EVERY GRAPH IS LOCAL ANTIMAGIC TOTAL AND ITS APPLICATIONS

Gee-Choon Lau, Karl Schaffer, and Wai Chee Shiu

Communicated by Andrzej Żak

Abstract

Let $G=(V, E)$ be a simple graph of order p and size q. A graph G is called local antimagic (total) if G admits a local antimagic (total) labeling. A bijection $g: E \rightarrow\{1,2, \ldots, q\}$ is called a local antimagic labeling of G if for any two adjacent vertices u and v, we have $g^{+}(u) \neq g^{+}(v)$, where $g^{+}(u)=\sum_{e \in E(u)} g(e)$, and $E(u)$ is the set of edges incident to u. Similarly, a bijection $f: V(G) \cup E(G) \rightarrow\{1,2, \ldots, p+q\}$ is called a local antimagic total labeling of G if for any two adjacent vertices u and v, we have $w_{f}(u) \neq w_{f}(v)$, where $w_{f}(u)=f(u)+\sum_{e \in E(u)} f(e)$. Thus, any local antimagic (total) labeling induces a proper vertex coloring of G if vertex v is assigned the color $g^{+}(v)$ (respectively, $w_{f}(u)$). The local antimagic (total) chromatic number, denoted $\chi_{l a}(G)$ (respectively $\chi_{l a t}(G)$), is the minimum number of induced colors taken over local antimagic (total) labeling of G. We provide a short proof that every graph G is local antimagic total. The proof provides sharp upper bound to $\chi_{l a t}(G)$. We then determined the exact $\chi_{l a t}(G)$, where G is a complete bipartite graph, a path, or the Cartesian product of two cycles. Consequently, the $\chi_{l a}\left(G \vee K_{1}\right)$ is also obtained. Moreover, we determined the $\chi_{l a}\left(G \vee K_{1}\right)$ and hence the $\chi_{l a t}(G)$ for a class of 2-regular graphs G (possibly with a path). The work of this paper also provides many open problems on $\chi_{l a t}(G)$. We also conjecture that each graph G of order at least 3 has $\chi_{l a t}(G) \leq \chi_{l a}(G)$.

Keywords: local antimagic (total) chromatic number, Cartesian product, join product.

Mathematics Subject Classification: 05C78, 05C15.

1. INTRODUCTION

Consider a (p, q)-graph $G=(V, E)$ of order p and size q. In this paper, all graphs are simple. For positive integers $a<b$, let $[a, b]=\{x \in \mathbb{Z} \mid a \leq x \leq b\}$. Let $g: E(G) \rightarrow[1, q]$ be a bijective edge labeling that induces a vertex labeling $g^{+}: V(G) \rightarrow \mathbb{N}$ such that $g^{+}(v)=\sum_{u v \in E(G)} g(u v)$. We say g is a local antimagic
labeling of G if $g^{+}(u) \neq g^{+}(v)$ for each $u v \in E(G)[1,2]$. The number of distinct colors induced by g is called the color number of g and is denoted by $c(g)$. The number

$$
\chi_{l a}(G)=\min \{c(g) \mid g \text { is a local antimagic labeling of } G\}
$$

is called the local antimagic chromatic number of G [1]. Clearly, $\chi_{l a}(G) \geq \chi(G)$.
Let $f: V(G) \cup E(G) \rightarrow[1, p+q]$ be a bijective total labeling that induces a vertex labeling $w_{f}: V(G) \rightarrow \mathbb{N}$, where

$$
w_{f}(u)=f(u)+\sum_{u v \in E(G)} f(u v)
$$

and is called the weight of u for each vertex $u \in V(G)$. We say f is a local antimagic total labeling of G (and G is local antimagic total) if $w_{f}(u) \neq w_{f}(v)$ for each $u v \in E(G)$. Clearly, w_{f} corresponds to a proper vertex coloring of G if each vertex v is assigned the color $w_{f}(v)$. If no ambiguity, we shall drop the subscript f. Let $w(f)$ be the number of distinct vertex weights induced by f. The number

$$
\min \{w(f) \mid f \text { is a local antimagic total labeling of } G\}
$$

is called the local antimagic total chromatic number of G, denoted $\chi_{l a t}(G)$. Clearly, $\chi_{l a t}(G) \geq \chi(G)$. It is well known that determining the chromatic number of a graph G is NP-hard [12]. Thus, in general, it is also very difficult to determine $\chi_{l a}(G)$ and $\chi_{l a t}(G)$.

Let $G \vee H$ be the join of G and H with vertex set $V(G) \cup V(H)$ and edge set $E(G) \cup E(H) \cup\{u v \mid u \in V(G), v \in V(H)\}$. The Cartesian product of G and H, denoted $G \times H$, has $V(G \times H)=\{(u, v) \mid u \in V(G), v \in V(H)\}$ and two vertices (u, v) and $\left(u^{\prime}, v^{\prime}\right)$ are adjacent if and only if either $u=u^{\prime}$ and $v v^{\prime} \in E(H)$, or $v=v^{\prime}$ and $u u^{\prime} \in E(G)$. Let $G+H$ be the disjoint union of G and H with vertex set $V(G) \cup V(H)$ and edge set $E(G) \cup E(H)$. For convenience, $n G$ denotes the disjoint union of $n \geq 1$ copies of G, and $n K_{1}=O_{n}$, the null graph of order n. If g (respectively f) induces t distinct colors, we say g (respectively f) is a local antimagic (total) t-coloring of G. We refer to [3] for notation not defined in this paper.

In [4], the author proved that every connected graph of order at least 3 is local antimagic. Using this result, we provide in Section 2 a very short proof that every graph is local antimagic total. Sharp bounds of $\chi_{l a t}(G)$ are found. We then determined the $\chi_{l a t}(G)$ where G is a path P_{n} of order $n \geq 2$, or $C_{n} \times C_{n}$ where C_{n} is a cycle of order $n \geq 3$. Consequently, we also obtained $\chi_{l a}\left(G \vee K_{1}\right)$. Many open problems are also proposed for further research.

2. SHARP BOUNDS

By definition, $\chi_{l a t}\left(G+O_{n}\right) \geq n$ and $\chi_{l a t}\left(O_{n}\right)=n$. Since $\chi_{l a}\left(K_{n}\right)=n$, it is easy to conclude that $\chi_{l a t}\left(K_{n}\right)=n$. In what follows, we only consider nonempty graphs.

Theorem 2.1. Every graph G is local antimagic total.
Proof. Suppose G is a (p, q)-graph. Let the vertex sets of G and K_{1} be $V(G)=\left\{v_{i} \mid 1 \leq\right.$ $i \leq p\}$ and $V\left(K_{1}\right)=\{v\}$, respectively. It is obvious that each graph G of order $p \leq 3$ are local antimagic total. We now assume G is of order $p \geq 4$. In [4], the author proved that every graph without isolated edges (by definition, necessarily without isolated vertices) admits a local antimagic labeling. Thus, $G \vee K_{1}$ is local antimagic. Let g be a local antimagic labeling of $G \vee K_{1}$. Define a total labeling $f: V(G) \cup E(G) \rightarrow[1, p+q]$ of G by $f(e)=g(e)$ for each edge $e \in E(G)$ and $f\left(v_{i}\right)=g\left(v v_{i}\right)$. Clearly, $w_{f}\left(v_{i}\right)=g^{+}\left(v_{i}\right)$. Thus, $w_{f}\left(v_{i}\right)=w_{f}\left(v_{j}\right)$ if and only if $g^{+}\left(v_{i}\right)=g^{+}\left(v_{j}\right)$. Therefore, f is a local antimagic total labeling of G.

The next theorem shows that $\chi_{l a t}(G)$ can be arbitrarily large for a graph G with small $\chi(G)$.

Theorem 2.2. If $G=K_{2}+O_{n}, n \geq 1$, then

$$
\chi_{l a t}(G)= \begin{cases}2 & \text { for } n=1,2 \\ n & \text { otherwise }\end{cases}
$$

Proof. Let $V(G)=\left\{u_{1}, u_{2}\right\} \cup\left\{v_{i} \mid 1 \leq i \leq n\right\}$. Define $f\left(u_{i}\right)=i, f\left(u_{1} u_{2}\right)=3$ and $f\left(v_{i}\right)=i+3,1 \leq i \leq n$. We now have $w_{f}\left(u_{1}\right)=4, w_{f}\left(u_{2}\right)=5$ and $w_{f}\left(v_{i}\right)=i+3$. Thus, $\chi_{l a t}(G) \leq 2$ for $n=1,2$, and $\chi_{l a t}(G) \leq n$ for $n \geq 3$. By definition, $\chi_{l a t}(G) \geq$ $\chi(G)=2$ and since all the isolated vertices must have distinct weights, this implies that $\chi_{l a t}(G) \geq n$. So, the theorem holds.

Theorem 2.3. Let G be a graph of order $p \geq 2$ and size q with $V(G)=\left\{v_{i} \mid 1 \leq i \leq p\right\}$.
(a) $\chi(G) \leq \chi_{l a t}(G) \leq \chi_{l a}\left(G \vee K_{1}\right)-1$.
(b) Suppose f is local antimagic total $\chi_{l a t}(G)$-coloring. If $\sum_{i=1}^{p} f\left(v_{i}\right) \neq w_{f}\left(v_{j}\right)$, $1 \leq j \leq p$, then $\chi_{l a}\left(G \vee K_{1}\right)=\chi_{l a t}(G)+1$.

Proof. (a) Suppose $\chi_{l a}\left(G \vee K_{1}\right)=c$. From the proof of Theorem 2.1, we know that every local antimagic labeling of $G \vee K_{1}$ that induces c distinct vertex labels corresponds to a local antimagic total labeling of G that induces $c-1$ distinct vertex weights. Thus, $\chi_{l a t}(G) \leq c-1$.
(b) Let $\chi_{l a t}(G)=a$. Define $g: E\left(G \vee K_{1}\right) \rightarrow[1, p+q]$ by $g(e)=f(e)$ if $e \in E(G)$, and $g\left(v v_{i}\right)=f\left(v_{i}\right)$ for each $v_{i} \in V(G)$. Clearly, $g^{+}(v)=\sum_{i=1}^{p} f\left(v_{i}\right)$ and $g^{+}\left(v_{i}\right)=w_{f}\left(v_{i}\right)$. Since $w_{f}\left(v_{i}\right) \neq w_{f}\left(v_{j}\right)$ if $v_{i} v_{j} \in E(G)$ and $g^{+}(v) \neq w_{f}\left(v_{j}\right)$ for $1 \leq j \leq p, g$ is a local antimagic $(a+1)$-coloring of G. Hence, $\chi_{l a}\left(G \vee K_{1}\right) \leq a+1$. By (a), $\chi_{l a}\left(G \vee K_{1}\right) \geq$ $\chi_{l a t}(G)+1$. Thus, we have $\chi_{l a}\left(G \vee K_{1}\right)=\chi_{l a t}(G)+1$.

Theorem 2.4. Let G be a (p, q)-graph, $p \geq 2$ and $q \geq 1$. Let $V(G)=\left\{v_{i} \mid 1 \leq i \leq p\right\}$, $V\left(K_{1}\right)=\left\{u_{1}\right\}$ and $V\left(2 K_{1}\right)=\left\{u_{1}, u_{2}\right\}$. Suppose g is a local antimagic labeling of $G \vee 2 K_{1}$ that induces a minimum number of vertex labels and $2 p+q+1+g^{+}\left(u_{1}\right) \neq g^{+}\left(v_{i}\right)$, $1 \leq i \leq p$, then

$$
\chi\left(G \vee K_{1}\right) \leq \chi_{l a t}\left(G \vee K_{1}\right) \leq \begin{cases}\chi_{l a}\left(G \vee 2 K_{1}\right) & \text { if } g^{+}\left(u_{1}\right)=g^{+}\left(u_{2}\right), \\ \chi_{l a}\left(G \vee 2 K_{1}\right)-1 & \text { if } g^{+}\left(u_{1}\right) \neq g^{+}\left(u_{2}\right) .\end{cases}
$$

Proof. Define a bijection $f: V\left(G \vee K_{1}\right) \cup E\left(G \vee K_{1}\right) \rightarrow[1,2 p+q+1]$ such that for $1 \leq i<j \leq p, f\left(v_{i} v_{j}\right)=g\left(v_{i} v_{j}\right)$ if $v_{i} v_{j} \in E(G), f\left(u_{1} v_{i}\right)=g\left(u_{1} v_{i}\right), f\left(v_{i}\right)=g\left(u_{2} v_{i}\right)$, and $f\left(u_{1}\right)=2 p+q+1$. Clearly, $w_{f}\left(v_{i}\right)=g^{+}\left(v_{i}\right)$ and $w_{f}\left(u_{1}\right)=2 p+q+1+g^{+}\left(u_{1}\right)$. Since $2 p+q+1+g^{+}\left(u_{1}\right) \neq g^{+}\left(v_{i}\right)$ for $1 \leq i \leq p, f$ is a local antimagic total labeling of $G \vee K_{1}$ that induces $\chi_{l a}\left(G \vee 2 K_{1}\right)$ distinct vertex weights if $g^{+}\left(u_{1}\right)=g^{+}\left(u_{2}\right)$, and induces $\chi_{l a}\left(G \vee 2 K_{1}\right)-1$ distinct vertex weights if $g^{+}\left(u_{1}\right) \neq g^{+}\left(u_{2}\right)$.

The following lemmas are analogous to Lemmas 2.2-2.5 in [9].
Lemma 2.5. Suppose G is a d-regular graph of order p and size q with an edge e. If f is a local antimagic total labeling of G, then $g=p+q+1-f$ is also a local antimagic total labeling of G with $w(g)=w(f)$. Moreover, suppose $f(e)=1$ or $f(e)=p+q$, then $\chi(G-e) \leq \chi_{l a t}(G-e) \leq \chi_{l a t}(G)$

Proof. Let $x, y \in V(G)$. Here,

$$
w_{g}(x)=(d+1)(p+q+1)-w_{f}(x) \quad \text { and } \quad w_{g}(y)=(d+1)(p+q+1)-w_{f}(y)
$$

Therefore, $w_{f}(x)=w_{f}(y)$ if and only if $w_{g}(x)=w_{g}(y)$. Thus, g is also a local antimagic total labeling of G with $w(g)=w(f)$.

If $f(e)=p+q$, then we may consider $g=p+q+1-f$. So without loss of generality, we may assume that $f(e)=1$. Define $h: V(G-e) \cup E(G-e) \rightarrow[1, p+q-1]$ such that $h(x)=f(x)-1$ and $h(x y)=f(x y)-1$ for $x y \neq e$. So, $w_{h}(x)=w_{f}(x)-d-1$ for each vertex x of $G-e$. Therefore, $w_{f}(x)=w_{f}(y)$ if and only if $w_{h}(x)=w_{h}(y)$. Thus, h is also a local antimagic total labeling of G with $w(h)=w(f)$. Consequently, $\chi(G-e) \leq \chi_{l a t}(G-e) \leq \chi_{l a t}(G)$. The theorem holds.

Note that if G is a regular edge-transitive graph, then $\chi_{l a t}(G-e) \leq \chi_{l a t}(G)$.
Lemma 2.6. Suppose G is a graph of order p and size q and f is a local antimagic total labeling of G. For any $x, y \in V(G)$, if
(i) $w_{f}(x)=w_{f}(y)$ implies that $\operatorname{deg}(x)=\operatorname{deg}(y)$, and
(ii) $w_{f}(x) \neq w_{f}(y)$ implies that $(p+q+1)(\operatorname{deg}(x)-\operatorname{deg}(y)) \neq w_{f}(x)-w_{f}(y)$,
then $g=p+q+1-f$ is also a local antimagic total labeling of G with $w(g)=w(f)$.
Proof. For any $x, y \in V(G)$, we have
$w_{g}(x)=(\operatorname{deg}(x)+1)(p+q+1)-w_{f}(x) \quad$ and $\quad w_{g}(y)=(\operatorname{deg}(y)+1)(p+q+1)-w_{f}(y)$.
If $w_{f}(x)=w_{f}(y)$, then condition (i) implies that $w_{g}(x)=w_{g}(y)$. If $w_{f}(x) \neq w_{f}(y)$, then condition (ii) implies that $w_{g}(x) \neq w_{g}(y)$. Thus, g is also a local antimagic total labeling of G with $w(g)=w(f)$.

For $t \geq 2$, consider the following conditions for a graph G.
(i) $\chi_{\text {lat }}(G)=t$ and f is a local antimagic total labeling of G that induces a t-independent partition $\bigcup_{i=1}^{t} V_{i}$ of $V(G)$.
(ii) For each $x \in V_{k}, 1 \leq k \leq t, \operatorname{deg}(x)=d_{k}$ satisfying $w_{f}(x)-d_{a} \neq w_{f}(y)-d_{b}$, where $x \in V_{a}$ and $y \in V_{b}$ for $1 \leq a<b \leq t$.
(iii) There exist two non-adjacent vertices u, v with $u \in V_{i}, v \in V_{j}$ for some $1 \leq i \neq j \leq t$ such that
(a) $\left|V_{i}\right|=\left|V_{j}\right|=1$ and $\operatorname{deg}(x)=d_{k}$ for $x \in V_{k}, 1 \leq k \leq t$; or
(b) $\left|V_{i}\right|=1,\left|V_{j}\right| \geq 2$ and $\operatorname{deg}(x)=d_{k}$ for $x \in V_{k}, 1 \leq k \leq t$ except that $\operatorname{deg}(v)=d_{j}-1 ;$ or
(c) $\left|V_{i}\right|,\left|V_{j}\right| \geq 2$ and $\operatorname{deg}(x)=d_{k}$ for $x \in V_{k}, 1 \leq k \leq t$ except that $\operatorname{deg}(u)=d_{i}-1, \operatorname{deg}(v)=d_{j}-1$,
each satisfying $w_{f}(x)+d_{a} \neq w_{f}(y)+d_{b}$, where $x \in V_{a}$ and $y \in V_{b}$ for $1 \leq a \neq b \leq t$.

Lemma 2.7. Let H be obtained from G with an edge e deleted. If G satisfies conditions (i) and (ii) and $f(e)=1$, then $\chi(H) \leq \chi_{l a t}(H) \leq t$.

Proof. By definition, we have the lower bound. Define $g: E(H) \rightarrow[1,|E(H)|]$ such that $g\left(e^{\prime}\right)=f\left(e^{\prime}\right)-1$ for each $e^{\prime} \in E(H)$. Observe that g is a bijection with $w_{g}(x)=w_{f}(x)-d_{k}-1$ for each $x \in V_{k}, 1 \leq k \leq t$. Thus, $w_{g}(x)=w_{g}(y)$ if and only if $x, y \in V_{k}, 1 \leq k \leq t$. Therefore, g is a local antimagic total labeling of H with $w(g)=w(f)$. Thus, $\chi_{l a t}(H) \leq t$.

Lemma 2.8. Suppose $u v \in E(G)$. Let H be obtained from G with an edge uv added. If G satisfies conditions (i) and (iii), then $\chi(H) \leq \chi_{l a t}(H) \leq t$.
Proof. By definition, we have the lower bound. Define $g: E(H) \rightarrow[1,|E(H)|]$ such that $g(u v)=1$ and $g(e)=f(e)+1$ for $e \in E(G)$. Observe that g is a bijection with $w_{g}(x)=w_{f}(x)+d_{k}+1$ for each $x \in V_{k}, 1 \leq k \leq t$. Thus, $w_{g}(x)=w_{g}(y)$ if and only if $x, y \in V_{k}, 1 \leq k \leq t$. Therefore, g is a local antimagic total labeling of H with $w(g)=w(f)$. Thus, $\chi_{l a t}(H) \leq t$.

3. COMPLETE BIPARTITE GRAPHS, PATHS AND CYCLES

In [8, Theorems 2.7, 2.8, 2.10, 2.11], the authors showed that $(1, p, q)$-board is tri-magic for all $1 \leq p<q$. This is equivalent to $\chi_{l a}\left(K_{1, p, q}\right)=3$ for $1 \leq p<q$, where $K_{1, p, q}$ is the complete tripartite graph, i.e., $K_{p, q} \vee K_{1}$. By Theorem 2.3, we have $\chi_{l a t}\left(K_{p, q}\right)=2$ for $1 \leq p<q$.
Theorem 3.1. For $1 \leq p \leq q, \chi_{l a t}\left(K_{p, q}\right)=2$.
Proof. We only need to consider $p=q$. If $p=1$, then $\chi_{l a t}\left(K_{1,1}\right)=2$ is obvious.
For $p=2 n$, we may make use of the matrix constructed at the proof of [7, Theorem 11]. For easy reading, we copy the construction here.

Suppose $p+1=2 n+1 \geq 3$. Consider the $(2 n+1) \times(2 n+1)$ magic square A constructed by Siamese method.

Starting from the $(1, n+1)$-entry (i.e. $A_{1, n+1}$) with the number 1, the fundamental movement for filling the entries is diagonally up and right, one step at a time. When a move would leave the matrix, it is wrapped around to the last row or first column, respectively. If a filled entry is encountered, one moves vertically down one box instead, then continuing as before. One may find the detail in [5].

For convenience, let $k=p+1$. Note that each of the ranges $[1, k],[k+1,2 k], \ldots$, [$k^{2}-k+1, k^{2}$] occupies a diagonal of the matrix, wrapping at the edges. Namely, the range $[1, k]$ starts at $A_{1, n+1}$ and ends at $A_{2, n}$; the range $[k+1,2 k]$ starts at $A_{3, n}$ ends at $A_{4, n-1}$; the range $[2 k+1,3 k]$ starts at $A_{5, n-1}$ and ends at $A_{6, n-2}$, etc. In general, the range $[i k+1,(i+1) k]$ starts at $A_{2 i+1, n+1-i}$ and ends at $A_{2 i+2, n-i}$, where $0 \leq i \leq k-1$ and the indices are taken modulo k. It is easy to see that the $(n+1)$-st column of A is $\left(1, k+2, \ldots, k^{2}\right)$ which is an arithmetic sequence with common difference $k+1$.

We now perform the following steps:
(1) Move each entry of the $(n+1)$-st column one position down (the ($p+1, n+1$)-entry becomes the $(1, n+1)$-entry). Note that each column sum is still the magic number $\frac{1}{2} k\left(k^{2}+1\right)$. The first row sum is now $\frac{1}{2} k\left(k^{2}+1\right)+k^{2}-1$ while each remaining row sum is $\frac{1}{2} k\left(k^{2}+1\right)-k-1$.
(2) Exchange the $(n+1)$-st column and the $(p+1)$-st column. Now, the $(1, p+1)$-entry of B is $(p+1)^{2}$.
(3) Replace the entry $(p+1)^{2}$ by $*$. Let this matrix be B.
(4) Move every row of B one position up (the first row becomes the last row). Let this matrix be M.

Thus, M is an augmented bipartite labeling matrix of a local antimagic total labeling of $K_{p, p}$ with local antimagic total chromatic number 2.

For $p=2 n+1$, let A be the magic square of order p constructed by Siamese method (as above). So, the anti-diagonal of A is

$$
\left(A_{p, 1}, A_{p-1,2}, \ldots, A_{1, p}\right)=\left(\frac{p(p-1)}{2}+1, \frac{p(p-1)}{2}+2, \ldots, \frac{p(p-1)}{2}+p\right)
$$

Let B be a matrix obtained from A by exchanging the $(p-i+1, i)$-entry with $(i, p-i+1)$-entry, for $1 \leq i \leq \frac{p-1}{2}$. Then the i-row sum is $\frac{p\left(p^{2}+1\right)}{2}-(p+1)+2 i$, $1 \leq i \leq p$; and the j-column sum is $\frac{p\left(p^{2}+1\right)}{2}+(p+1)-2 j, 1 \leq j \leq p$.

Let

$$
R=\left(p^{2}+1, p^{2}+3, \ldots, p^{2}+2 p-1, *\right)
$$

be a row vector of length $p+1$ and

$$
C=\left(p^{2}+2 p, p^{2}+2 p-2, \ldots, p^{2}+2, *\right)^{T}
$$

be a column vector of length $p+1$. Now let M be a $(p+1) \times(p+1)$ matrix obtained from B by adding C at the rightmost of B and R at the bottom of B. Now, each row sum is $\frac{p\left(p^{2}+1\right)}{2}+p^{2}+p+1$ and each column sum is $\frac{p\left(p^{2}+1\right)}{2}+p^{2}+p$. Hence, M is an augmented bipartite labeling matrix of a local antimagic total labeling of $K_{p, p}$ with local antimagic total chromatic number 2.

Example 3.2. Suppose $p=4$. We have the following magic square of order 5:

$$
\begin{aligned}
A= & \left(\begin{array}{ccccc}
17 & 24 & 1 & 8 & 15 \\
23 & 5 & 7 & 14 & 16 \\
4 & 6 & 13 & 20 & 22 \\
10 & 12 & 19 & 21 & 3 \\
11 & 18 & 25 & 2 & 9
\end{array}\right) \rightarrow\left(\begin{array}{ccccc}
17 & 24 & 25 & 8 & 15 \\
23 & 5 & 1 & 14 & 16 \\
4 & 6 & 7 & 20 & 22 \\
10 & 12 & 13 & 21 & 3 \\
11 & 18 & 19 & 2 & 9
\end{array}\right) \\
& \xrightarrow{C_{3} \leftrightarrow C_{5}}\left(\begin{array}{ccccc}
17 & 24 & 15 & 8 & 25 \\
23 & 5 & 16 & 14 & 1 \\
4 & 6 & 22 & 20 & 7 \\
11 & 18 & 3 & 2 & 13 \\
10 & 12 & 9 & 21 & 19
\end{array}\right) .
\end{aligned}
$$

Now

$$
B=\left(\begin{array}{ccccc}
17 & 24 & 15 & 8 & * \\
23 & 5 & 16 & 14 & 1 \\
4 & 6 & 22 & 20 & 7 \\
11 & 18 & 3 & 2 & 13 \\
10 & 12 & 9 & 21 & 19
\end{array}\right) \quad \text { and } \quad M=\left(\begin{array}{cccc|c}
23 & 5 & 16 & 14 & 1 \\
4 & 6 & 22 & 20 & 7 \\
11 & 18 & 3 & 2 & 13 \\
10 & 12 & 9 & 21 & 19 \\
\hline 17 & 24 & 15 & 8 & *
\end{array}\right)
$$

is an augmented bipartite labeling matrix of a local antimagic total labeling of $K_{4,4}$ with local antimagic total chromatic number 2 . Note that the first 4 rows sum are 59 and first 4 column sums are 65 .

Suppose $p=5$. We still use the magic square of order 5 :

$$
\begin{aligned}
& A=\left(\begin{array}{ccccc}
17 & 24 & 1 & 8 & 15 \\
23 & 5 & 7 & 14 & 16 \\
4 & 6 & 13 & 20 & 22 \\
10 & 12 & 19 & 21 & 3 \\
11 & 18 & 25 & 2 & 9
\end{array}\right) \rightarrow\left(\begin{array}{ccccc}
17 & 24 & 1 & 8 & 11 \\
23 & 5 & 7 & 12 & 16 \\
4 & 6 & 13 & 20 & 22 \\
10 & 14 & 19 & 21 & 3 \\
15 & 18 & 25 & 2 & 9
\end{array}\right)=B . \\
& M=\left(\begin{array}{ccccc|c}
17 & 24 & 1 & 8 & 11 & 35 \\
23 & 5 & 7 & 12 & 16 & 33 \\
4 & 6 & 13 & 20 & 22 & 31 \\
10 & 14 & 19 & 21 & 3 & 29 \\
15 & 18 & 25 & 2 & 9 & 27 \\
\hline 26 & 28 & 30 & 32 & 34 & *
\end{array}\right)
\end{aligned}
$$

is an augmented bipartite labeling matrix of a local antimagic total labeling of $K_{5,5}$ with local antimagic total chromatic number 2 . Note that the first 5 rows sum are 96 and first 5 column sums are 95 .

Let $P_{n}=v_{1} v_{2} \ldots v_{n}$ be the path of order $n \geq 2$. Let $F_{n}=P_{n} \vee K_{1}$ be the fan graph, $n \geq 2$. Obviously $\chi_{l a}\left(F_{2}\right)=3$. Combining with the results in [9, Theorems 3.5, 3.6 and 3.7] we have

Theorem 3.3. For $n \geq 2, \chi_{l a}\left(F_{n}\right)=3$ for even n with $n \neq 4, \chi_{l a}\left(F_{4}\right)=4$ and $3 \leq \chi_{l a}\left(F_{n}\right) \leq 4$ for odd n.

We shall improve this theorem in Corollary 3.6. We note that in [9, Theorem 3.7], the authors also stated that $\chi_{l a}\left(W_{m}-e\right)=4$ for odd $m \geq 9$ and $e \notin E\left(C_{m}\right)$. However, the proof for $\chi_{l a}\left(W_{m}-e\right) \geq 4$ was incomplete. We make a supplement here: Since $m \geq 9$ is odd, vertices of C_{m} must consist of at least 3 distinct induced vertex labels under any local antimagic labeling f of $U_{m}=W_{m}-e$. Let v be the central vertex of U_{m} that has degree $m-1$. So its induced vertex label is at least $m(m-1) / 2$. Now, the only degree 2 vertex in C_{m}, say x, has induced vertex label at most $2 q-1=4 m-3$. Since $m(m-1)-2(4 m-3)=m^{2}-9 m+6>0$ for $m \geq 9$, we have $f^{+}(v)>f^{+}(x)$. Since f^{+}is a coloring, $f^{+}(v) \neq f^{+}(u)$ for every vertex $u \in V\left(C_{m}\right) \backslash\{x\}$. Thus, any local antimagic labeling of U_{m} must induce at least 4 distinct vertex labels. Consequently, $\chi_{l a}\left(U_{m}\right) \geq 4$.

Theorem 3.4. For $n \geq 2$, $\chi_{\text {lat }}\left(P_{n}\right)=2$ except that $\chi_{l a t}\left(P_{4}\right)=3$.
Proof. We first consider odd n. Suppose $n=4 k+1$. For $k=1$, a required labeling sequence that labeled the vertices and edges of P_{5} alternately is $6,4,7,3,2,5,8,1,9$ with distinct vertex weights 10 and 14 . For $k \geq 2$, define $f: V\left(P_{4 k+1}\right) \cup E\left(P_{4 k+1}\right) \rightarrow$ [$1,8 k+1]$ as follows:
(i) $f\left(v_{1}\right)=8 k, f\left(v_{4 i+1}\right)=6 k+i$ for $i \in[1, k-1]$ and $f\left(v_{4 k+1}\right)=8 k+1$,
(ii) $f\left(v_{4 i-1}\right)=3 k+i$ for $i \in[1, k-1]$ and $f\left(v_{4 k-1}\right)=6 k$,
(iii) $f\left(v_{4 i+2}\right)=7 k+i$ for $i \in[0, k-1]$,
(iv) $f\left(v_{4 i+4}\right)=4 k+1+i$ for $i \in[0, k-1]$,
(v) $f\left(v_{2 i} v_{2 i+1}\right)=2 k-i$ for $i \in[1,2 k-1]$ and $f\left(v_{4 k} v_{4 k+1}\right)=2 k$,
(vi) $f\left(v_{4 i+1} v_{4 i+2}\right)=2 k+1+i$ for $i \in[0, k-1]$,
(vii) $f\left(v_{4 i-1} v_{4 i}\right)=5 k+i$ for $i \in[1, k-1]$ and $f\left(v_{4 k-1} v_{4 k}\right)=4 k$.

It is not difficult to check that

$$
w\left(v_{i}\right)= \begin{cases}10 k+1 & \text { for odd } i \\ 11 k & \text { for even } i\end{cases}
$$

Thus, $\chi_{l a t}\left(P_{4 k+1}\right)=2$.
Suppose $n=4 k+3$. For $k=0$, a required labeling sequence that labeled the vertices and edges of P_{3} alternately is $5,1,3,4,2$ with distinct vertex weights 6 and 8 . For $k \geq 1$, we define $f: V\left(P_{4 k+3}\right) \cup E\left(P_{4 k+3}\right) \rightarrow[1,8 k+5]$ as follows:
(i) $f\left(v_{1}\right)=3 k+2, f\left(v_{3}\right)=4 k+3$ and $f\left(v_{2 i+3}\right)=3 k+3+i$ for $i \in[1, k-1]$ if $k \geq 2$,
(ii) $f\left(v_{2 k+2 i+1}\right)=2 k+1+i$ for $i \in[1, k]$ and $f\left(v_{4 k+3}\right)=3 k+3$,
(iii) $f\left(v_{2}\right)=1$ and $f\left(v_{2 i+2}\right)=5 k+4+i$ for $i \in[1, k]$,
(iv) $f\left(v_{2 k+2 i+2}\right)=4 k+3+i$ for $i \in[1, k]$,
(v) $f\left(v_{1} v_{2}\right)=8 k+5$ and $f\left(v_{2 i+1} v_{2 i+2}\right)=2 k+2-2 i$ for $i \in[1, k]$,
(vi) $f\left(v_{2 k+2 i+1} v_{2 k+2 i+2}\right)=2 k+3-2 i$ for $i \in[1, k]$,
(vii) $f\left(v_{2} v_{3}\right)=5 k+4$ and $f\left(v_{2 i+2} v_{2 i+3}\right)=6 k+4+i$ for $i \in[1,2 k]$.

It is not difficult to check that

$$
w\left(v_{i}\right)= \begin{cases}11 k+7 & \text { for odd } i \\ 13 k+10 & \text { for even } i\end{cases}
$$

Thus, $\chi_{l a t}\left(P_{4 k+3}\right)=2$.
Now, we consider even n. Obviously $\chi_{l a t}\left(P_{2}\right)=2$.
Assume $n \geq 6$. By Theorem 3.3, $\chi_{l a}\left(P_{n} \vee K_{1}\right)=3$. By Theorem 2.3 (a), we have $\chi_{l a t}\left(P_{n}\right) \leq 2$. Since $\chi_{l a t}\left(P_{n}\right) \geq \chi\left(P_{n}\right)=2$, the theorem holds.

Thus, we are left with $n=4$. Label the vertices and edges of P_{4} alternately by 7 , $1,6,4,2,3,5$ to get distinct vertex weights $8,9,11$. Thus, $\chi_{l a t}\left(P_{4}\right) \leq 3$.

Suppose there were a local antimagic total 2-coloring of P_{4}. Suppose the labels of P_{4} are a, x, b, y, c, z, d for vertex and edge alternately. We have (1) $a+x=y+c+z$ and (2) $x+b+y=z+d$. Moreover, $a+b+c+d$ must equal (1) or (2). If not, it corresponds to a local antimagic labeling of F_{4} with 3 induced vertex colors, which is impossible.

By symmetry, we only need to consider $a+b+c+d=a+x$. Now $b+c+d=x \in\{6,7\}$. From (2) we have $z=2 b+c+y \geq 7$. Thus, $z=7$ and $b=1$. Hence, $x=6$ and $\{c, d\}=\{2,3\}$. So, $y \geq 4$. This implies $z \geq 8$ which is impossible. Thus, $\chi_{l a t}\left(P_{4}\right) \geq 3$. Hence, $\chi_{l a t}\left(P_{4}\right)=3$. This completes the proof.

Example 3.5. The labeling sequence for P_{14} is $24,13,16,1,27,9,19,2,23,12,15$, $3,26,8,18,4,22,11,14,5,25,7,17,6,21,10,20$ with 2 distinct vertex weights 37 and 30 .

The labeling sequence for P_{16} is $22,13,24,5,16,14,25,3,17,15,26,1,27,7,23$, $12,21,2,30,10,19,6,28,8,18,9,29,4,20,11,31$ with 2 distinct vertex weights 35 and 42 .

The labeling sequence for P_{13} is $24,7,21,5,10,16,13,4,19,8,22,3,11,17,14$, $2,20,9,23,1,18,12,15,6,25$ with 2 distinct vertex weights 31 and 33 .

The labeling sequence for P_{15} is $11,29,1,19,15,6,20,23,13,4,21,24,14,2,22$, $25,8,7,16,26,9,5,17,27,10,3,18,28,12$ with 2 distinct vertex weights 40 and 49 .

Corollary 3.6. For $n \geq 2$,

$$
\chi_{l a}\left(F_{n}\right)= \begin{cases}3 & \text { if } n \neq 4, \\ 4 & \text { if } n=4 .\end{cases}
$$

Proof. From the proof of Theorem 3.4, we have

$$
\begin{aligned}
\sum_{u \in V\left(P_{5}\right)} f(u) & =32 \notin\{10,14\}, \\
\sum_{u \in V\left(P_{4 k+1}\right)} f(u) & =22 k^{2}+12 k+1 \notin\{10 k+1,11 k\} \quad \text { for } k \geq 2 \\
\sum_{u \in V\left(P_{3}\right)} f(u) & =10 \notin\{6,8\} \quad \text { for } n=3 \\
\sum_{u \in V\left(P_{4 k+3}\right)} f(u) & =16 k^{2}+19 k+6 \notin\{11 k+7,13 k+10\} \quad \text { for } k \geq 1 .
\end{aligned}
$$

By Theorems 3.3, 3.4 and 2.3 (a) or (b), we have the corollary.

We note that the concept of local super antimagic total chromatic number of a graph G, denoted $\chi_{l s a t}(G)$, was introduced in [10]. By definition, we must have $\chi_{l a t}(G) \leq \chi_{l s a t}(G)$ if $\chi_{l s a t}(G)$ exists. In [11, Theorem 2], the authors proved that for $n \geq 3$,

$$
\chi_{\text {lsat }}\left(C_{n}\right)= \begin{cases}3 & \text { if } n \text { is odd or } n=4 \\ 2 & \text { otherwise }\end{cases}
$$

This result implies that

$$
\chi_{l a t}\left(C_{n}\right)= \begin{cases}3 & \text { if } n \text { is odd } \\ 2 & \text { if } n \geq 6 \text { is even }\end{cases}
$$

The following theorem completely determines $\chi_{l a t}\left(C_{n}\right)$ and the proof is short.
Theorem 3.7. For $n \geq 3$,

$$
\chi_{l a t}\left(C_{n}\right)= \begin{cases}2 & \text { if } n \text { is even } \\ 3 & \text { otherwise }\end{cases}
$$

Proof. It is obvious that $\chi_{l a t}\left(C_{3}\right)=3$. Assume $n \geq 4$. In $[1,7]$, the authors showed that

$$
\chi_{l a}\left(W_{n}\right)= \begin{cases}3 & \text { if } n \text { is even } \\ 4 & \text { otherwise }\end{cases}
$$

Since

$$
\chi\left(C_{n}\right)= \begin{cases}2 & \text { if } n \text { is even } \\ 3 & \text { otherwise }\end{cases}
$$

by Theorem 2.3 (a), we conclude that the theorem holds.
For a wheel graph $W_{n}=K_{1} \vee C_{n}, n \geq 3$, the vertex of K_{1} is called its core. In [7, Theorem 5], the authors constructed a local antimagic 3-coloring for $W_{4 k}$. By a similar approach we can construct a local antimagic 3-coloring for $r\left(K_{1} \vee s C_{4 k+2}\right)$ for $r \geq 1, k \geq 1$ and for some s.

Theorem 3.8. Suppose $k \geq 1$. Then:
(a) $\chi_{l a}\left(K_{1} \vee s C_{4 k+2}\right)=3$ for $s \geq 1$,
(b) $\chi_{l a}\left(r\left(K_{1} \vee s C_{4 k+2}\right)\right)=3$ for $r \geq 2$ and even $s \geq 2$.

Proof. Let $G=r H$ and $H=K_{1} \vee s C_{4 k+2}$. Observe that each copy of H can be obtained from s copies of $W_{4 k+2}$ by merging their cores.

We consider the following Tables 1 and 2 whose column sum is $3 k+3$.

Table 1

$S_{1}=$| C_{1} | C_{2} | C_{3} | C_{4} | \ldots | $C_{2 i-1}$ | $C_{2 i}$ | \ldots | $C_{2 k-1}$ | $C_{2 k}$ | $C_{2 k+1}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 2 | 3 | 4 | \ldots | $2 i-1$ | $2 i$ | \ldots | $2 k-1$ | $2 k$ | $2 k+1$ |
| $2 k+1$ | k | $2 k$ | $k-1$ | \ldots | $2 k+2-i$ | $k+1-i$ | \ldots | $k+2$ | 1 | $k+1$ |
| $k+1$ | $2 k+1$ | k | $2 k$ | \ldots | $k+2-i$ | $2 k+2-i$ | \ldots | 2 | $k+2$ | 1 |

Table 2

$S_{2}=$| C_{1} | C_{2} | C_{3} | C_{4} | \ldots | $C_{2 i-1}$ | $C_{2 i}$ | \ldots | $C_{2 k-1}$ | $C_{2 k}$ | $C_{2 k+1}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $k+1$ | $2 k+1$ | k | $2 k$ | \ldots | $k+2-i$ | $2 k+2-i$ | \ldots | 2 | $k+2$ | 1 |
| 1 | 2 | 3 | 4 | \ldots | $2 i-1$ | $2 i$ | \ldots | $2 k-1$ | $2 k$ | $2 k+1$ |
| $2 k+1$ | k | $2 k$ | $k-1$ | \ldots | $2 k+2-i$ | $k+1-i$ | \ldots | $k+2$ | 1 | $k+1$ |

For $r, s \geq 1$ and $1 \leq i \leq r s$, we define a table $T_{2 i-1}$ from S_{1} by the following way.

1. Add each entry of Row 1 by $(i-1)(2 k+1)$. So the set of entries of Row 1 is

$$
[(i-1)(2 k+1)+1, i(2 k+1)] .
$$

2. Add each entry of Row 2 by $(r s+i-1)(2 k+1)$. So the set of entries of Row 2 is

$$
[(r s+i-1)(2 k+1)+1,(r s+i)(2 k+1)] .
$$

3. Add each entry of Row 3 by $(4 r s-2 i)(2 k+1)$. So the set of entries of Row 3 is

$$
[(4 r s-2 i)(2 k+1)+1,(4 r s-2 i+1)(2 k+1)]
$$

Note that, the column sum of $T_{2 i-1}$ is $s_{1}=(5 r s-2)(2 k+1)+3 k+3$, and the row sum of Row 3 is $r_{2 i-1}=(4 r s-2 i)(2 k+1)^{2}+(2 k+1)(k+1)$.

For $r, s \geq 1$ and $1 \leq i \leq r s$, we define a table $T_{2 i}$ from S_{2} by the following way.

1. Add each entry of Row 1 by $(r s+i-1)(2 k+1)$. Note that, this row is the same as

Row 2 of $T_{2 i-1}$ by right shifting one entry. So the set of entries of Row 1 is

$$
[(r s+i-1)(2 k+1)+1,(r s+i)(2 k+1)]
$$

2. Add each entry of Row 2 by $(i-1)(2 k+1)$. Note that, this row is the same as Row 1 of $T_{2 i-1}$. So the set of entries of Row 2 is

$$
[(i-1)(2 k+1)+1, i(2 k+1)] .
$$

3. Add each entry of Row 3 by $(4 r s-2 i+1)(2 k+1)$. So the set of entries of Row 3 is

$$
[(4 r s-2 i+1)(2 k+1)+1,(4 r s-2 i+2)(2 k+1)]
$$

Note that, the column sum of $T_{2 i}$ is

$$
s_{2}=(5 r s-1)(2 k+1)+3 k+3
$$

and the row sum of Row 3 is

$$
r_{2 i}=(4 r s-2 i+1)(2 k+1)^{2}+(2 k+1)(k+1) .
$$

By exactly the same approach as in [7, Theorem 5], we can obtain a $W_{4 k+2}$ that admits a bijective edge labeling using all the integers in $T_{2 i-1}$ and $T_{2 i}$, denoted G_{i} for $1 \leq i \leq r s$, such that the edge labels of the $C_{4 k+2}$ are given by $(i-1)(2 k+1)+1$, $(r s+i)(2 k+1),(i-1)(2 k+1)+2,(r s+i-1)(2 k+1)+k,(i-1)(2 k+1)+3$, $(r s+i)(2 k+1)-1,(i-1)(2 k+1)+4,(r s+i-1)(2 k+1)+k-1, \ldots, i(2 k+1)-3$, $(r s+i-1)(2 k+1)+2, i(2 k+1)-2,(r s+i-1)(2 k+1)+k+2, i(2 k+1)-1$, $(r s+i-1)(2 k+1)+1, i(2 k+1),(r s+i-1)(2 k+1)+k+1$ consecutively. Moreover, all the Row 3 integers of $T_{2 i-1}$ and $T_{2 i}$ are assigned to the spokes of G_{i} so that the incident edge labels sum of the core is

$$
r_{2 i-1}+r_{2 i}=(8 r s-4 i+1)(2 k+1)^{2}+2(k+1)(2 k+1)=R_{i}
$$

and the incident edge labels sum of the vertices of $C_{4 k+2}$ are s_{1} and s_{2} alternately. One may easily check that all labels in $[1,4 r s(2 k+1)]$ have been used.
(a) When $r=1$. From the above construction, it is clear that we have a local antimagic 3-coloring for $K_{1} \vee s C_{4 k+2}$ with induced vertex labels s_{1}, s_{2} and $L=\sum_{i=1}^{s} R_{i}$ for $s \geq 1$. Thus, $\chi_{l a}(G) \leq 3$. Since $\chi_{l a}(G) \geq \chi(G)=3$, $\chi_{l a}(G)=3$.
(b) Suppose $r \geq 2$ and $s=2 n \geq 2$. We group G_{1} to $G_{r s}$ into sets

$$
A_{t}=\left\{G_{i} \mid i \in[t n-n+1, t n] \cup[(2 r-t) n+1,(2 r-t) n+n]\right\}
$$

for $t=1,2, \ldots, r$. Finally, for all the wheels in each A_{t}, we merge their cores into a vertex to get a $K_{1} \vee s C_{4 k+2}$, denoted $H_{t}=H$. The common core of each H_{t} has the label

$$
\begin{aligned}
L= & \sum_{i=t n-n+1}^{t n} R_{i}+\sum_{j=(2 r-t) n+1}^{(2 r-t) n+n} R_{j} \\
= & 2 n(16 r n+1)(2 k+1)^{2}+4 n(k+1)(2 k+1) \\
& -4(2 k+1)^{2}\left[\sum_{i=t n-n+1}^{t n} i+\sum_{j=(2 r-t) n+1}^{(2 r-t) n+n} j\right] \\
= & 2 n(16 r n+1)(2 k+1)^{2}+4 n(k+1)(2 k+1)-2 n(2 k+1)^{2}(4 r n+2) \\
= & 2 n(12 r n-1)(2 k+1)^{2}+4 n(k+1)(2 k+1)
\end{aligned}
$$

which is a constant.
Clearly, $L>s_{2}>s_{1}$. Thus, $H_{1}+H_{2}+\ldots+H_{r}=r H=G$ admits a local antimagic labeling that induces three distinct colors so that $\chi_{l a}(G) \leq 3$. Hence, $\chi_{l a}(G)=3$.

Example 3.9. Let us consider the graph $K_{1} \vee 2 C_{10}$. According to the proof of Theorem 3.8 we have

$$
\left.\begin{array}{rl}
T_{1} & =\left(\begin{array}{ccccc}
1 & 2 & 3 & 4 & 5 \\
15 & 12 & 14 & 11 & 13 \\
33 & 35 & 32 & 34 & 31
\end{array}\right),
\end{array} T_{2}=\left(\begin{array}{cccc}
13 & 15 & 12 & 14 \\
1 & 2 & 3 & 4 \\
5 \\
40 & 37 & 39 & 36
\end{array}\right) 38\right) ~ 土\left(\begin{array}{ccccc}
6 & 7 & 8 & 9 & 10 \\
20 & 17 & 19 & 16 & 18 \\
23 & 25 & 22 & 24 & 21
\end{array}\right), \quad T_{4}=\left(\begin{array}{ccccc}
18 & 20 & 17 & 19 & 16 \\
6 & 7 & 8 & 9 & 10 \\
30 & 27 & 29 & 26 & 28
\end{array}\right) .
$$

So we have a local antimagic 3-coloring of $K_{1} \vee 2 C_{10}$ with the induced colors 49, 54, 610 as in Figure 1.

Fig. 1. A local antimagic 3-coloring of $K_{1} \vee 2 C_{10}$

The induced label of the core is 610 .
Example 3.10. Let us consider the graph $2\left(K_{1} \vee 2 C_{6}\right)$. According to the proof of Theorem 3.8 we have

$$
\begin{aligned}
T_{1} & =\left(\begin{array}{ccc}
1 & 2 & 3 \\
15 & 13 & 14 \\
44 & 45 & 43
\end{array}\right), & T_{2}=\left(\begin{array}{ccc}
14 & 15 & 13 \\
1 & 2 & 3 \\
48 & 46 & 47
\end{array}\right), \\
T_{3} & =\left(\begin{array}{ccc}
4 & 5 & 6 \\
18 & 16 & 17 \\
38 & 39 & 37
\end{array}\right), & T_{4}=\left(\begin{array}{ccc}
17 & 18 & 16 \\
4 & 5 & 6 \\
42 & 40 & 41
\end{array}\right), \\
T_{5} & =\left(\begin{array}{ccc}
7 & 8 & 9 \\
21 & 19 & 20 \\
32 & 33 & 31
\end{array}\right), & T_{6}=\left(\begin{array}{ccc}
20 & 21 & 19 \\
7 & 8 & 9 \\
36 & 34 & 35
\end{array}\right), \\
T_{7} & =\left(\begin{array}{lll}
10 & 11 & 12 \\
24 & 22 & 23 \\
26 & 27 & 25
\end{array}\right), & T_{8}=\left(\begin{array}{ccc}
23 & 24 & 22 \\
10 & 11 & 12 \\
30 & 28 & 29
\end{array}\right) .
\end{aligned}
$$

$A_{1}=\left\{G_{1}, G_{4}\right\}$ and $A_{2}=\left\{G_{2}, G_{3}\right\}$. So we have a local antimagic 3-coloring of $2\left(K_{1} \vee 2 C_{6}\right)$ with the induced colors $60,63,438$ as in Figure 2.

Fig. 2. A local antimagic 3-coloring of $2\left(K_{1} \vee 2 C_{6}\right)$

The induced label of each core is 438 .

Example 3.11. Let us consider the graph $K_{1} \vee 3 C_{6}$. According to the proof of Theorem 3.8 we have

$$
\begin{aligned}
T_{1} & =\left(\begin{array}{ccc}
1 & 2 & 3 \\
12 & 10 & 11 \\
32 & 33 & 31
\end{array}\right), & T_{2}=\left(\begin{array}{ccc}
11 & 12 & 10 \\
1 & 2 & 3 \\
36 & 34 & 35
\end{array}\right), \\
T_{3} & =\left(\begin{array}{ccc}
4 & 5 & 6 \\
15 & 13 & 14 \\
26 & 27 & 25
\end{array}\right), & T_{4}=\left(\begin{array}{ccc}
14 & 15 & 13 \\
4 & 5 & 6 \\
30 & 28 & 29
\end{array}\right), \\
T_{5} & =\left(\begin{array}{ccc}
7 & 8 & 9 \\
18 & 16 & 17 \\
20 & 21 & 19
\end{array}\right), & T_{6}=\left(\begin{array}{ccc}
17 & 18 & 16 \\
7 & 8 & 9 \\
24 & 22 & 23
\end{array}\right) .
\end{aligned}
$$

So we have a local antimagic 3-coloring of $K_{1} \vee 3 C_{6}$ with the induced colors 45, 48, 495 as in Figure 3.

Fig. 3. A local antimagic 3-coloring of $K_{1} \vee 3 C_{6}$

The induced label of each core is 495 .
In each of the local antimagic labeling in Theorem 3.8, an edge in a cycle is labeled 1. By Theorem 2.3(a) and Lemma 2.5, we immediately have the following two theorems.

Theorem 3.12. For $k \geq 1, s \geq 2$, $\chi_{l a t}\left(s C_{4 k+2}\right)=2$.
Theorem 3.13. For $k \geq 1, s \geq 1$, $\chi_{l a t}\left(s C_{4 k+2}+P_{4 k+2}\right)=2$.
Theorem 3.14. For odd $n \geq 3,4 \leq \chi_{l a t}\left(C_{n} \vee 2 K_{1}\right) \leq 5$, and for even $n \geq 6$, $3 \leq \chi_{l a t}\left(C_{n} \vee 3 K_{1}\right) \leq 5$.

Proof. Here we let $C_{n}=u_{1} u_{2} \ldots u_{n} u_{1}$ and $V\left(s K_{1}\right)=\left\{v_{j} \mid 1 \leq j \leq s\right\}$.
Suppose $n \geq 3$ is odd. Clearly, $\chi_{l a t}\left(C_{n} \vee 2 K_{1}\right) \geq \chi\left(C_{n} \vee 2 K_{1}\right)=4$. In [9, Theorem 3.1], the authors provided a local antimagic 4-coloring f of $C_{n} \vee 3 K_{1}$ which induces $f^{+}\left(v_{1}\right)=f^{+}\left(v_{2}\right)=f^{+}\left(v_{3}\right)=n(5 n+1) / 2, f^{+}\left(u_{1}\right)=8 n+3, f^{+}\left(u_{i}\right)=(17 n+7) / 2$ for odd $i \geq 3$, and $f^{+}\left(u_{i}\right)=(17 n+5) / 2$ for even $i \geq 2$.

Define $g: V\left(C_{n} \vee 2 K_{1}\right) \cup E\left(C_{n} \vee 2 K_{1}\right) \rightarrow[1,4 n+2]$ by $g\left(u_{i}\right)=f\left(u_{i} v_{3}\right), g(e)=f(e)$ for $e \in E\left(C_{n}\right)$ or $e=u_{i} v_{j}$, and $g\left(v_{j}\right)=4 n+j$ for $1 \leq i \leq n$ and $j=1,2$. Now, $w_{g}\left(u_{i}\right)=f^{+}\left(u_{i}\right)$ and $w_{g}\left(v_{j}\right)=f^{+}\left(v_{j}\right)+4 n+j$ for $1 \leq i \leq n$ and $j=1,2$. Thus, g induces 5 distinct vertex weights and $\chi_{l a t}\left(C_{n} \vee 2 K_{1}\right) \leq 5$.

Suppose $n \geq 6$ is even. Clearly, $\chi_{l a t}\left(C_{n} \vee 3 K_{1}\right) \geq 3$. In [9, Theorem 3.3], the authors provided a local antimagic 3-coloring f of $C_{n} \vee 4 K_{1}$ which induces $f^{+}\left(u_{i}\right)=9 n+3$ for odd $i, f^{+}\left(u_{i}\right)=17 n+3$ for even i, and $f^{+}\left(v_{j}\right)=n(6 n+1) / 2$ for $1 \leq j \leq 4$.

Define $g: V\left(C_{n} \vee 3 K_{1}\right) \cup E\left(C_{n} \vee 3 K_{1}\right) \rightarrow[1,5 n+3]$ by $g\left(u_{i}\right)=f\left(u_{i} v_{4}\right), g(e)=f(e)$ for $e \in E\left(C_{n}\right)$ or $e=u_{i} v_{j}$, and $g\left(v_{j}\right)=5 n+j$ for $1 \leq i \leq n$ and $j=1,2,3$. Now
$w_{g}\left(u_{i}\right)=f^{+}\left(u_{i}\right)$ and $w_{g}\left(v_{j}\right)=f^{+}\left(v_{j}\right)+5 n+i$ for $1 \leq i \leq n$ and $j=1,2,3$. Thus, g induces 5 distinct vertex weights and $\chi_{l a t}\left(C_{n} \vee 3 K_{1}\right) \leq 5$.

Problem 3.15. Determine $\chi_{l a t}\left(C_{n} \vee 2 K_{1}\right)$ for odd $n \geq 3$, and $\chi_{l a t}\left(C_{n} \vee 3 K_{1}\right)$ for even $n \geq 4$.

In [9, Theorem 3.9], the authors proved that for $n, m \geq 3$,

$$
\chi_{l a}\left(K_{m} \vee C_{n}\right)= \begin{cases}m+2 & \text { if } m, n \text { are even } \\ m+3 & \text { if } m, n \text { are odd }\end{cases}
$$

By Theorem 2.3, the following theorem holds.
Theorem 3.16. For $m, n \geq 3$,

$$
\chi_{l a t}\left(K_{m-1} \vee C_{n}\right)= \begin{cases}m+1 & \text { if } m, n \text { are even } \\ m+2 & \text { if } m, n \text { are odd }\end{cases}
$$

4. CARTESIAN PRODUCT OF CYCLES

Let $C_{2 k-1}=u_{1} u_{2} \ldots u_{2 k-1} u_{1}$ be the $(2 k-1)$-cycle. We let $e_{i}=u_{i} u_{i+1}, 1 \leq i \leq 2 k-1$, the index taken modulus $2 k-1$. We define two edge labelings g_{1} and g_{2} and one vertex labeling g for $C_{2 k-1}$ as follows. Define $g_{1}, g_{2}: E\left(C_{2 k-1}\right) \rightarrow[1,2 k-1]$ by

$$
\begin{aligned}
& g_{1}\left(e_{i}\right)=2 k-i, \\
& g_{2}\left(e_{i}\right)= \begin{cases}k+\frac{i-1}{2} & \text { if } i \text { is odd } \\
\frac{i}{2} & \text { if } i \text { is even }\end{cases}
\end{aligned}
$$

and define $g: V\left(C_{2 k-1}\right) \rightarrow[1,2 k-1]$ by

$$
g\left(u_{i}\right)= \begin{cases}1 & \text { if } i=1 \\ i-1 & \text { if } i \text { is odd and } i \neq 1 \\ i+1 & \text { if } i \text { is even }\end{cases}
$$

where $i \in[1,2 k-1]$.
Now $g_{1}^{+}\left(u_{1}\right)=2 k$ and $g_{1}^{+}\left(u_{i}\right)=4 k+1-2 i$ for $i \in[2,2 k-1] ; g_{2}^{+}\left(u_{1}\right)=3 k-1$ and $g_{2}^{+}\left(u_{i}\right)=k-1+i$ for $i \in[2,2 k-1]$. By direct computation we have the following lemma.

Lemma 4.1. Keeping all the notation used above, we have

$$
s_{g}\left(u_{i}\right)=g_{1}^{+}\left(u_{i}\right)+g_{2}^{+}\left(u_{i}\right)+g\left(u_{i}\right)= \begin{cases}5 k & \text { if } i=1 \\ 5 k-1 & \text { if } i \text { is odd and } i \neq 1 \\ 5 k+1 & \text { if } i \text { is even }\end{cases}
$$

Example 4.2. Figure 4 shows labelings g_{1}, g_{2} and g for $C_{5}=u_{1} u_{2} u_{3} u_{4} u_{5} u_{1}$.

Fig. 4. Labelings g_{1}, g_{2} and g for $C_{5}=u_{1} u_{2} u_{3} u_{4} u_{5} u_{1}$

Similar to the definitions of g_{1}, g_{2} and g, we define another 3 labelings for $C_{2 k-1}$. Define $h_{1}, h_{2}: E\left(C_{2 k-1}\right) \rightarrow[0,2 k-2]$ by

$$
\begin{aligned}
& h_{1}\left(e_{i}\right)=i-1, \\
& h_{2}\left(e_{i}\right)= \begin{cases}k-1-\frac{i}{2} & \text { if } i \text { is even, } \\
2 k-2-\frac{i-1}{2} & \text { if } i \text { is odd },\end{cases}
\end{aligned}
$$

and define $h: V\left(C_{2 k-1}\right) \rightarrow[0,2 k-2]$ by

$$
h\left(u_{i}\right)= \begin{cases}0 & \text { if } i=1 \\ 2 k-i & \text { if } i \neq 1\end{cases}
$$

where $i \in[1,2 k-1]$.
Now $h_{1}^{+}\left(u_{1}\right)=2 k-2$ and $h_{1}^{+}\left(u_{i}\right)=2 i-3$ for $i \in[2,2 k-1] ; h_{2}^{+}\left(u_{i}\right)=3 k-2-i$ for $i \in[1,2 k-1]$. By direct computation, we have the following lemma.

Lemma 4.3. Keeping all the notation defined above, we have

$$
s_{h}\left(u_{i}\right)=h_{1}^{+}\left(u_{i}\right)+h_{2}^{+}\left(u_{i}\right)+h\left(u_{i}\right)=5 k-5,
$$

for $i \in[1,2 k-1]$.
Let $G=C_{n} \times C_{n}$. Then

$$
V(G)=\left\{\left(u_{i}, u_{j}\right)=v_{i, j} \mid 1 \leq i, j \leq n\right\} .
$$

Let

$$
H_{i}=\left\{v_{i, j} \mid 1 \leq j \leq n\right\} \quad \text { and } \quad V_{j}=\left\{v_{i, j} \mid 1 \leq i \leq n\right\} .
$$

Edges in $G\left[H_{i}\right]$ and $G\left[V_{j}\right]$ are called horizontal edges and vertical edges, respectively. The edges in $G\left[H_{i}\right]$ are denoted by $x_{i, j}=v_{i, j} v_{i, j+1}$ and the edges in $G\left[V_{j}\right]$ are denoted by $y_{i, j}=v_{i, j} v_{i+1, j}$.

We will keep all notation defined above in this section. Note that the labelings below of $C_{2 k-1} \times C_{2 k-1}$ use constructions that incorporate pairs of orthogonal Latin squares.

Theorem 4.4. For $k \geq 2$, $\chi_{l a t}\left(C_{2 k-1} \times C_{2 k-1}\right)=3$.
Proof. It is known that $\chi\left(C_{2 k-1} \times C_{2 k-1}\right)=3$, so we have $\chi_{\text {lat }}\left(C_{n} \times C_{n}\right) \geq 3$.
Following we shall define two total labelings f_{1} and f_{2} for $G=C_{2 k-1} \times C_{2 k-1}$ using the labelings g_{1}, g_{2} and g defined above. In this proof, all addition and subtraction of indices are taken modulo $2 k-1$.

Define $f_{1}: V(G) \cup E(G) \rightarrow[1,2 k-1]$ by $f_{1}\left(y_{i, j}\right)=g_{1}\left(e_{j-i-1}\right), f_{1}\left(x_{i, j}\right)=g_{2}\left(e_{j-i}\right)$ and $f_{1}\left(v_{i, j}\right)=g\left(u_{j-i}\right)$. Thus,

$$
\begin{aligned}
w_{f_{1}}\left(v_{i, j}\right) & =f_{1}\left(y_{i, j}\right)+f_{1}\left(y_{i-1, j}\right)+f_{1}\left(x_{i, j}\right)+f_{1}\left(x_{i, j-1}\right)+f_{1}\left(v_{i, j}\right) \\
& =g_{1}\left(e_{j-i-1}\right)+g_{1}\left(e_{j-i}\right)+g_{2}\left(e_{j-i}\right)+g_{2}\left(e_{j-1-i}\right)+g\left(u_{j-i}\right) \\
& =g_{1}^{+}\left(u_{j-i}\right)+g_{2}^{+}\left(u_{j-i}\right)+g\left(u_{j-i}\right)=s_{g}\left(u_{j-i}\right)
\end{aligned}
$$

Define $f_{2}: V(G) \cup E(G) \rightarrow[0,6 k-4]$ by $f_{2}\left(y_{i, j}\right)=h_{1}\left(e_{i+j}\right), f_{2}\left(x_{i, j}\right)=h_{2}\left(e_{i+j}\right)+2 k-1$ and $f_{2}\left(v_{i, j}\right)=h\left(u_{i+j}\right)+4 k-2$. Thus,

$$
\begin{aligned}
w_{f_{2}}\left(v_{i, j}\right)= & f_{2}\left(y_{i, j}\right)+f_{2}\left(y_{i-1, j}\right)+f_{2}\left(x_{i, j}\right)+f_{2}\left(x_{i, j-1}\right)+f_{2}\left(v_{i, j}\right) \\
= & h_{1}\left(e_{i+j}\right)+h_{1}\left(e_{i+j-1}\right)+\left[h_{2}\left(e_{i+j}\right)+2 k-1\right]+\left[h_{2}\left(e_{i+j-1}\right)+2 k-1\right] \\
& +\left[h\left(u_{i+j}\right)+4 k-2\right] \\
= & h_{1}^{+}\left(u_{i+j}\right)+h_{2}^{+}\left(u_{i+j}\right)+h\left(u_{i+j}\right)+8 k-4=s_{h}\left(u_{i+j}\right)+8 k-4=13 k-9 .
\end{aligned}
$$

Note that, the images of all vertical edges are in $[0,2 k-2]$, those of all horizontal edges are in $[2 k-1,4 k-3]$ and those of all vertices are in $[4 k-2,6 k-4]$.

Now define $f: V(G) \cup E(G) \rightarrow\left[1,3(2 k-1)^{2}\right]$ by $f(x)=f_{1}(x)+(2 k-1) f_{2}(x)$ for $x \in$ $V(G) \cup E(G)$. Suppose $f(x)=f(y)$, then $f_{1}(x)+(2 k-1) f_{2}(x)=f_{1}(y)+(2 k-1) f_{2}(y)$ or equivalently $f_{1}(x)-f_{1}(y)=(2 k-1)\left[f_{2}(y)-f_{2}(x)\right]$. Hence, $f_{1}(x)=f_{1}(y)$ and $f_{2}(x)=f_{2}(y)$ (since $\left.0 \leq\left|f_{1}(x)-f_{1}(y)\right| \leq 2 k-2\right)$. By the definition of $f_{2}, f_{2}(x)=f_{2}(y)$ implies that x and y both are vertices, vertical edges or horizontal edges. Since g_{1}, g_{2} and g are bijective, $x=y$. Thus, f is injective and hence is bijective.

Next,

$$
\begin{align*}
w_{f}\left(v_{i, j}\right) & =f\left(y_{i, j}\right)+f\left(y_{i-1, j}\right)+f\left(x_{i, j}\right)+f\left(x_{i, j-1}\right)+f\left(v_{i, j}\right) \\
& =w_{f_{1}}\left(v_{i, j}\right)+(2 k-1) w_{f_{2}}\left(v_{i, j}\right)=s_{g}\left(u_{j-i}\right)+(2 k-1)(13 k-9) \\
& =\left\{\begin{array}{lll}
5 k+c & \text { if } j-i \equiv 1 & (\bmod 2 k-1) \\
5 k+1+c & \text { if } j+i \equiv 0 & (\bmod 2) \\
5 k-1+c & \text { if } j+i \equiv 1 & (\bmod 2), \quad j-i \not \equiv 1 \quad(\bmod 2 k-1)
\end{array}\right. \tag{4.1}
\end{align*}
$$

where $c=(2 k-1)(13 k-9)$. Note that $v_{i, j}$ and $v_{i^{\prime}, j^{\prime}}$ are adjacent only if $i+j \not \equiv i^{\prime}+j^{\prime}$ $(\bmod 2)$. Thus, f is a local antimagic total 3 -coloring of G. So $\chi_{l a t}(G)=3$.

Example 4.5. Figure 5 shows labelings f_{1} and f_{2} for $C_{5} \times C_{5}$ (the lowest left corner is the vertex $v_{1,1}$, the lowest right corner is the vertex $v_{1,5}$).

Fig. 5. Labelings f_{1} and f_{2} for $C_{5} \times C_{5}$

One may see that the $w_{f_{1}}$-value is 15,16 or 14 ; and $w_{f_{2}}$-value is 30 .
Figure 6 shows labelings $f=f_{1}+5 f_{2}$ and w_{f}.

Fig. 6. Labelings $f=f_{1}+5 f_{2}$ and w_{f}

One may see that the w_{f}-value is 165,166 or 164 . Thus, f is a local antimagic 3 -coloring for $C_{5} \times C_{5}$.

Similarly, we define a labeling ϕ for $C_{2 k-1}$. Define $\phi: E\left(C_{2 k-1}\right) \rightarrow[1,2 k-1]$ by

$$
\phi\left(e_{i}\right)= \begin{cases}\frac{i+1}{2} & \text { if } i \text { is odd } \\ 2 k-\frac{i}{2} & \text { if } i \text { is even }\end{cases}
$$

where $i \in[1,2 k-1]$.
Now $\phi^{+}\left(u_{1}\right)=k+1, \phi^{+}\left(u_{i}\right)=2 k+1$ for odd i and $\phi^{+}\left(u_{i}\right)=2 k$ for even i, where $i \in[2,2 k-1]$.

Theorem 4.6. For $k \geq 2$, $\chi_{l a}\left(C_{2 k-1} \times C_{2 k-1}\right)=3$.
Proof. It is known that $\chi\left(C_{2 k-1} \times C_{2 k-1}\right)=3$, so we have $\chi_{l a}\left(C_{n} \times C_{n}\right) \geq 3$.
In the following we shall define two labelings ρ_{1} and ρ_{2} for $G=C_{2 k-1} \times C_{2 k-1}$ using the labelings ϕ and h_{1}.

Define $\rho_{1}: E(G) \rightarrow[1,2 k-1]$ by $\rho_{1}\left(y_{i, j}\right)=\phi\left(e_{j-i-1}\right)$ and $\rho_{1}\left(x_{i, j}\right)=\phi\left(e_{j-i}\right)$.
Then

$$
\begin{aligned}
\rho_{1}^{+}\left(v_{i, j}\right) & =\rho_{1}\left(y_{i, j}\right)+\rho_{1}\left(y_{i-1, j}\right)+\rho_{1}\left(x_{i, j}\right)+\rho_{1}\left(x_{i, j-1}\right) \\
& =\phi\left(e_{j-i-1}\right)+\phi\left(e_{j-i}\right)+\phi\left(e_{j-i}\right)+\phi\left(e_{j-1-i}\right) \\
& =2 \phi^{+}\left(u_{j-i}\right) .
\end{aligned}
$$

Define $\rho_{2}: E(G) \rightarrow[0,2 k-2]$ by $\rho_{2}\left(y_{i, j}\right)=h_{1}\left(e_{i+j}\right)$ and $\rho_{2}\left(x_{i, j}\right)=h_{1}\left(e_{2 k-i-j}\right)+$ $2 k-1$. Thus,

$$
\begin{aligned}
\rho_{2}^{+}\left(v_{i, j}\right)= & \rho_{2}\left(y_{i, j}\right)+\rho_{2}\left(y_{i-1, j}\right)+\rho_{2}\left(x_{i, j}\right)+\rho_{2}\left(x_{i, j-1}\right) \\
= & h_{1}\left(e_{i+j}\right)+h_{1}\left(e_{i+j-1}\right)+\left[h_{1}\left(e_{2 k-i-j}\right)+2 k-1\right] \\
& +\left[h_{1}\left(e_{2 k-i-j+1}\right)+2 k-1\right] \\
= & h_{1}^{+}\left(u_{i+j}\right)+h_{1}^{+}\left(u_{2 k-i-j+1}\right)+4 k-2 .
\end{aligned}
$$

Let us consider $h_{1}^{+}\left(u_{i+j}\right)+h_{1}^{+}\left(u_{2 k-i-j+1}\right)$. Note that, $i+j \equiv 1(\bmod 2 k-1)$ if and only if $2 k-i-j+1 \equiv 1(\bmod 2 k-1)$. Thus, $u_{i+j}=u_{2 k-i-j+1}=u_{1}$ and $h_{1}^{+}\left(u_{i+j}\right)+h_{1}^{+}\left(u_{2 k-i-j+1}\right)=2 h_{1}^{+}\left(u_{1}\right)=4 k-4$.

Suppose $i+j \not \equiv 1(\bmod 2 k-1)$. If $i+j \in[2,2 k-1]$, then $2 k-i-j+1 \in[2,2 k-1]$. Hence,

$$
h_{1}^{+}\left(u_{i+j}\right)+h_{1}^{+}\left(u_{2 k-i-j+1}\right)=[2(i+j)-3]+[2(2 k-i-j+1)-3]=4 k-4
$$

If $i+j \in[2 k+1,4 k-2]$, then $4 k-i-j \in[2,2 k-1]$. Hence, $u_{2 k-i-j+1}=u_{4 k-i-j}$ and $u_{i+j}=u_{i+j-2 k+1}$. Then

$$
\begin{aligned}
h_{1}^{+}\left(u_{i+j}\right)+h_{1}^{+}\left(u_{2 k-i-j+1}\right) & =h_{1}^{+}\left(u_{i+j-2 k+1}\right)+h_{1}^{+}\left(u_{4 k-i-j}\right) \\
& =[2(i+j-2 k+1)-3]+[2(4 k-i-j)-3] \\
& =4 k-4
\end{aligned}
$$

Thus,

$$
\rho_{2}^{+}\left(v_{i, j}\right)=8 k-6
$$

for $i, j \in[1,2 k-1]$.

Now define $F: E(G) \rightarrow\left[1,2(2 k-1)^{2}\right]$ by $F(x)=\rho_{1}(x)+(2 k-1) \rho_{2}(x)$ for $x \in E(G)$. By a similar argument to the proof of Theorem 4.4, we can show that F is bijective.

Next,

$$
\begin{aligned}
F^{+}\left(v_{i, j}\right) & =F\left(y_{i, j}\right)+F\left(y_{i-1, j}\right)+F\left(x_{i, j}\right)+F\left(x_{i, j-1}\right) \\
& =\rho_{1}^{+}\left(v_{i, j}\right)+(2 k-1) \rho_{2}^{+}\left(v_{i, j}\right) \\
& =2 \phi^{+}\left(u_{j-i}\right)+(2 k-1)(8 k-6) \\
& =\left\{\begin{array}{lll}
2 k+2+d & \text { if } j-i \equiv 1 & (\bmod 2 k-1) \\
4 k+2+d & \text { if } j-i \equiv 1 & (\bmod 2), j-i \not \equiv 1 \\
4 k+d & \text { if } j-i \equiv 0 & (\bmod 2)
\end{array}\right.
\end{aligned}
$$

where $d=(2 k-1)(8 k-6)$. Note that $v_{i, j}$ and $v_{i^{\prime}, j^{\prime}}$ are adjacent only if $i+j \not \equiv i^{\prime}+j^{\prime}$ $(\bmod 2)$. Thus, F is a local antimagic 3-coloring of G. So $\chi_{l a t}(G)=3$.

Example 4.7. Figure 7 shows labelings ρ_{1} and ρ_{2} for $C_{5} \times C_{5}$ with their induced vertex labelings.

Fig. 7. Labelings ρ_{1} and ρ_{2} for $C_{5} \times C_{5}$

Figure 8 shows the labelings $F=\rho_{1}+5 \rho_{2}$ and F^{+}for $C_{5} \times C_{5}$.

Fig. 8. The labelings $F=\rho_{1}+5 \rho_{2}$ and F^{+}for $C_{5} \times C_{5}$

Theorem 4.8. For $k \geq 2$, $\chi_{l a}\left(\left(C_{2 k-1} \times C_{2 k-1}\right) \vee K_{1}\right)=4$.
Proof. Let f be the local antimagic total labeling of $C_{2 k-1} \times C_{2 k-1}$ in the proof of Theorem 4.4. Since

$$
\sum_{i=1}^{2 k-1} g\left(u_{i}\right)=k(2 k-1) \quad \text { and } \quad \sum_{i=1}^{2 k-1} h\left(u_{i}\right)=\frac{1}{2}(2 k-1)^{2},
$$

we have

$$
\begin{align*}
\sum_{i=1}^{2 k-1} \sum_{j=1}^{2 k-1} f\left(v_{i, j}\right) & =\sum_{i=1}^{2 k-1} \sum_{j=1}^{2 k-1} g\left(u_{i+j}\right)+(2 k-1) \sum_{i=1}^{2 k-1} \sum_{j=1}^{2 k-1}\left[h\left(u_{i+j}\right)+(4 k-2)\right] \\
& =k(2 k-1)^{2}+\frac{1}{2}(2 k-1)^{4}+2(2 k-1)^{4} \\
& =(2 k-1)^{2}\left[k+\frac{5}{2}(2 k-1)^{2}\right]>w_{f}\left(v_{i, j}\right) \tag{4.1}
\end{align*}
$$

By Theorem 2.3(b), we immediately have $\chi_{l a}\left(\left(C_{2 k-1} \times C_{2 k-1}\right) \vee K_{1}\right)=4$.

5. CONCLUSION AND OPEN PROBLEMS

In this paper, we first proved that every graph is local antimagic. The proof gives a sharp bound for us to determine $\chi_{l a t}(G)$ (or $\chi_{l a}\left(G \vee K_{1}\right)$) using a local antimagic labeling of $G \vee K_{1}$ (or a local antimagic total labeling of G). The local antimagic (total) chromatic number of many family of graphs are determined. The following problems arise naturally.

Problem 5.1. Determine $\chi_{l a t}\left(s C_{n}\right)$ for $s \geq 2$ and $n \not \equiv 2(\bmod 4)$.
Problem 5.2. For (i) $m \neq n \geq 3$ and (ii) $m=n \geq 4$ are even, determine $\chi_{l a}\left(C_{m} \times C_{n}\right)$ and $\chi_{l a t}\left(C_{m} \times C_{n}\right)$.

Problem 5.3. For $m, n \geq 2$, determine $\chi_{l a}\left(P_{m} \times P_{n}\right)$ and $\chi_{l a t}\left(P_{m} \times P_{n}\right)$.
Problem 5.4. Characterize G such that $\chi(G)=\chi_{l a t}(G)=\chi_{l a}(G)-1$.
In [6, Theorem 3.4], the authors showed that there are infinitely many circulant graphs (with at most an edge deleted) of $\chi_{l a}=3$. Since cycles are the simplest circulant graphs with $\chi_{l a t}=2$, we have

Problem 5.5. Determine the exact values of $\chi_{l a t}(C)$ and $\chi_{l a t}(C-e)$ for each circulant graph $C \not \approx C_{n}, C_{2 n}(1, n), n \geq 3$.

Since every known result has $\chi_{l a t}(G) \leq \chi_{l a}(G)$, we end this paper with the following.
Conjecture 5.6. For each graph G of order at least 3, $\chi_{l a t}(G) \leq \chi_{l a}(G)$.

REFERENCES

[1] S. Arumugam, K. Premalatha, M. Bača, A. Semaničová-Feňovčíková, Local antimagic vertex coloring of a graph, Graphs Combin. 33 (2017), 275-285.
[2] J. Bensmail, M. Senhaji, K. Szabo Lyngsie, On a combination of the 1-2-3 conjecture and the antimagic labelling conjecture, Discrete Math. Theoret. Comput. Sci. 19 (2017), no. 1, Paper no. 22.
[3] J.A. Bondy, U.S.R. Murty, Graph Theory with Applications, New York, MacMillan, 1976.
[4] J. Haslegrave, Proof of a local antimagic conjecture, Discrete Math. Theoret. Comput. Sci. 20 (2018), no. 1, Paper no. 18.
[5] M. Kraitchik, Magic Squares, Mathematical Recreations, New York, Norton, 1942, pp. 142-192.
[6] G.C. Lau, J. Li, W.C. Shiu, Approaches which output infinitely many graphs with small local antimagic chromatic number, Discrete Math. Algorithms Appl. 15 (2023), no. 2, 2250079.
[7] G.C. Lau, H.K. Ng, W.C. Shiu, Affirmative solutions on local antimagic chromatic number, Graphs Combin. 36 (2020), no. 5, 1337-1354.
[8] G.C. Lau, H.K. Ng, W.C. Shiu, Cartesian magicness of 3-dimensional boards, Malaya J. Matematik 8 (2020), no. 3, 1175-1185.
[9] G.C. Lau, W.C. Shiu, H.K. Ng, On local antimagic chromatic number of cycle-related join graphs, Discuss. Math. Graph Theory 41 (2021), 133-152.
[10] S.A. Pratama, S. Setiawani, Slamin, Local super antimagic total vertex coloring of some wheel related graphs, J. Phys. Conf. Ser. 1538 (2020), 012014.
[11] S. Slamin, N.O. Adiwijaya, M.A. Hasan, D. Dafik, K. Wijaya, Local super antimagic total labeling for vertex coloring of graphs, Symmetry 2020, 12(11), 1843.
[12] D. Zuckerman, Linear degree extractors and the inapproximability of max clique and chromatic number, Theory Comput. 3 (2007), 103-128.

Gee-Choon Lau (corresponding author)
geeclau@yahoo.com
© https://orcid.org/0000-0002-9777-6571
Universiti Teknologi MARA (Segamat Campus)
College of Computing, Informatics \& Mathematics
85000, Johor, Malaysia
Karl Schaffer
karl_schaffer@yahoo.com
De Anza College
Mathematics Department
Cupertino, California, USA
Wai Chee Shiu
wcshiu@associate.hkbu.edu.hk
© https://orcid.org/0000-0002-2819-8480
The Chinese University of Hong Kong
Department of Mathematics
Shatin, Hong Kong
Received: May 4, 2022.
Revised: May 5, 2023.
Accepted: May 5, 2023.

