sets, there are many other kinds of dominating
sets, obtained by adding some restrictions to the classical concept of domination.
One of them is multiple domination, introduced by J.F. Fink and M.S. Jacobson
in [9]. Let k ≥ 1 be an integer. A subset D ⊆ V (G) is a k-dominating set if every
vertex from V (G)\D has at least k neighbours in D. Clearly, every k-dominating set
is a dominating set of G. If k = 1, we obtain a dominating set in the classical sense.
If k = 2, we obtain a 2-dominating set of G, which has been broadly studied in
literature, see for example [1–5,15]. Let us see that for large k the vertices of graph
need to have large degrees to ensure that the graph have a k-dominating set. This leads
to reducing the classes of graphs, in which studying k-dominating sets is interesting.

In 2008 Hedetniemi et al. in [12] introduced the (1,k)-dominating sets by weakening
the restrictions for 2-domination. More precisely, they considered the situation when
a vertex does not have to be adjacent to two vertices from the dominating set, but
only to one and the second vertex should not be “too far away”. This is how the
secondary domination concept was born. Let k ≥ 1 be an integer. A subset D ⊆ V (G)
is a (1,k)-dominating set of G if for every vertex x ∈ V (G)\D there are two vertices
u, v ∈ D, u ̸= v, such that xv ∈ E(G) and dG(x, u) ≤ k. A (1,k)-dominating set is
called also as a (1,k)-dset. Clearly, every (1,k)-dominating set is a dominating set of G.
What is more, it is a (1,k + 1)-dset, (1,k + 2)-dset, . . . , (1,diam(G))-dset. Clearly, it is
pointless to consider (1,k)-dsets for k ≥ diam(G).

If k = 1, we obtain a definition of 2-dominating set. Note that from the definition of
a (1, 1)-dset we have that all leaves of a graph G must belong to a (1, 1)-dset. For k = 2
we obtain a definition of (1, 2)-dsets, which were broadly studied in literature, see for
example [8, 20], in particular many results for their connections with independent sets
have been obtained in [12,15,16].
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Note that every (1, 1)-dset of a graph G is a (1, 2)-dset of this graph. The
converse implication does not hold. Hence, Michalski introduced in [14] proper
(1, 2)-dominating sets as a natural distinguishment between (1, 1)-dsets and (1, 2)-dsets.
A (1, 2)-dominating set D is called a proper (1, 2)-dominating set of the graph G if
D is a (1, 2)-dset but it is not a (1, 1)-dset. For convenience, instead of “proper
(1, 2)-dominating set” we will write also “(1,2)-dset”.

Clearly, every (1,2)-dset is a (1, 2)-dset and a dominating set and it must have
at least two vertices. The properties of (1,2)-dsets were studied for example in [17].
In particular, a necessary and sufficient condition for the existence of such sets in
a connected graph was given.

Theorem 1.1. A connected graph G has a (1, 2)-dset if and only if G is not a complete
graph.

While (1, 1)-dsets and (1,2)-dsets are different sets, an interesting question is to
determine what is the minimum number of common vertices in the intersection of these
sets in graphs. In other words, we want to establish how much “disjoint” these sets
may be. Therefore, we introduce the parameter measuring the “level of disjointness”
of (1,2)-dsets and (1, 1)-dsets. Let F be a family of all (1, 1)-dsets of a graph G and
let F∗ be a family of all (1, 2)-dsets of G. Then let us denote

σ(G) = min
D∈F,D∗∈F∗

|D ∩ D∗|.

The number σ(G) is called a (1,2)-intersection index of a graph G.

2. MAIN RESULTS

In this section we determine the (1,2)-intersection index in some classes of graphs.
First we give useful lemmas.

Lemma 2.1. Let G be a connected graph containing a pendant path v1v2 . . . vn, n ≥ 3,
dG(vn) = 1. Then each pair of a (1, 1)-dset and a (1, 2)-dset of G has at least one
common vertex from the set {vn−2, vn−1, vn}.

Proof. Let G be a connected graph containing a pendant path v1v2 . . . vn, n ≥ 3, where
vn is a leaf of G. For the contradiction suppose that there exist a (1, 1)-dset D and
a (1, 2)-dset D∗ of G such that D ∩ D∗ ∩ {vn−2, vn−1, vn} = ∅. Since D is a (1, 1)-dset
then vn ∈ D, which implies that vn /∈ D∗ and vn−1, vn−2 ∈ D∗, because vn must be
(1, 2)-dominated by D∗. Therefore, vn−1, vn−2 /∈ D, so vn−1 is not (1, 1)-dominated
by D, which is a contradiction.

Corollary 2.2. Let G be a connected graph containing a pendant path v1v2 . . . vn,
n ≥ 3, dG(vn) = 1. Then σ(G) ≥ 1.

Lemma 2.3. Let G be a connected graph with σ(G) = 0 and let D and D∗ be disjoint
(1, 1)-dset and (1, 2)-dset of G, respectively. Then L(G) ⊆ D and S(G) ⊆ D∗.
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Proof. The inclusion L(G) ⊆ D follows from the definition of (1, 1)-dset of a graph.
To prove that S(G) ⊆ D∗, assume that G has disjoint (1, 1)-dset and (1, 2)-dset
denoted by D and D∗, respectively. Let v ∈ S(G) and v /∈ D∗. All leaves, adjacent
to the vertex v, belong to D, so they do not belong to D∗. Then these leaves are not
(1, 2)-dominated by the set D∗, a contradiction.

Now we will show that while in paths n ≥ 3, there are no disjoint (1, 1)-dset and
(1, 2)-dset, almost all cycles have such property.

Theorem 2.4. Let n ≥ 3 be an integer. Then

σ(Pn) =
{

1 for n ∈ {3, 4, 5},

2 for n ≥ 6.

Proof. For n ∈ {3, 4, 5} the result is obvious. Let n ≥ 6 be an integer. First, we will
prove that σ(Pn) ≤ 2. Let us consider the following cases.
Case 1. Let n = 2p + 1. Then the set

D1 = {x2, x4, x6, . . . , x2p−2, x2p} ∪ {x1, x2p+1}

is a (1, 1)-dset of P2p+1 and the set

D∗
1 = (V (P2p+1)\D1) ∪ {x2, x2p}

is a (1, 2)-dset. Note that |D1 ∩ D∗
1 | = |{x2, x2p}| = 2.

Case 2. Let n = 2p. Then the set

D2 = {x1} ∪ {x2, x4, x6, . . . , x2p−2, x2p}

is (1, 1)-dominating in P2p. Moreover, the set

D∗
2 = (V (P2p)\D2) ∪ {x2, x2p−2}

is a (1, 2)-dset of P2p. Hence,

|D2 ∩ D∗
2 | = |{x2, x2p−2}| = 2.

Now we will prove that σ(Pn) ≥ 2. By Lemma 2.1, for every (1, 1)-dset D and
(1, 2)-dset D∗ of Pn we have

|D ∩ D∗ ∩ {x1, x2, x3}| ≥ 1 and |D ∩ D∗ ∩ {xn−2, xn−1, xn}| ≥ 1,

which ends the proof.

Theorem 2.5. Let n ≥ 4 be an integer. Then

σ(Cn) =
{

1 for n = 4,

0 for n ≥ 5.
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Proof. For n = 4 the result is obvious. Let n ≥ 5 be an integer. We consider the
following cases.
Case 1. Let n = 2p + 1. Then the set

D1 = {x1, x3, x5, . . . , x2p+1}

is a (1, 1)-dset and the set V (Cn)\D1 is a (1, 2)-dset of the cycle Cn.
Case 2. Let n = 2p. Then the set

D2 = {x1, x2, x4, x5} ∪ {x7, x9, . . . , x2p−3, x2p−1}

is a (1, 1)-dset and V (Cn)\D2 is a (1, 2)-dset of Cn.

Now we will give the value of the (1,2)-intersection index for spiders, which were
considered for example in [6, 19].

A spider graph is a tree with at most one vertex of degree greater than 2 and this
vertex is called the central vertex. A leg of a spider graph is a path from the central
vertex to a leaf of the tree. Let SP (l1, l2, . . . , ln) denote a spider of n legs of lengths
l1, l2, . . . , ln, where l1, l2, . . . , ln, n ∈ N. An example of a spider is given in Figure 1.

Fig. 1. The spider SP (1, 2, 3, 4)

Note that if there is no vertex of the degree greater than 2, then the spider graph
is isomorphic to the path Pn. Then any vertex may serve as the central vertex of
the spider. Moreover, if lj = 1 for every j ∈ {1, 2, . . . , n}, then the spider graph is
isomorphic to the star K1,n. Finally, if lj ≥ 2 for exactly one j ∈ {1, 2, . . . , n} and
li = 1 for every i ∈ {1, 2, . . . , n}, i ̸= j, then the spider SP (l1, l2, . . . , ln) is isomorphic
to the broom B(n + lj , lj + 1).

Theorem 2.6. Let s be the number of legs of length 1 or 2 in SP (l1, l2, . . . , ln), where
n ≥ 3. Then

(1) σ(SP (l1, l2, . . . , ln)) = n − s, if li ≥ 3 for every i ∈ {1, 2, . . . , n} or there exist j, k
such that lj = 1 and lk = 3 and lm ̸= 2 for every m ∈ {1, 2, . . . , n},

(2) σ(SP (l1, l2, . . . , ln)) = n − s + 1 otherwise.

Proof. For the proof, we denote vertices in SP (l1, l2, . . . , ln) as in the Figure 2. Let s
be a number of legs of length 1 or 2.
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Fig. 2. The spider SP (l1,l2,. . . ,ln)

First, we start with proving (1). Let lj ≥ 3 for every j ∈ {1, 2, . . . , n}. Then,
s = 0. We will show that σ(SP (l1, l2, . . . , ln)) ≤ n. Let D1 and D∗

1 be a (1, 1)-dset and
a (1, 2)-dset of the spider graph, respectively. Suppose that x0 ∈ D∗

1 . Let us consider
an arbitrary leg of the length lj , where j ∈ {1, 2, . . . , n}. We consider the following
cases.
Case 1. Let lj = 2pj . Vertices x

(j)
1 , x

(j)
3 , . . . , x

(j)
lj−3 and x

(j)
lj−2, x

(j)
lj

belong to D1. More-
over, vertices x

(j)
2 , x

(j)
4 , . . . , x

(j)
lj−2 and the vertex x

(j)
lj−1 belong to D∗

1 . Then

D1 ∩ D∗
1 ∩

lj⋃

i=1
{x

(j)
i } = {x

(j)
lj−2}.

Case 2. Let lj = 2pj + 1. Then vertices x
(j)
1 , x

(j)
3 , . . . , x

(j)
lj

belong to D1. What is more,
vertices x

(j)
2 , x

(j)
4 , . . . , x

(j)
lj−1 and the vertex x

(j)
lj−2 belong to D∗

1 . We obtain

D1 ∩ D∗
1 ∩

lj⋃

i=1
{x

(j)
i } = {x

(j)
lj−2}.

In view of the arbitrariness of choice of the leg, since there exist n legs in spider
graph, we conclude that the sets D1 and D∗

1 have n common vertices.
Now we will prove that σ(SP (l1, l2, . . . , ln)) ≥ n. Let us consider an arbitrary

leg of the length lj , where j ∈ {1, 2, . . . , n}. From Lemma 2.1 we obtain that every
(1, 1)-dset and (1, 2)-dset of the spider graph have at least one common vertex from
the set {x

(j)
lj−2, x

(j)
lj−1, x

(j)
lj

}. In view of arbitrariness of choice of the leg we obtain that
every (1, 1)-dset and (1, 2)-dset of the spider graph have at least n common vertices,
which ends the proof of this case.

Now, let there exist legs of length 1 and 3 in spider graph. Moreover, lj ̸= 2
for every j ∈ {1, 2, . . . , n}. Let D2 and D∗

2 be a (1, 1)-dset and a (1, 2)-dset of this
graph, respectively. Let x0 ∈ D∗

2 . If lj = 1, where j ∈ {1, 2, . . . , n}, then x
(j)
1 ∈ D2.
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If lj ≥ 3, then we construct the sets D2 and D∗
2 in the same way as the sets D1

and D∗
1 , respectively. Note that the sets D2 and D∗

2 have n − s common vertices, so
σ(SP (l1, l2, . . . , ln)) ≤ n − s.

Now we will prove that σ(SP (l1, l2, . . . , ln)) ≥ n − s. Let us consider an arbitrary
leg of the length lj ≥ 3, where j ∈ {1, 2, . . . , n}. From Lemma 2.1 we obtain that every
(1, 1)-dset and (1, 2)-dset have one common vertex from the set {x

(j)
lj−2, x

(j)
lj−1, x

(j)
lj

}.
Note that there exist n − s legs of length greater than or equal to 3 in spider graph.
Hence, the sets D2 and D∗

2 have at least n − s common vertices. This means that
σ(SP (l1, l2, . . . , ln)) = n − s, which ends the proof of (1).

Now, we will prove (2). Therefore let us assume that there exists lj ≤ 2 for
j ∈ {1, 2, . . . , n}. Moreover, let us suppose that if there exist i, k such that li = 1 and
lk = 3, then there exists at least one leg of the length 2 in the spider graph. This
assumption is true in some disjoint cases, which we will now consider.

First, let lj = 1 for every j ∈ {1, 2, . . . , n}. Then SP (l1, l2, . . . , ln) ∼= K1,n.
The sets

D3 = {x
(1)
1 , x

(2)
1 , . . . , x

(n)
1 } and D∗

3 = {x0, x
(1)
1 }

are a (1, 1)-dset and a (1, 2)-dset of the graph, respectively. We have |D3 ∩ D∗
3 | = 1.

Hence, σ(SP (l1, l2, . . . , ln)) ≤ 1. To show that σ(SP (l1, l2, . . . , ln)) ≥ 1, for the
contradiction let us assume that there exist disjoint (1, 1)-dset and (1, 2)-dset.
By Lemma 2.3, we know that all leaves of the graph belong to (1, 1)-dset. We have
|V (G)\D3| = 1. Consequently, the set V (G)\D3 is not the (1, 2)-dset, a contradiction.
Thus σ(SP (l1, l2, . . . , ln)) = 1. Since n = s we obtain σ(SP (l1, l2, . . . , ln)) = n − s + 1.

Second, let lj ≤ 2 for every j ∈ {1, 2, . . . , n} and let there exists i ∈ {1, 2, . . . , n}
such that li = 2. Then the set

D4 = {x0} ∪ L(SP (l1, l2, . . . , ln))

is a (1, 1)-dset of the graph. Moreover,

D∗
4 = {x0} ∪ {x ∈ V (SP (l1, l2, . . . , ln)) : dSP (x) = 2}

is the (1, 2)-dset. Clearly, |D4 ∩ D∗
4 | = 1. Hence σ(SP (l1, l2, . . . , ln)) ≤ 1. Let us

assume that there exist disjoint (1, 1)-dset and (1, 2)-dset of the spider graph. We
consider an arbitrary leg of the length 2. From Lemma 2.1 we obtain that every
(1, 1)-dset and (1, 2)-dset have at least one common vertex, a contradiction. Hence
σ(SP (l1, l2, . . . , ln)) = 1 = n − s + 1.

Now, assume that there exist legs of length less than or equal to 2 and legs of
length greater than or equal to 3 in the spider graph. Moreover, we know that if there
exist legs of length 1 and 3, then there exists at least one leg of length 2 at the same
time. Let D5 and D∗

5 be (1, 1)-dset and (1, 2)-dset, respectively. Let x0 ∈ D5 and
x0 ∈ D∗

5 . Clearly, if there exists j ∈ {1, 2, . . . , n} such that lj = 1, then x
(j)
1 ∈ D5.

If lj = 2, then x
(j)
1 ∈ D∗

5 and x
(j)
2 ∈ D5. Let us consider an arbitrary leg of the length

lj ≥ 3, where j ∈ {1, 2, . . . , n}. We consider the following cases.
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Case 1. Let lj = 2pj . Then vertices x
(j)
2 , x

(j)
4 , . . . , x

(j)
lj−2, x

(j)
lj

belong to D5. Moreover,
vertices x

(j)
1 , x

(j)
3 , . . . , x

(j)
lj−1 and the vertex x

(j)
lj−2 belong to D∗

5 . We have

D5 ∩ D∗
5 ∩

lj⋃

i=1
{x

(j)
i } = {x

(j)
lj−2}.

Case 2. Let lj = 2pj +1. Then vertices x
(j)
2 , x

(j)
4 , . . . , x

(j)
lj−3 and x

(j)
lj−2, x

(j)
lj

belong to D5.
What is more, vertices x

(j)
1 , x

(j)
3 , . . . , x

(j)
lj−2 and the vertex x

(j)
lj−1 belong to D∗

5 . We
obtain

D5 ∩ D∗
5 ∩

lj⋃

i=1
{x

(j)
i } = {x

(j)
lj−2}.

Since there are n−s legs of length greater or equal to 3, in view of the arbitrariness
of choice the leg we conclude that the sets D5 and D∗

5 have n − s + 1 common vertices.
Hence σ(SP (l1, l2, . . . , ln)) ≤ n − s + 1.

Now we will prove that all (1, 1)-dsets and (1, 2)-dsets of this graph have at
least n − s + 1 common vertices. Let D6 and D∗

6 be (1, 1)-dset and (1, 2)-dset of
the spider graph, respectively. We consider an arbitrary leg such that lj ≥ 3, where
j ∈ {1, 2, . . . , n}. From Lemma 2.1 we obtain

|D6 ∩ D∗
6 ∩ {x

(j)
lj−2, x

(j)
lj−1, x

(j)
lj

}| ≥ 1.

Note that there exist n − s legs of the length greater or equal 3 in the spider. Moreover,
there exist legs of the length less or equal that 2 in this graph.

If there exists j ∈ {1, 2, . . . , n} such that lj = 2, then from Lemma 2.1

|D6 ∩ D∗
6 ∩ {x0, x

(j)
1 , x

(j)
2 }| ≥ 1.

Consequently, we obtain that the sets D6 and D∗
6 has at least n − s + 1 common

vertices.
Otherwise, we have lj = 1 or lj ≥ 4 for every j ∈ {1, 2, . . . , n}. Let us assume that

the sets D6 and D∗
6 do not have any common vertex in the set {x0, x

(1)
1 , x

(2)
1 , . . . , x

(j)
1 }.

If lj = 1, then x
(j)
1 ∈ D6. Hence x

(j)
1 /∈ D∗

6 . The set D∗
6 is (1, 2)-dset, so x0 ∈ D∗

6 .
Then x0 /∈ D6. Since the vertex x

(j)
1 must be (1, 2)-dominated, we obtain x

(i)
1 ∈ D∗

6
for some i such that li ≥ 4. Then x

(i)
1 /∈ D6. The vertex x

(i)
1 is not (1, 1)-dominated,

a contradiction. Hence (1, 1)-dsets and (1, 2)-dsets of this graph have at least n − s + 1
common vertices, which ends the proof.

Example 2.7. Let us consider the following spider graphs.
For the graph SP (1, 3, 5, 3, 4) we have n = 5, s = 1, so by Theorem 2.6 we obtain

σ(SP (1, 3, 5, 3, 4)) = 5 − 1 = 4. Examples of the (1, 1)-dset and the (1,2)-dset of this
graph, which have four common vertices, are denoted by circle and square, respectively,
in Figure 3.
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Fig. 3. The spider SP (1, 3, 5, 3, 4)

For the graph SP (1, 2, 4, 2, 3) we have n = 5, s = 3, so by Theorem 2.6 we obtain
σ(SP (1, 2, 4, 2, 3)) = 5 − 3 + 1 = 3. Examples of the (1, 1)-dset and the (1,2)-dset
of this graph, which have three common vertices, are denoted by circle and square,
respectively, in Figure 4.

Fig. 4. The spider SP (1, 2, 4, 2, 3)

From Theorem 2.6 we have the following corollaries concerning special classes
of spiders.

Corollary 2.8. Let n ≥ 2 be an integer. Then σ(K1,n) = 1.

Corollary 2.9. Let n ≥ 3 and k be positive integers, n > k. Then

σ(B(n, k)) =
{

1 for k ∈ {1, 2, 3, 4},

2 for k ≥ 5.

As we see from previous results, in some trees there are no disjoint (1, 1)-dsets and
(1,2)-dsets. Now we give necessary conditions for the existence of such disjoint sets
in trees.

Theorem 2.10. Let T be a tree. If σ(T ) = 0, then

(1) |V (T )| ≥ 6 and diam(T ) ≥ 3, and
(2) T does not contain a pendant path Pn, where n ≥ 3, and
(3) if x ∈ S(T ) and x is not a strong support vertex of T , then there exists

y ∈ V (T )\(L(T ) ∪ S(T )) such that xy ∈ E(T ), and
(4) if x ∈ S(T ) and NT (x) ∩ S(T ) = ∅, then there exists y ∈ V (T )\(L(T ) ∪ S(T ))

such that xy ∈ E(T ) and dT (y) ≥ 3.
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Proof. Let T be an arbitrary tree and let D and D∗ be respectively the (1, 1)-dset
and (1, 2)-dset of the tree. Let assume that the sets D and D∗ are disjoint. We will
show that all conditions (1)–(4) must hold.

First, assume that the condition (1) does not hold. It is easy to check that for
every tree T such that V (T ) < 6 or diam(T ) < 3 we have that no (1, 2)-set exists or
σ(T ) > 0.

Second, assume that the condition (2) does not hold, i.e. the tree T contains
a pendant path x1x2x3 . . . xn, where n ≥ 3. From Lemma 2.1 we obtain that the sets
D and D∗ are not disjoint, a contradiction.

Next, assume that the condition (3) does not hold. Then the vertex x ∈ S(T ) is
adjacent only to exactly one leaf v ∈ V (T ) and other support vertices. By Lemma 2.3,
we know that v ∈ D and x ∈ D∗. Moreover, all support vertices which are adjacent
to the vertex x, belong to the set D∗. Hence the vertex x is not (1, 1)-dominated,
a contradiction.

Finally, let us suppose that the condition (4) does not hold. It means that x ∈ S(T )
and NT (x) ∩ S(T ) = ∅ and every vertex from the set V (T )\(L(T ) ∪ S(T )) is not
adjacent to x or has degree less than 3. If the former is true we obtain either T ∼= K1,n,
a contradiction with Corollary 2.8, or T is not connected, a contradiction with the fact
T is a tree. Therefore let us assume that all vertices from the set V (T )\(L(T ) ∪ S(T ))
which are adjacent to x have degree less than 3. Moreover, at least one of them, say
y, must belong to D∗ to ensure that the set NT (x) ∩ L(T ) is (1, 2)-dominated by D∗.
Hence y /∈ D and it may be adjacent to at most one vertex from D. This means that
D is not a (1, 1)-dset, a contradicton.

We obtain that if the tree T has disjoint (1, 1)-dset and (1, 2)-dset, then the tree T
satisfies the conditions (1)–(4), which ends the proof.

However, it turns out that the conditions (1)–(4) from Theorem 2.10 are not
sufficient. There are trees, which satisfy them all and do not have disjoint (1, 1)-dset
and (1,2)-dset. In Figure 5 we can see an example of such tree.

x

u v

Fig. 5. An example of the tree which does not have disjoint (1, 1)-dset and (1,2)-dset



On minimum intersections of certain secondary dominating sets in graphs 823

From Lemma 2.3 we know that if the graph has disjoint (1, 1)-dset and (1,2)-dset,
then all leaves (denoted by circle in Figure 5) belong to (1, 1)-dset and all support
vertices (denoted by square in Figure 5) belong to (1,2)-dset. If the vertex x belonged
to the (1, 1)-dset and did not belong to (1,2)-dset, then the leaves v and u would
not be (1, 2)-dominated. If the vertex x belonged to (1,2)-dset and did not belong to
(1, 1)-dset, then it would not be (1, 1)-dominated.

Now we will give the value of the parameter σ for the complete bipartite graph Km,n.

Theorem 2.11. Let m, n be integers. Then for m + n ≥ 3 holds

σ(Km,n) =
{

0 for m ≥ 3 and n ≥ 3,

1 otherwise.

Proof. Let Km,n be the complete bipartite graph and let V1 = {x1, x2, . . . , xm} and
V2 = {y1, y2, . . . , yn}.

Firsty, assume that m ≥ 3 and n ≥ 3. Then the set D∗ = {x1, y1} is a (1,2)-dset of
Km,n and the set D = V (Km,n)\D∗ is a (1, 1)-dset of this graph. Hence, σ(Km,n) = 0.

Now, let us assume that one of the sets V1, V2 has less than 3 vertices. Without
loss of generality, let m ≤ 2.

First, if m = 1, then the complete bipartite graph is isomorphic to the star K1,n,
n ≥ 2. From Corollary 2.8 we know that σ(K1,n) = 1.

Next, assume that m = 2 and n = 2. Then K2,2 ∼= C4 and from Theorem 2.5 we
obtain that σ(K2,2) = 1.

Finally, let m = 2 and n ≥ 3. We will prove that σ(K2,n) ≤ 1. The set D∗ = {x1, y1}
is the (1,2)-dset and the set D = (V (K2,n)\D∗) ∪ {x1} is the (1, 1)-dset of this graph.
We have |D ∩ D∗| = 1.

Now we will prove that σ(K2,n) ≥ 1. Suppose that there exist (1, 1)-dset D and
(1,2)-dset D∗ of Km,n which are disjoint. Note that every set which contains V1 or V2
is not a (1,2)-dset of K2,n (because it is the (1, 1)-dset of this graph). This means that
there exists a vertex x1 ∈ V1 such that x1 /∈ D∗. Then, there exists at least one vertex
y1 ∈ V2 such that y1 ∈ D∗. Moreover, there exists y2 ∈ V2, y2 ̸= y1 such that y2 /∈ D∗.
Hence, there exists x2 ∈ V1, x2 ̸= x1 such that x2 ∈ D∗. Note that x2 /∈ D and y1 /∈ D.
We obtain that the vertex y1 is not (1, 1)-dominated by the set D, a contradiction.

The next result gives a complete characterization of a join of graphs with the
(1,2)-intersection index equal to 0.

Theorem 2.12. Let H1, H2 be arbitrary, nonempty graphs. Then σ(H1 + H2) = 0
if and only if

(1) H1 ≇ Kn or H2 ≇ Kn, n ≥ 1, and
(2) if H1 ∼= K1 and H2 has an isolated vertex then there exists a vertex v ∈ V (H2)

such that dH2(v) ≥ 2, and
(3) if |V (H1)| = 2 then H2 ≇ Nn, n ≥ 1.

Proof. Let H1 and H2 be arbitrary graphs such that V (H1) = {x1, x2, . . . , xn} and
V (H2) = {y1, y2, . . . , ym}, n, m ≥ 1.
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First we will prove the necessary condition. Let us assume that σ(H1 + H2) = 0,
i.e. there exist a (1, 1)-dset D and (1,2)-dset D∗ such that D ∩ D∗ = ∅. We will show
that all condictions (1)–(3) must hold.

Assume first that the condition (1) does not hold. Then H1 + H2 is complete and
from Theorem 1.1 we obtain it does not have any (1,2)-dset.

Second, let us suppose that the condition (2) does not hold, i.e. H1 ∼= K1 and
H2 has an isolated vertex and ∆(H2) ≤ 1. If for every vertex y ∈ V (H2) we have
dH2(y) = 0, then H1 + H2 ∼= K1,l, l ≥ 1. From Corollary 2.8 we obtain a contradiction.
Now, let there exist a vertex yj ∈ V (H2) such that dH2(yj) = 0 and at least two
vertices yi, yk ∈ V (H2) such that dH2(yi) = dH2(yk) = 1. Note that dH1+H2(yj) = 1.
Then the vertex x ∈ V (H1) is a support vertex of H1 + H2. By Lemma 2.3 we obtain
that yj ∈ D and x ∈ D∗. We have x /∈ D and dH1+H2(yi) = dH1+H2(yk) = 2, so the
vertices yi, yk must belong to D, otherwise they would not be (1, 1)-dominated by D.
Extending this reasoning to all vertices of degree 1 in graph H2 we obtain V (H2) ⊆ D.
But the set V (H1 + H2)\V (H2) = {x1} is not the (1,2)-dset of the graph H1 + H2,
a contradiction.

Finally, assume that the condition (3) does not hold. It means that |V (H1)| = 2
and H2 ∼= Nn, n ≥ 1. If H1 ∼= N2, then H1 + H2 ∼= Km,n, m = 2, n ≥ 1. From
Theorem 2.11 we obtain that the graph H1 + H2 does not have disjoint (1, 1)-dset and
(1,2)-dset. Now, let us suppose that H1 ∼= P2. If |V (H2)| = 1, then H1 + H2 ∼= K3.
By Theorem 1.1 we know it does not have a (1,2)-dset. Let assume that |V (H2)| ≥ 2.
We consider the following cases.

Case 1. Let at least one of vertices of H1, say x1, belong to D∗. Note that if x2 ∈ D∗,
then the set D∗ would not be a proper (1, 2)-dset. Since the vertex x2 must be
(1, 2)-dominated, there must exist a vertex y ∈ V (H2) ∩ D∗. Since NH1+H2(y) =
{x1, x2} and x1 /∈ D, we obtain that the vertex y is not (1, 1)-dominated by D,
a contradiction.

Case 2. Let x1 /∈ D∗ and x2 /∈ D∗. Then there exist two vertices yi ∈ V (H2) and
yj ∈ V (H2), i ̸= j such that yi ∈ D∗ and yj ∈ D∗. If for every y ∈ V (H2) we have
y ∈ D∗, then the set D∗ is the (1, 1)-dset of the graph, so it is not the (1,2)-dset,
a contradiction. If there exists y /∈ D∗, then the vertex y is not dominated by the
set D∗, which ends the proof in this case.

We obtain that if the join H1 + H2 has disjoint (1, 1)-dset and (1,2)-dset, then
the graphs H1, H2 satisfy the conditions (1)–(3). Now, we will prove the sufficient
condition.

First, let |V (H1)| ≥ 3 and |V (H2)| ≥ 3. From the condition (1) we conclude that
at least one of the graphs H1, H2, say H1, is not a complete graph. It means that
there exists the vertex x ∈ V (H1) such that dH1(x) ≤ |V (H1)| − 2. Let x ∈ D∗.
Moreover, without loss of generality we choose some vertex y from the set V (H2).
Suppose that y ∈ D∗. Then the set D∗ = {x, y} is the (1, 2)-dset of H1 + H2, and the
set D = V (H1 + H2)\D∗ is the (1, 1)-dset. Hence, σ(H1 + H2) = 0.

Second, let us suppose that |V (H1)| ≤ 2 or |V (H2)| ≤ 2. Without loss of generality
assume that |V (H1)| ≤ |V (H2)|. We consider the following cases.
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Case 1. Let |V (H1)| = 1. Let us consider two subcases.
Subcase 1.1. Let assume that there exists the vertex y ∈ V (H2) such that dH2(y) ≥ 2.
Note that |V (H2)| ≥ 3. Then the set D∗ = V (H1) ∪ {y} is the (1,2)-dset of H1 + H2.
Moreover, the set D = V (H1 + H2)\D∗ is the (1, 1)-dset of the graph.
Subcase 1.2. Now, let dH2(y) ≤ 1 for every vertex from the set V (H2). By condition (2)
we know that H2 does not have any isolated vertex. Hence for every y ∈ V (H2) we
have dH2(y) = 1. Since H1 + H2 is not a complete graph, we obtain that |V (H2)| ≥ 4.
Then the graph H2 is not connected graph and consists of s disjoint paths P2, s ≥ 2.
Without loss of generality we choose exactly one vertex from each path. The union of
these vertices is the (1,2)-dset D∗ of H1 + H2. Then the set D = V (H1 + H2)\D∗ is
the (1, 1)-dset, which ends the proof of case 1.
Case 2. Let |V (H1)| = 2. From the condition (3) we know that H2 ≇ Nn, n ≥ 2. Since,
H1 + H2 is not a complete graph, we have |V (H2)| ≥ 3. Moreover, in view of the fact
that H2 ≇ Nn we obtain that there exists the vertex y ∈ V (H2) of degree greater
or equal to 1 in graph H2. Let y ∈ D∗. Additionally, let one of the vertices of H1,
say x1, belong to D∗. We have D∗ = {y, x1} is the (1,2)-dset of H1 + H2. The set
D = V (H1 + H2)\D∗ is the (1, 1)-dset of this graph.

We obtain that if the conditions (1)–(3) hold, the join H1 + H2 has a (1, 1)-dset
and a (1,2)-dset, which are disjoint, which ends the proof.

The final result of the paper gives the complete characterization of a corona of
graph with the (1,2)-intersection index equal to 0.

Theorem 2.13. Let G ≇ K1 be a connected graph. Then σ(G ◦ H) = 0 if and only if
H ≇ K1.

Proof. Let G be a connected graph such that G ≇ K1. First, assume that H ≇ K1.
Note that |V (G)| ≥ 2 and |V (H)| ≥ 2. Then V (G) is the (1,2)-dset of G◦H. Moreover,
the set V (G ◦ H)\V (G) is (1, 1)-dset of the graph. We obtain that σ(G ◦ H) = 0.

Now, for the contradiction suppose that H ∼= K1 and σ(G ◦ H) = 0 i.e. G ◦ H
has disjoint (1, 1)-dset and (1,2)-dset denoted by D and D∗, respectively. We have
S(G ◦ H) = V (G) and L(G ◦ H) = V (G ◦ H)\V (G). By Lemma 2.3 we obtain that all
vertices of G must belong to D∗ and all vertices from the set V (G ◦ H)\V (G) belong
to D. Then the vertices of G are not (1, 1)-dominated by D, a contradiction.

3. CLOSING REMARKS

In this paper we determined the (1,2)-intersection index for some classes of graphs such
as cycles, complete bipartite graphs and spiders. We also completely characterized the
join of graphs and the corona of two graphs, for which the (1,2)-intersection index is
equal to 0. Moreover, we gave the neccessary conditions for trees T such that σ(T ) = 0.
However, finding a complete characterization of trees with the (1,2)-intersection index
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equal to 0 we leave as an open problem. Other interesting questions related to our
topic were suggested by one of the referees:

1. What is the maximum possible value of σ(G)?
2. Is σ(G) = 0 providing δ(G) > 2 and |V (G)| is large?
3. What is the computational complexity of the problem of determining σ(G)?
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