THE CROSSING NUMBERS OF JOIN PRODUCTS OF FOUR GRAPHS OF ORDER FIVE WITH PATHS AND CYCLES

Michal Staš and Mária Timková

Communicated by Hao Li

Abstract

The crossing number $\operatorname{cr}(G)$ of a graph G is the minimum number of edge crossings over all drawings of G in the plane. In the paper, we extend known results concerning crossing numbers of join products of four small graphs with paths and cycles. The crossing numbers of the join products $G^{*}+P_{n}$ and $G^{*}+C_{n}$ for the disconnected graph G^{*} consisting of the complete tripartite graph $K_{1,1,2}$ and one isolated vertex are given, where P_{n} and C_{n} are the path and the cycle on n vertices, respectively. In the paper also the crossing numbers of $H^{*}+P_{n}$ and $H^{*}+C_{n}$ are determined, where H^{*} is isomorphic to the complete tripartite graph $K_{1,1,3}$. Finally, by adding new edges to the graphs G^{*} and H^{*}, we are able to obtain crossing numbers of join products of two other graphs G_{1} and H_{1} with paths and cycles.

Keywords: graph, crossing number, join product, path, cycle, separating cycle.
Mathematics Subject Classification: 05C10, 05C38.

1. INTRODUCTION

The crossing number is an important parameter of a graph, as it provides information about the complexity of the graph and the difficulty of visualizing it [28]. In addition, the crossing number is related to many other graph parameters and algorithms, such as planarity testing, graph coloring, and graph embedding. Graphs are widely used to represent complex networks such as social, communication, and transportation networks. Reducing the number of edge crossings in network visualizations can help understand the network's underlying structure and identify important nodes and connections [1]. In electronic circuit design, minimizing the number of edge crossings is important for reducing signal interference and improving circuit performance. Graph drawings with fewer crossings can lead to more efficient and reliable circuit designs [26]. In graph theory, reducing the number of edge crossings is a fundamental problem in planar graph theory. Many important graph algorithms and optimization problems are defined
for planar graphs, where the graphs have no edge crossings [10]. Overall, reducing the number of crossings on graph edges can help in visualizing and understanding complex data, improving system performance, and optimizing graph algorithms and optimizations [8]. Examining the number of crossings of simple graphs is a classic, but still challenging problem. Garey and Johnson [9] proved that determining $\operatorname{cr}(G)$ is an NP-complete problem. Nevertheless, many researchers are trying to solve this problem. Note that the exact values of the crossing numbers are known for some families of graphs, see Clancy et al. [4].

The crossing number $\operatorname{cr}(G)$ of a simple graph G with the vertex set $V(G)$ and the edge set $E(G)$ is the minimum possible number of edge crossings in a drawing of G in the plane (for the definition of a drawing see Klešč [14]). A drawing with a minimum number of crossings (an optimal drawing) is always a good drawing, meaning that no edge crosses itself, no two edges cross more than once, and no two edges incident with the same vertex cross. Let D be a good drawing of the graph G. We denote the number of crossings in D by $\operatorname{cr}_{D}(G)$. Let G_{i} and G_{j} be edge-disjoint subgraphs of G. We denote the number of crossings between edges of G_{i} and edges of G_{j} by $\operatorname{cr}_{D}\left(G_{i}, G_{j}\right)$, and the number of crossings among edges of G_{i} in D by $\operatorname{cr}_{D}\left(G_{i}\right)$. For any three mutually edge-disjoint subgraphs G_{i}, G_{j}, and G_{k} of G by [14], the following equations hold:

$$
\begin{aligned}
& \operatorname{cr}_{D}\left(G_{i} \cup G_{j}\right)=\operatorname{cr}_{D}\left(G_{i}\right)+\operatorname{cr}_{D}\left(G_{j}\right)+\operatorname{cr}_{D}\left(G_{i}, G_{j}\right), \\
& \operatorname{cr}_{D}\left(G_{i} \cup G_{j}, G_{k}\right)=\operatorname{cr}_{D}\left(G_{i}, G_{k}\right)+\operatorname{cr}_{D}\left(G_{j}, G_{k}\right) .
\end{aligned}
$$

Throughout this paper, Kleitman's result [13] on the crossing numbers for some complete bipartite graphs $K_{m, n}$ are used in several parts of proofs. He proved that

$$
\begin{equation*}
\operatorname{cr}\left(K_{m, n}\right)=\left\lfloor\frac{m}{2}\right\rfloor\left\lfloor\frac{m-1}{2}\right\rfloor\left\lfloor\frac{n}{2}\right\rfloor\left\lfloor\frac{n-1}{2}\right\rfloor, \quad \text { if } m \leq 6 . \tag{1.1}
\end{equation*}
$$

The join product of two graphs G_{i} and G_{j}, denoted $G_{i}+G_{j}$, is obtained from vertex-disjoint copies of G_{i} and G_{j} by adding all edges between $V\left(G_{i}\right)$ and $V\left(G_{j}\right)$. For $\left|V\left(G_{i}\right)\right|=m$ and $\left|V\left(G_{j}\right)\right|=n$, the edge set of $G_{i}+G_{j}$ is the union of the disjoint edge sets of the graphs G_{i}, G_{j}, and the complete bipartite graph $K_{m, n}$. Let P_{n} and C_{n} be the path and the cycle on n vertices, respectively, and let D_{n} denote the discrete graph (sometimes called empty graph) on n vertices. The crossings numbers of join products of paths and cycles with all graphs of order at most four have been well-known for a long time by Klešč [15, 16], and Klešč and Schrötter [18]. It is understandable that our immediate aim is to establish exact values for crossing numbers of $G+P_{n}$ and $G+C_{n}$ also for all graphs G of order five and six. Of course, the crossing numbers of $G+P_{n}$ and $G+C_{n}$ are already known for a lot of graphs G of order five and six $[2,3,6,7,14,17,20,21,27,30,31,35]$. In all these cases, the graph G is connected and usually contains at least one cycle. Note that $\operatorname{cr}\left(G+P_{n}\right)$ and $\operatorname{cr}\left(G+C_{n}\right)$ are known only for some disconnected graphs G on five or six vertices [19,32-34]. To date, the crossing number of $K_{3} \cup 2 K_{1}+P_{n}, K_{3} \cup 2 K_{1}+C_{n}, K_{4} \cup K_{1}+C_{n}, K_{1,1,2} \cup K_{1}+P_{n}$ and $K_{1,1,2} \cup K_{1}+C_{n}$ can only be given as a conjecture. The last two open problems will be solved in our paper. The minimal number of crossings in the Cartesian product and in the strong product of paths have been studied by Klešč et al. in [22] and [23].

For this purpose, we present a new technique regarding the use of knowledge from the subgraphs whose values of crossing numbers are already known. It is appropriate to combine this idea with possibility of an existence of a separating cycle in some particular drawing of investigated graph. Let G^{*} be the disconnected graph consisting of the complete tripartite graph $K_{1,1,2}$ and one isolated vertex. The crossing numbers of the join products of G^{*} with the discrete graphs D_{n} have been well-known by Klešč et al. [25] using a lot of properties of cyclic permutations. This established result will be extended to the same crossing number of $G^{*}+P_{n}$ in Corollary 2.2 due to two special drawings in Figures 2 and 3 for n even and odd, respectively. Moreover, the result of $\operatorname{cr}\left(G^{*}+C_{n}\right)$ in the second main Theorem 4.5 can be estimated for cycles C_{n} on at least 4 vertices provided by adding the edge $t_{1} t_{3}$ only with one additional crossing to the subdrawing of $G^{*}+P_{3}$ in Figure 3 offers a drawing of $G^{*}+C_{3}$ with just 7 crossings.

Let H^{*} be the graph isomorphic to the complete tripartite graph $K_{1,1,3}$. The crossing number of $H^{*}+D_{n}$ was determined for any $n \geq 1$ by Ho [12], and later also by Staš [29] again thanks to properties of cyclic permutations. One of the main goals of the paper is to establish the crossing numbers of the join products of H^{*} with paths P_{n} and cycles C_{n}. The obtained results will be presented in Theorem 3.5 and Theorem 4.9. The paper concludes by giving $\operatorname{cr}\left(G_{1}+P_{n}\right), \operatorname{cr}\left(G_{1}+C_{n}\right), \operatorname{cr}\left(H_{1}+P_{n}\right)$, and $\operatorname{cr}\left(H_{1}+C_{n}\right)$ in Corollaries 5.1, 5.2, 5.3, and 5.4, respectively, where the graph G_{1} is obtained from G^{*} by adding new edge joining one vertex of degree two with the isolated vertex in G^{*} and the graph H_{1} is obtained from H^{*} by adding new edge joining two vertices of degree two. Note that the result in Theorem 3.5 has already been claimed by Su and Huang [36]. Since this paper does not seem to be available in English, we have not been able to verify this result. Clancy et al. [4] also placed an asterisk on a number of the results in their survey to essentially indicate that the mentioned results appeared in journals do not have a sufficiently rigorous peer-review process.

2. THE CROSSING NUMBER OF $G^{*}+P_{n}$

Let $G^{*}=\left(V\left(G^{*}\right), E\left(G^{*}\right)\right)$ be the disconnected graph on five vertices consisting of the complete tripartite graph $K_{1,1,2}$ and one isolated vertex, and let also $V\left(G^{*}\right)=\left\{v_{1}, v_{2}, \ldots, v_{5}\right\}$. In the rest of the paper, let v_{5} be the vertex notation of the isolated vertex of G^{*} in all considered good subdrawings of the graph G^{*}. Five possible non-isomorphic drawings of G^{*} were described by Klešč et al. [25]. They are presented in Figure 1 with the corresponding vertex notation in two drawings.

We consider the join product of the graph G^{*} with the discrete graph D_{n}, which yields that $G^{*}+D_{n}$ (sometimes used notation $G^{*}+n K_{1}$) consists of just one copy of G^{*} and n vertices $t_{1}, t_{2}, \ldots, t_{n}$. Here, each vertex $t_{i}, i=1,2, \ldots, n$, is adjacent to every vertex of the graph G^{*}. Let $T^{i}, 1 \leq i \leq n$, denote the subgraph induced by five
edges incident with the fixed vertex t_{i}. This means that the graph $T^{1} \cup \ldots \cup T^{n}$ is isomorphic to the complete bipartite graph $K_{5, n}$ and

$$
\begin{equation*}
G^{*}+D_{n}=G^{*} \cup\left(\bigcup_{i=1}^{n} T^{i}\right) . \tag{2.1}
\end{equation*}
$$

Fig. 1. Five possible non-isomorphic drawings of the graph G^{*}

Determining the crossing numbers of $G^{*}+P_{n}$ and $G^{*}+C_{n}$ will be based on the following theorem presented in [25].

Theorem 2.1 ([25, Theorem 2]). $\operatorname{cr}\left(G^{*}+D_{n}\right)=4\left\lfloor\frac{n}{2}\right\rfloor\left\lfloor\frac{n-1}{2}\right\rfloor+2\left\lfloor\frac{n}{2}\right\rfloor$ for $n \geq 1$.
For n even, Figure 2 shows the good drawing of the join product $G^{*}+P_{n}$ with exactly $4\left\lfloor\frac{n}{2}\right\rfloor\left\lfloor\frac{n-1}{2}\right\rfloor+2\left\lfloor\frac{n}{2}\right\rfloor$ crossings provided by edges of $K_{5, n}$ cross each other $4\left\lfloor\frac{n}{2}\right\rfloor\left\lfloor\frac{n-1}{2}\right\rfloor$ times and each subgraph T^{i} crosses edges of G^{*} just once.

Fig. 2. The drawing of $G^{*}+P_{n}$ with $4\left\lfloor\frac{n}{2}\right\rfloor\left\lfloor\frac{n-1}{2}\right\rfloor+2\left\lfloor\frac{n}{2}\right\rfloor$ crossings for n even
For n odd at least 3 , Figure 3 shows the good drawing of $G^{*}+P_{n}$ also with $4\left\lfloor\frac{n}{2}\right\rfloor\left\lfloor\frac{n-1}{2}\right\rfloor+2\left\lfloor\frac{n}{2}\right\rfloor$ crossings by adding one subgraph $T^{\frac{n+1}{2}}$ by which edges of each of the $n-1$ subgraphs $T^{i}, i \neq \frac{n+1}{2}$ are crossed exactly twice, that is,

$$
4 \frac{n-1}{2} \frac{n-3}{2}+2 \frac{n-1}{2}+2(n-1)=4 \frac{n-1}{2} \frac{n-1}{2}+2 \frac{n-1}{2} .
$$

Fig. 3. The drawing of $G^{*}+P_{n}$ with $4\left\lfloor\frac{n}{2}\right\rfloor\left\lfloor\frac{n-1}{2}\right\rfloor+2\left\lfloor\frac{n}{2}\right\rfloor$ crossings for n odd at least three

As $G^{*}+D_{n}$ is a subgraph of $G^{*}+P_{n}$, the lower bound is the same based on Theorem 2.1 and so, the next result is obvious.
Corollary 2.2. $\operatorname{cr}\left(G^{*}+P_{n}\right)=4\left\lfloor\frac{n}{2}\right\rfloor\left\lfloor\frac{n-1}{2}\right\rfloor+2\left\lfloor\frac{n}{2}\right\rfloor$ for $n \geq 2$.

3. THE CROSSING NUMBER OF $H^{*}+P_{n}$

The graph $H^{*}+P_{n}$ contains $H^{*}+D_{n}$ as a subgraph. For subgraphs of $H^{*}+P_{n}$ which are also subgraphs of $H^{*}+n K_{1}$ we use the same notations as above. Let P_{n}^{*} denote the path induced on n vertices of $H^{*}+P_{n}$ not belonging to the subgraph H^{*}. Hence, P_{n}^{*} consists of the vertices $t_{1}, t_{2}, \ldots, t_{n}$ and the edges $\left\{t_{i}, t_{i+1}\right\}$ for $i=1,2, \ldots, n-1$. One can easily see that

$$
\begin{equation*}
H^{*}+P_{n}=H^{*} \cup\left(\bigcup_{i=1}^{n} T^{i}\right) \cup P_{n}^{*} \tag{3.1}
\end{equation*}
$$

We consider a good drawing D of $H^{*}+D_{n}$. The rotation $\operatorname{rot}_{D}\left(t_{i}\right)$ of a vertex t_{i} in the drawing D as the cyclic permutation that records the (cyclic) counter-clockwise order in which the edges leave t_{i} have been defined by Hernández-Vélez et al. [11] or Woodall [37]. We use the notation (12345) if the counter-clockwise order the edges incident with the vertex t_{i} is $t_{i} v_{1}, t_{i} v_{2}, t_{i} v_{3}, t_{i} v_{4}$, and $t_{i} v_{5}$. We recall that rotation is a cyclic permutation. In the given drawing D, it is highly desirable to separate n subgraphs T^{i} into three mutually disjoint families of subgraphs depending on how many times edges of H^{*} could be crossed by T^{i} in D. Let us denote by R_{D} and S_{D}
the set of subgraphs for which $\operatorname{cr}_{D}\left(H^{*}, T^{i}\right)=0$ and $\operatorname{cr}_{D}\left(H^{*}, T^{i}\right)=1$, respectively. Edges of H^{*} are crossed by each remaining subgraph T^{i} at least twice in D. For $T^{i} \in R_{D} \cup S_{D}$, let F^{i} denote the subgraph $H^{*} \cup T^{i}, i \in\{1,2, \ldots, n\}$, of $H^{*}+D_{n}$ and let $D\left(F^{i}\right)$ be its subdrawing induced by D. Clearly, the idea of dividing the subgraphs T^{i} into three mentioned families is also retained in all drawings of $H^{*}+P_{n}$.

In a good drawing D of some graph G, we say that a cycle C separates some two different vertices of the subgraph $G \backslash C$ if they are contained in different components of $\mathbb{R}^{2} \backslash C$. This considered cycle C is said to be a separating cycle of the graph G in D. In some proofs of the paper, we will often use the term "region" also in nonplanar subdrawings. In this case, crossings are considered to be vertices of the "map".

Lemma 3.1. For $n \geq 2$, let D be a good drawing of $H^{*}+P_{n}$. If there is a separating cycle C_{3} of H^{*} in the subdrawing $D\left(H^{*}\right)$ with at least one crossing on some edge of C_{3} in $D\left(H^{*} \cup P_{n}^{*}\right)$, then there are at least $4\left\lfloor\frac{n}{2}\right\rfloor\left\lfloor\frac{n-1}{2}\right\rfloor+n+\left\lfloor\frac{n}{2}\right\rfloor+2$ crossings in D.

Proof. By assumption, let us consider a separating cycle $C_{3}=v_{1} v_{2} v_{3} v_{1}$ of H^{*} in the subdrawing $D\left(H^{*}\right)$. Since two remaining vertices of H^{*} lie in different regions of $D\left(C_{3}\right)$, there is no subgraph T^{i} by which the edges of C_{3} are not crossed. Hence, each subgraph T^{i} crosses edges of C_{3} at least once, which yields that $\mathrm{cr}_{D}\left(C_{3}, \bigcup_{i=1}^{n} T^{i}\right) \geq n$. Let G be the graph difference of graphs H^{*} and C_{3}, i.e., G is isomorphic to the graph $K_{2,2} \cup K_{1}$. The exact value for the crossing number of $G+P_{n}$ is given by Staš and Petrillová [33], that is, $\operatorname{cr}\left(G+P_{n}\right)=4\left\lfloor\frac{n}{2}\right\rfloor\left\lfloor\frac{n-1}{2}\right\rfloor+\left\lfloor\frac{n}{2}\right\rfloor+1$. This enforces at least $4\left\lfloor\frac{n}{2}\right\rfloor\left\lfloor\frac{n-1}{2}\right\rfloor+\left\lfloor\frac{n}{2}\right\rfloor+1+n+1$ crossings in D because some edge of the cycle C_{3} is also crossed in $D\left(H^{*} \cup P_{n}^{*}\right)$.

As the graph G^{*} is a subgraph of the graph H^{*}, all considered drawings of H^{*} can be achieved from some drawing of G^{*} in such a way as shown in Figure 1 by adding two edges joining the isolated vertex with two vertices of degree three in G^{*}. In an effort to reach less than $4\left\lfloor\frac{n}{2}\right\rfloor\left\lfloor\frac{n-1}{2}\right\rfloor+n+\left\lfloor\frac{n}{2}\right\rfloor+2$ crossings in some good drawing D of $H^{*}+P_{n}$, it is sufficient to investigate subdrawings of H^{*} induced by D in which either all five vertices of H^{*} are placed in one region of $D\left(H^{*}\right)$ on its boundary or there is no crossing on any edge of separating cycle C_{3} of H^{*} due to Lemma 3.1. Hence, we obtain only three possible non-isomorphic drawings of H^{*} given in Figure 4 satisfying these restrictions.

Two vertices t_{i} and t_{j} of the graph $H^{*}+P_{n}$ are said to be antipodal in a drawing of $H^{*}+P_{n}$ if the considered subgraphs T^{i} and T^{j} do not cross. A drawing with no antipodal vertices is said to be antipode-free.

Lemma 3.2. For $n \geq 4$, let D be a good and antipode-free drawing of $H^{*}+P_{n}$ with the subdrawing of H^{*} induced by D given in Figure $4(b)$. If $\left|R_{D}\right| \geq 1$ or $\left|S_{D}\right|<2\left\lceil\frac{n-1}{2}\right\rceil$, then there are at least $4\left\lfloor\frac{n}{2}\right\rfloor\left\lfloor\frac{n-1}{2}\right\rfloor+n+\left\lfloor\frac{n}{2}\right\rfloor+2$ crossings in D.

Proof. Let T^{i} be a subgraph from the nonempty set R_{D}. It is easy to verify that the subgraph $F^{i}=H^{*} \cup T^{i}$ is represented by $\operatorname{rot}_{D}\left(t_{i}\right)=(14352)$ and each of the $n-1$

(a)

(b)

(c)

Fig. 4. Three possible non-isomorphic drawings of the graph H^{*} : (a) the planar drawing of H^{*} with a separating cycle $C_{3} ;(\mathbf{b})$ the drawing of H^{*} with $\mathrm{cr}_{D}\left(H^{*}\right)=1$ and all five vertices of H^{*} are placed in one region; (c) the drawing of H^{*} with $\operatorname{cr}_{D}\left(H^{*}\right)=3$ and all five vertices of H^{*} are placed in one region
remaining subgraphs T^{j} crosses its edges at least four times over all possible regions of $D\left(H^{*} \cup T^{i}\right)$. Thus, by fixing the subgraph $H^{*} \cup T^{i}$, we have

$$
\begin{aligned}
\operatorname{cr}_{D}\left(H^{*}+P_{n}\right) & \geq \operatorname{cr}_{D}\left(K_{5, n-1}\right)+\operatorname{cr}_{D}\left(K_{5, n-1}, H^{*} \cup T^{i}\right)+\operatorname{cr}_{D}\left(H^{*} \cup T^{i}\right) \\
& \geq 4\left\lfloor\frac{n-1}{2}\right\rfloor\left\lfloor\frac{n-2}{2}\right\rfloor+4(n-1)+1 \\
& \geq 4\left\lfloor\frac{n}{2}\right\rfloor\left\lfloor\frac{n-1}{2}\right\rfloor+n+\left\lfloor\frac{n}{2}\right\rfloor+2
\end{aligned}
$$

If the set R_{D} is empty, let us assume $\left|S_{D}\right|<2\left\lceil\frac{n-1}{2}\right\rceil$. The edges of $H^{*} \backslash\left\{v_{2} v_{3}\right\}$ are crossed once and at least twice by any subgraph $T^{j} \in S_{D}$ and $T^{j} \notin S_{D}$, respectively. So

$$
\begin{aligned}
\operatorname{cr}_{D}\left(H^{*} \backslash\left\{v_{2} v_{3}\right\}, \bigcup_{j=1}^{n} T^{j}\right) & \geq\left|S_{D}\right|+2\left(n-\left|S_{D}\right|\right) \\
& =2 n-\left|S_{D}\right|>2 n-2\left\lceil\frac{n-1}{2}\right\rceil=2\left\lceil\frac{n}{2}\right\rceil
\end{aligned}
$$

which yields that three edges $v_{1} v_{2}, v_{2} v_{4}, v_{2} v_{5}$ or $v_{1} v_{3}, v_{3} v_{4}, v_{3} v_{5}$ are crossed more than $\left\lceil\frac{n}{2}\right\rceil$ times by all n subgraphs T^{j}. In the rest of the paper, based on their symmetry, let there be at least $\left\lceil\frac{n}{2}\right\rceil+1$ crossings on the edges $v_{1} v_{2}, v_{2} v_{4}$, and $v_{2} v_{5}$ over all subgraphs T^{j}. By removing them from the graph H^{*}, we obtain a subgraph isomorphic to the complete bipartite graph $K_{1,4}$. The exact value for the crossing number of $K_{1,4}+P_{n}$ is given by Staš [30], that is, $\operatorname{cr}\left(K_{1,4}+P_{n}\right)=4\left\lfloor\frac{n}{2}\right\rfloor\left\lfloor\frac{n-1}{2}\right\rfloor+2\left\lfloor\frac{n}{2}\right\rfloor$. This enforces $\operatorname{cr}_{D}\left(H^{*}+P_{n}\right) \geq 4\left\lfloor\frac{n}{2}\right\rfloor\left\lfloor\frac{n-1}{2}\right\rfloor+2\left\lfloor\frac{n}{2}\right\rfloor+\left\lceil\frac{n}{2}\right\rceil+1+1$ because the edge $v_{2} v_{4}$ is also crossed in $D\left(H^{*}\right)$.

In the proofs of the paper, several parts are based on the previous Lemma 3.1 and on Theorem 3.3 presented in [29].
Theorem 3.3 ([29, Theorem 1]). $\operatorname{cr}\left(H^{*}+D_{n}\right)=4\left\lfloor\frac{n}{2}\right\rfloor\left\lfloor\frac{n-1}{2}\right\rfloor+n+\left\lfloor\frac{n}{2}\right\rfloor$ for $n \geq 1$.

In the following, we are able to compute the exact values of crossing numbers of the join products of the graph H^{*} with both paths P_{2} and P_{3} using the algorithm located on the website http://crossings.uos.de/. This algorithm can find the crossing numbers of small undirected graphs. It uses an ILP formulation, based on Kuratowski subgraphs, and solves it via branch-and-cut-and-price. The system also generates verifiable formal proofs, as described by Chimani and Wiedera [5]. Unfortunately, the capacity of this system is restricted.
Lemma 3.4. $\operatorname{cr}\left(H^{*}+P_{2}\right)=5$ and $\operatorname{cr}\left(H^{*}+P_{3}\right)=10$.
Theorem 3.5. $\operatorname{cr}\left(H^{*}+P_{n}\right)=4\left\lfloor\frac{n}{2}\right\rfloor\left\lfloor\frac{n-1}{2}\right\rfloor+n+\left\lfloor\frac{n}{2}\right\rfloor+2$ for $n \geq 2$.
Proof. In Figure 5, the edges of $K_{5, n}$ cross each other $4\left\lfloor\frac{n}{2}\right\rfloor\left\lfloor\frac{n-1}{2}\right\rfloor$ times, each subgraph $T^{i}, i=1, \ldots,\left\lceil\frac{n}{2}\right\rceil$ on the left side crosses edges of the graph H^{*} once and each subgraph $T^{i}, i=\left\lceil\frac{n}{2}\right\rceil+1, \ldots, n$ on the right side crosses edges of H^{*} exactly twice. The path P_{n}^{*} crosses H^{*} twice, and so $4\left\lfloor\frac{n}{2}\right\rfloor\left\lfloor\frac{n-1}{2}\right\rfloor+n+\left\lfloor\frac{n}{2}\right\rfloor+2$ crossings appear among edges of the graph $H^{*}+P_{n}$ in this drawing. Thus, $\operatorname{cr}\left(H^{*}+P_{n}\right) \leq 4\left\lfloor\frac{n}{2}\right\rfloor\left\lfloor\frac{n-1}{2}\right\rfloor+n+\left\lfloor\frac{n}{2}\right\rfloor+2$.

Fig. 5. The good drawing of $H^{*}+P_{n}$ with $4\left\lfloor\frac{n}{2}\right\rfloor\left\lfloor\frac{n-1}{2}\right\rfloor+n+\left\lfloor\frac{n}{2}\right\rfloor+2$ crossings

By Lemma 3.4, the result is true for $n=2$ and $n=3$. To prove the reverse inequality by induction on n, suppose now that there is a good drawing D of $H^{*}+P_{n}$ with

$$
\begin{equation*}
\operatorname{cr}_{D}\left(H^{*}+P_{n}\right) \leq 4\left\lfloor\frac{n}{2}\right\rfloor\left\lfloor\frac{n-1}{2}\right\rfloor+n+\left\lfloor\frac{n}{2}\right\rfloor+1 \quad \text { for some } n \geq 4 \tag{3.2}
\end{equation*}
$$

and that

$$
\begin{equation*}
\operatorname{cr}\left(H^{*}+P_{m}\right)=4\left\lfloor\frac{m}{2}\right\rfloor\left\lfloor\frac{m-1}{2}\right\rfloor+m+\left\lfloor\frac{m}{2}\right\rfloor+2 \quad \text { for any integer } m<n \tag{3.3}
\end{equation*}
$$

We first show that the considered drawing D must be antipode-free. For this purpose, let $\operatorname{cr}_{D}\left(T^{i}, T^{j}\right)=0$ hold for two different subgraphs T^{i} and T^{j}. If at least one of T^{i} and T^{j}, say T^{i}, does not cross H^{*}, it is not difficult to verify in Figure 4(b) and (c) that T^{j} must cross $H^{*} \cup T^{i}$ at least three times. Using positive lower bounds
for the number of crossings of two configurations in [29] (they will also be listed in Table 1), one can easily to verify that $\left\{T^{i}, T^{j}\right\} \nsubseteq S_{D}$, that is, $\operatorname{cr}_{D}\left(H^{*}, T^{i} \cup T^{j}\right) \geq 3$. We already know using (1.1) that $\operatorname{cr}_{D}\left(K_{5,3}\right) \geq 4$, which yields that edges of $T^{i} \cup T^{j}$ are crossed by each other subgraph $T^{k}, k \neq i, j$ at least four times. So, the number of crossings in D satisfies

$$
\begin{aligned}
\operatorname{cr}_{D}\left(H^{*}+P_{n}\right) \geq & \operatorname{cr}_{D}\left(H^{*}+P_{n-2}\right)+\operatorname{cr}_{D}\left(T^{i} \cup T^{j}\right)+\operatorname{cr}_{D}\left(H^{*}, T^{i} \cup T^{j}\right) \\
& +\operatorname{cr}_{D}\left(K_{5, n-2}, T^{i} \cup T^{j}\right) \\
\geq & 4\left\lfloor\frac{n-2}{2}\right\rfloor\left\lfloor\frac{n-3}{2}\right\rfloor+n-2+\left\lfloor\frac{n-2}{2}\right\rfloor+2 \\
& +0+3+4(n-2) \\
= & 4\left\lfloor\frac{n}{2}\right\rfloor\left\lfloor\frac{n-1}{2}\right\rfloor+n+\left\lfloor\frac{n}{2}\right\rfloor+2
\end{aligned}
$$

The obtained contradiction with the assumption (3.2) does not allow the existence of two antipodal vertices, that is, D is an antipode-free drawing. As $H^{*}+D_{n}$ is a subgraph of $H^{*}+P_{n}$, there are at least $4\left\lfloor\frac{n}{2}\right\rfloor\left\lfloor\frac{n-1}{2}\right\rfloor+n+\left\lfloor\frac{n}{2}\right\rfloor$ crossings on edges of $H^{*}+P_{n}$ due to Theorem 3.3. The vertices t_{i} of the path P_{n}^{*} must be placed at most in two different regions of $D\left(H^{*}\right)$ because at most one edge of P_{n}^{*} can be crossed in D. If we use the notation $r=\left|R_{D}\right|$ and $s=\left|S_{D}\right|$, then $\operatorname{cr}_{D}\left(K_{5, n}\right) \geq 4\left\lfloor\frac{n}{2}\right\rfloor\left\lfloor\frac{n-1}{2}\right\rfloor$ again by (1.1) together with (3.2) force the following relation with respect to edge crossings of the subgraph H^{*} in D :

$$
\operatorname{cr}_{D}\left(H^{*}\right)+0 r+1 s+2(n-r-s) \leq \operatorname{cr}_{D}\left(H^{*}\right)+\operatorname{cr}_{D}\left(H^{*}, K_{5, n}\right) \leq n+\left\lfloor\frac{n}{2}\right\rfloor+1
$$

that is,

$$
\begin{equation*}
\operatorname{cr}_{D}\left(H^{*}\right)+s+2(n-r-s) \leq n+\left\lfloor\frac{n}{2}\right\rfloor+1 \tag{3.4}
\end{equation*}
$$

The mentioned inequality (3.4) subsequently enforces $2 r+s+1 \geq\left\lceil\frac{n}{2}\right\rceil+\operatorname{cr}_{D}\left(H^{*}\right)$. Further, if $\operatorname{cr}_{D}\left(H^{*}\right)=0$ and $r=0$, then $s \geq\left\lceil\frac{n}{2}\right\rceil-1$. Now, we will deal with possibilities of obtaining a subgraph $T^{i} \in R_{D} \cup S_{D}$ in the drawing D and show that a contradiction with the assumption (3.2) can be obtained in all cases.

Case 1. $\operatorname{cr}_{D}\left(H^{*}\right)=0$. In this case, we can only suppose the planar drawing of H^{*} induced by D given in Figure 4(a). Because no face is incident to all five vertices of H^{*} in $D\left(H^{*}\right)$, there is no possibility to obtain a subdrawing of $H^{*} \cup T^{i}$ for a $T^{i} \in R_{D}$, that is, $r=0$. By Lemma 3.1, the edges of P_{n}^{*} do not cross any edge of the separating cycle $C_{3}=v_{1} v_{3} v_{5} v_{1}$ in D. In the rest of the paper, let us also suppose that all vertices t_{j} of the path P_{n}^{*} are placed in the outer region of the cycle $v_{1} v_{3} v_{5} v_{1}$. As the set S_{D} is nonempty using the inequality 3.4 , all vertices t_{j} of subgraphs $T^{j} \in S_{D}$ must be placed in the region of $D\left(H^{*}\right)$ with four vertices v_{1}, v_{4}, v_{3}, and v_{5} of H^{*} on its boundary. For $T^{j} \in S_{D}$, there is only one possible subdrawing of $F^{j} \backslash v_{2}$ represented by the subrotation (1435), which yields that there are exactly two ways of obtaining the subdrawing of $H^{*} \cup T^{j}$ depending on which of two edges $v_{1} v_{5}$ and $v_{3} v_{5}$ is crossed by the edge $t_{j} v_{2}$. For both cases of $T^{j} \in S_{D}$ described by either (14352) or (14325), if all vertices of P_{n}^{*} are placed in the same quadrangular region of $D\left(H^{*}\right)$ then it is not
difficult to verify in five considered regions of $D\left(H^{*} \cup T^{j}\right)$ that $\operatorname{cr}_{D}\left(H^{*} \cup T^{j}, T^{k}\right) \geq 4$ is fulfilling for each $T^{k}, k \neq j$. Thus, by fixing the subgraph $H^{*} \cup T^{j}$, we have

$$
\begin{aligned}
\operatorname{cr}_{D}\left(H^{*}+P_{n}\right) & \geq \operatorname{cr}_{D}\left(K_{5, n-1}\right)+\operatorname{cr}_{D}\left(K_{5, n-1}, H^{*} \cup T^{j}\right)+\operatorname{cr}_{D}\left(H^{*} \cup T^{j}\right) \\
& \geq 4\left\lfloor\frac{n-1}{2}\right\rfloor\left\lfloor\frac{n-2}{2}\right\rfloor+4(n-1)+1 \\
& \geq 4\left\lfloor\frac{n}{2}\right\rfloor\left\lfloor\frac{n-1}{2}\right\rfloor+n+\left\lfloor\frac{n}{2}\right\rfloor+2
\end{aligned}
$$

This also contradicts the assumption (3.2). It remains to consider the subcase with an existence of some vertex of P_{n}^{*} in the triangular region of $D\left(H^{*}\right)$ with three vertices v_{1}, v_{3}, and v_{4} of H^{*} on its boundary. Since some edge of P_{n}^{*} is crossed in D, there are at least $\left\lceil\frac{n}{2}\right\rceil$ subgraphs T^{j} by which edges of H^{*} are crossed just once again provided by (3.4) in the form $s+2(n-r-s) \leq n+\left\lfloor\frac{n}{2}\right\rfloor$. Hence, by fixing the subgraph T^{j}, we have

$$
\begin{aligned}
\operatorname{cr}_{D}\left(H^{*}+P_{n}\right) & \geq \operatorname{cr}_{D}\left(H^{*}+P_{n-1}\right)+\operatorname{cr}_{D}\left(K_{5, n-1}, T^{j}\right)+\operatorname{cr}_{D}\left(H^{*}, T^{j}\right) \\
& \geq 4\left\lfloor\frac{n-1}{2}\right\rfloor\left\lfloor\frac{n-2}{2}\right\rfloor+n-1+\left\lfloor\frac{n-1}{2}\right\rfloor+2+3(s-1)+1(n-s)+1 \\
& =4\left\lfloor\frac{n-1}{2}\right\rfloor\left\lfloor\frac{n-2}{2}\right\rfloor+2 n+\left\lfloor\frac{n-1}{2}\right\rfloor+2 s-1 \\
& \geq 4\left\lfloor\frac{n-1}{2}\right\rfloor\left\lfloor\frac{n-2}{2}\right\rfloor+2 n+\left\lfloor\frac{n-1}{2}\right\rfloor+2\left\lceil\frac{n}{2}\right\rfloor-1 \\
& \geq 4\left\lfloor\frac{n}{2}\right\rfloor\left\lfloor\frac{n-1}{2}\right\rfloor+n+\left\lfloor\frac{n}{2}\right\rfloor+2,
\end{aligned}
$$

where $\operatorname{cr}_{D}\left(T^{j}, T^{k}\right) \geq 3$ is also used for any $T^{k} \in S_{D}, k \neq j$. Only one interchange of the adjacent elements of (14352) produces the cyclic permutation (14325), and so $\operatorname{cr}_{D}\left(T^{j}, T^{k}\right) \geq\left\lfloor\frac{5}{2}\right\rfloor\left\lfloor\frac{4}{2}\right\rfloor-1=3$. Note that two different subgraphs from S_{D} with same rotations produce at least four crossings on their edges.

Case 2. $\operatorname{cr}_{D}\left(H^{*}\right)=1$. Again using Lemma 3.1, we can consider only the drawing of H^{*} with the vertex notation in such a way as shown in Figure 4(b). As $r=0$ and $s \geq 2\left\lceil\frac{n-1}{2}\right\rceil \geq 4$ due to Lemma 3.2, there are at least four different subgraphs T^{i} by which edges of H^{*} are crossed just once. Thus, we deal with four possible configurations \mathcal{A}_{p} of $H^{*} \cup T^{i}$ belonging to the nonempty set \mathcal{M}_{D} (they have been already introduced in [29]) and depending on which of four edges of the graph H^{*} can be crossed by the edge $t_{i} v_{2}$ or $t_{i} v_{3}$. The lower bounds for number of crossings of two configurations are presented in Table 1 (they were also established in Table 1 of [29]).

For $s \geq 4$ and using the highest values in Table 1, there are at least two different subgraphs $T^{k}, T^{l} \in S_{D}$ with $\operatorname{cr}_{D}\left(T^{k}, T^{l}\right) \geq 4$. Thus, by fixing such a considered

Table 1

The minimum number of crossings between T^{i} and T^{j} such that $\operatorname{conf}\left(H^{*} \cup T^{i}\right)=\mathcal{A}_{p}$ and $\operatorname{conf}\left(H^{*} \cup T^{j}\right)=\mathcal{A}_{q}$.

	\mathcal{A}_{1}	\mathcal{A}_{2}	\mathcal{A}_{3}	\mathcal{A}_{4}
\mathcal{A}_{1}	4	2	2	2
\mathcal{A}_{2}	2	4	2	2
\mathcal{A}_{3}	2	2	4	4
\mathcal{A}_{4}	2	2	4	4

subgraph T^{k}, we have

$$
\begin{aligned}
\operatorname{cr}_{D}\left(H^{*}+P_{n}\right) \geq & \operatorname{cr}_{D}\left(H^{*}+P_{n-1}\right)+\operatorname{cr}_{D}\left(K_{5, n-1}, T^{k}\right)+\operatorname{cr}_{D}\left(H^{*}, T^{k}\right) \\
\geq & 4\left\lfloor\frac{n-1}{2}\right\rfloor\left\lfloor\frac{n-2}{2}\right\rfloor+n-1+\left\lfloor\frac{n-1}{2}\right\rfloor \\
& +2+2(s-2)+4+1(n-s)+1 \\
= & 4\left\lfloor\frac{n-1}{2}\right\rfloor\left\lfloor\frac{n-2}{2}\right\rfloor+2 n+\left\lfloor\frac{n-1}{2}\right\rfloor+s+2 \\
\geq & 4\left\lfloor\frac{n-1}{2}\right\rfloor\left\lfloor\frac{n-2}{2}\right\rfloor+2 n+\left\lfloor\frac{n-1}{2}\right\rfloor+2\left\lceil\frac{n-1}{2}\right\rceil+2 \\
\geq & 4\left\lfloor\frac{n}{2}\right\rfloor\left\lfloor\frac{n-1}{2}\right\rfloor+n+\left\lfloor\frac{n}{2}\right\rfloor+2 .
\end{aligned}
$$

This also confirms a contradiction with the assumption (3.2) in D.
Case 3. $\operatorname{cr}_{D}\left(H^{*}\right) \geq 2$. Based on assumptions of Lemma 3.1, let us consider the nonplanar subdrawing of H^{*} induced by D given in Figure 4(c). For $r \geq 1$, the proof can proceed in the same way as in Lemma 3.2. For $r=0$ and $s \geq\left\lceil\frac{n}{2}\right\rceil+2 \geq 4$, all vertices t_{i} of subgraphs $T^{i} \in S_{D}$ are placed in the region of $D\left(H^{*}\right)$ with all five vertices of H^{*} on its boundary. We have only two ways to obtain a subdrawing of $H^{*} \cup T^{i}$ depending on which of two edges of the graph H^{*} can be crossed by the edge $t_{i} v_{3}$ or $t_{i} v_{4}$. For both these subdrawings, we can also easily verify in ten possible regions of $D\left(H^{*} \cup T^{i}\right)$ that $\operatorname{cr}_{D}\left(H^{*} \cup T^{i}, T^{j}\right) \geq 4$ holds for each other subgraph $T^{j}, j \neq i$. Hence, all these mentioned subcases again contradict (3.2) in D.

We have shown that there is no good drawing D of $H^{*}+P_{n}$ with fewer than $4\left\lfloor\frac{n}{2}\right\rfloor\left\lfloor\frac{n-1}{2}\right\rfloor+n+\left\lfloor\frac{n}{2}\right\rfloor+2$ crossings, and proof of Theorem 3.5 is done.

4. THE CROSSING NUMBERS OF $G^{*}+C_{n}$ AND $H^{*}+C_{n}$

Let $t_{1}, t_{2}, \ldots, t_{n}, t_{1}$ be the vertex notation of the n-cycle C_{n} for $n \geq 3$. The join product $G^{*}+C_{n}$ consists of one copy of the graph G^{*}, one copy of the cycle C_{n}, and the edges joining each vertex of G^{*} with each vertex of C_{n}. Let C_{n}^{*} denote the cycle as a subgraph of $G^{*}+C_{n}$ induced on the vertices of C_{n} not belonging to the subgraph G^{*}. The subdrawing $D\left(C_{n}^{*}\right)$ induced by any good drawing D of $G^{*}+C_{n}$ represents some drawing of C_{n}. For the vertices $v_{1}, v_{2}, \ldots, v_{5}$ of the graph G^{*}, let $T^{v_{i}}$ denote the
subgraph induced by n edges joining the vertex v_{i} with n vertices of C_{n}^{*}. The edges joining the vertices of G^{*} with the vertices of C_{n}^{*} form the complete bipartite graph $K_{5, n}$, and so

$$
\begin{equation*}
G^{*}+C_{n}=G^{*} \cup\left(\bigcup_{i=1}^{5} T^{v_{i}}\right) \cup C_{n}^{*} \tag{4.1}
\end{equation*}
$$

In the proofs of both main theorems of this section, the following three statements related to some restricted subdrawings of $G+C_{n}$ will be also required.

Lemma 4.1 ([15, Lemma 2.2]). For $m \geq 2$ and $n \geq 3$, let D be a good drawing of $D_{m}+C_{n}$ in which no edge of C_{n}^{*} is crossed, and C_{n}^{*} does not separate the other vertices of the graph. Then, for all $i, j=1,2, \ldots, m$, two different subgraphs $T^{v_{i}}$ and $T^{v_{j}}$ cross each other in D at least $\left\lfloor\frac{n}{2}\right\rfloor\left\lfloor\frac{n-1}{2}\right\rfloor$ times.
Corollary 4.2 ([24, Corollary 4]). For $m \geq 2$ and $n \geq 3$, let D be a good drawing of the join product $D_{m}+C_{n}$ in which the edges of C_{n}^{*} do not cross each other and C_{n}^{*} does not separate p vertices $v_{1}, v_{2}, \ldots, v_{p}, 2 \leq p \leq m$. Let $T^{v_{1}}, T^{v_{2}}, \ldots, T^{v_{q}}, q<p$, be the subgraphs induced on the edges incident with the vertices $v_{1}, v_{2}, \ldots, v_{q}$ that do not cross C_{n}^{*}. If k edges of some subgraph $T^{v_{j}}$ induced on the edges incident with the vertex $v_{j}, j \in\{q+1, q+2, \ldots, p\}$, cross the cycle C_{n}^{*}, then the subgraph $T^{v_{j}}$ crosses each of the subgraphs $T^{v_{1}}, T^{v_{2}}, \ldots, T^{v_{q}}$ at least $\left\lfloor\frac{n-k}{2}\right\rfloor\left\lfloor\frac{(n-k)-1}{2}\right\rfloor$ times in D.
Lemma 4.3 ([24, Lemma 1]). For $m \geq 1$, let G be a graph of order m. In an optimal drawing of the join product $G+C_{n}, n \geq 3$, the edges of C_{n}^{*} do not cross each other.

Again, using the algorithm on the website http://crossings.uos.de/, we can also determine the crossing numbers of two small graphs $G^{*}+C_{3}$ and $G^{*}+C_{4}$ in Lemma 4.4.
Lemma 4.4. $\operatorname{cr}\left(G^{*}+C_{3}\right)=7$ and $\operatorname{cr}\left(G^{*}+C_{4}\right)=14$.
Theorem 4.5. $\operatorname{cr}\left(G^{*}+C_{n}\right)=4\left\lfloor\frac{n}{2}\right\rfloor\left\lfloor\frac{n-1}{2}\right\rfloor+2\left\lfloor\frac{n}{2}\right\rfloor+2$ for $n \geq 4$.
Proof. By Lemma 4.4, the result holds for $n=4$. Into both drawings in Figures 2 and 3 , it is possible to add the edge $t_{1} t_{n}$ which forms the cycle C_{n}^{*} on vertices of P_{n}^{*} with just two additional crossings, i.e., C_{n}^{*} is crossed by two edges $v_{1} v_{2}$ and $v_{2} v_{3}$ of the graph G^{*}. Thus, $\operatorname{cr}\left(G^{*}+C_{n}\right) \leq 4\left\lfloor\frac{n}{2}\right\rfloor\left\lfloor\frac{n-1}{2}\right\rfloor+2\left\lfloor\frac{n}{2}\right\rfloor+2$, and let suppose that there is a good drawing D of $G^{*}+C_{n}$ such that

$$
\begin{equation*}
\operatorname{cr}_{D}\left(G^{*}+C_{n}\right) \leq 4\left\lfloor\frac{n}{2}\right\rfloor\left\lfloor\frac{n-1}{2}\right\rfloor+2\left\lfloor\frac{n}{2}\right\rfloor+1 \quad \text { for some } n \geq 5 \tag{4.2}
\end{equation*}
$$

By Theorem 2.1, at most one edge of the cycle C_{n}^{*} can be crossed in D, and so edges of C_{n}^{*} do not cross each other also by Lemma 4.3. The subdrawing of C_{n}^{*} induced by D divides the plane into two regions with at least four vertices of G^{*} in one of them, and so two possible cases may occur:

Case 1. There is no crossing on edges of C_{n}^{*}. Since at least four vertices of G^{*} are placed in one region of $D\left(C_{n}^{*}\right)$, any two such different considered subgraphs $T^{v_{i}}$ and $T^{v_{j}}$ cross each other at least $\left\lfloor\frac{n}{2}\right\rfloor\left\lfloor\frac{n-1}{2}\right\rfloor$ times by Lemma 4.1. Hence, there are at least
$\binom{4}{2}\left\lfloor\frac{n}{2}\right\rfloor\left\lfloor\frac{n-1}{2}\right\rfloor \geq 4\left\lfloor\frac{n}{2}\right\rfloor\left\lfloor\frac{n-1}{2}\right\rfloor+2\left\lfloor\frac{n}{2}\right\rfloor+2$ crossings in D which confirms a contradiction with the assumption (4.2).

Case 2. There is exactly one crossing on edges of C_{n}^{*}, which yields that at least four vertices of G^{*} are placed in one region of $D\left(C_{n}^{*}\right)$. The graph G^{*} with no bridge cannot force only one crossing on edges of C_{n}^{*}. If $\operatorname{cr}_{D}\left(T^{v_{5}}, C_{n}^{*}\right)=1$, the same idea as in Case 1 also contradicts the assumption (4.2). Now, assume $\operatorname{cr}_{D}\left(T^{v_{i}}, C_{n}^{*}\right)=1$ for only one $i \in\{1,2,3,4\}$. For easier reading, let $r=\left|R_{D}\right|$. This, by Lemma 4.1 and Corollary 4.2 for $p=4, q=3$ and $k=1$, enforces at least

$$
\begin{equation*}
\binom{3}{2}\left\lfloor\frac{n}{2}\right\rfloor\left\lfloor\frac{n-1}{2}\right\rfloor+3\left\lfloor\frac{n-1}{2}\right\rfloor\left\lfloor\frac{n-2}{2}\right\rfloor+1+1+n-r \tag{4.3}
\end{equation*}
$$

crossings in D, because $\operatorname{cr}_{D}\left(T^{v_{i}}, T^{v_{5}}\right) \geq 1$ and $\operatorname{cr}_{D}\left(G^{*}, T^{j}\right) \geq 1$ for any subgraph $T^{j} \notin R_{D}$. The number of crossings obtained in (4.3) can confirm a contradiction in D for all $n \geq 6$ or $r \leq 3$. In the next, we assume that $n=5$ and $r=5$. Klešč et al. [25] proved that if two different subgraphs T^{i} and T^{j} do not cross G^{*} in D, then T^{i} and T^{j} cross each other at least twice. In Table 2, there are all necessary numbers of crossings between two subgraphs T^{i} and T^{j} with configurations \mathcal{X}_{k} and \mathcal{X}_{l} of the subgraphs $F^{i}=G^{*} \cup T^{i}$ and $F^{j}=G^{*} \cup T^{j}$, respectively.

Table 2

The minimum number of crossings between T^{i} and T^{j} such that $\operatorname{conf}\left(F^{i}\right)=\mathcal{X}_{k}$ and $\operatorname{conf}\left(F^{j}\right)=\mathcal{X}_{l}$, where $\mathcal{X}=\mathcal{A}$ for the planar subdrawing of G^{*} in Figure 1(a) and $\mathcal{X}=\mathcal{B}$ for the nonplanar subdrawing of G^{*} in Figure 1(c) induced by D, respectively.

	\mathcal{X}_{1}	\mathcal{X}_{2}	\mathcal{X}_{3}	\mathcal{X}_{4}
\mathcal{X}_{1}	4	2	3	3
\mathcal{X}_{2}	2	4	3	3
\mathcal{X}_{3}	3	3	4	2
\mathcal{X}_{4}	3	3	2	4

At least two different subgraphs F^{i} and F^{j} have the same configuration \mathcal{X}_{k} with $\operatorname{cr}_{D}\left(T^{i}, T^{j}\right) \geq 4$, and therefore we obtain at least $\binom{5}{2} 2+2=22$ crossings in D, which yields a contradiction with (4.2). Finally, let $n=5$ and $r=4$. In the rest of the paper, let edges of G^{*} be crossed by the subgraph T^{5}. Moreover, T^{5} must cross edges of G^{*} just once, otherwise, we receive 2 crossings instead of $n-r$ in (4.3). In this case, we have at least 16 crossings on edges of $\bigcup_{i=1}^{4} T^{i}$ again using minimal values in Table 2, at least 4 crossings between $\bigcup_{i=1}^{4} T^{i}$ and T^{5} due to at most three vertices of G^{*} on boundary in all regions of $D\left(F^{i}\right)$, one crossing on edges of C_{n}^{*}, and one crossing offers $T^{5} \in S_{D}$ on edges of G^{*}. So, we obtain also at least 22 crossings contradicting the assumption (4.2).

We have shown that there is no good drawing D of the graph $G^{*}+C_{n}$ with fewer than $4\left\lfloor\frac{n}{2}\right\rfloor\left\lfloor\frac{n-1}{2}\right\rfloor+2\left\lfloor\frac{n}{2}\right\rfloor+2$ crossings, and this completes the proof.

Now, let us turn to the crossing numbers of $H^{*}+C_{n}$. Given the use of arguments similar to those in the first part of the proof of Lemma 3.2, the proofs of Lemmas 4.6
and 4.7 can be omitted if $\operatorname{cr}_{D}\left(H^{*}\right)+\operatorname{cr}_{D}\left(H^{*}+D_{n}, C_{n}^{*}\right) \geq 3$ is fulfilling in a good drawing D of $H^{*}+C_{n}$ with the nonempty set R_{D}.

Lemma 4.6. For $n \geq 5$, let D be a good drawing of $H^{*}+C_{n}$ with the subdrawing of H^{*} induced by D given in Figure $4(b)$. If $\left|R_{D}\right| \geq 1$ with at least two crossings on edges of the cycle C_{n}^{*}, then there are at least $4\left\lfloor\frac{n}{2}\right\rfloor\left\lfloor\frac{n-1}{2}\right\rfloor+n+\left\lfloor\frac{n}{2}\right\rfloor+4$ crossings in D.
Lemma 4.7. For $n \geq 3$, let D be a good drawing of $H^{*}+C_{n}$ with the subdrawing of H^{*} induced by D given in Figure 4 (c). If $\left|R_{D}\right| \geq 1$, then there are at least $4\left\lfloor\frac{n}{2}\right\rfloor\left\lfloor\frac{n-1}{2}\right\rfloor+$ $n+\left\lfloor\frac{n}{2}\right\rfloor+4$ crossings in D.

Note that the set R_{D} must be empty if there is a separating cycle C_{3} of H^{*} in the subdrawing $D\left(H^{*}\right)$ induced by some drawing D of $H^{*}+C_{n}$. The crossing numbers of $H^{*}+C_{3}$ and $H^{*}+C_{4}$ in Lemma 4.8 are also given using the algorithm on the website http://crossings.uos.de/.
Lemma 4.8. $\operatorname{cr}\left(H^{*}+C_{3}\right)=12$ and $\operatorname{cr}\left(H^{*}+C_{4}\right)=18$.
Theorem 4.9. $\operatorname{cr}\left(H^{*}+C_{n}\right)=4\left\lfloor\frac{n}{2}\right\rfloor\left\lfloor\frac{n-1}{2}\right\rfloor+n+\left\lfloor\frac{n}{2}\right\rfloor+4$ for $n \geq 3$.
Proof. By Lemma 4.8, the result is true for $n=3$ and $n=4$. In the following, let $n \geq 5$. Into the drawing in Figure 5, it is possible to add the edge $t_{1} t_{n}$ which forms the cycle C_{n}^{*} on vertices of P_{n}^{*} with just two additional crossings, i.e., C_{n}^{*} is crossed by two edges $v_{1} v_{3}$ and $v_{3} v_{4}$ of the graph G^{*}. Thus, $\operatorname{cr}\left(H^{*}+C_{n}\right) \leq 4\left\lfloor\frac{n}{2}\right\rfloor\left\lfloor\frac{n-1}{2}\right\rfloor+n+\left\lfloor\frac{n}{2}\right\rfloor+4$, and let suppose that there is a good drawing D of $H^{*}+C_{n}$ such that

$$
\begin{equation*}
\operatorname{cr}_{D}\left(H^{*}+C_{n}\right) \leq 4\left\lfloor\frac{n}{2}\right\rfloor\left\lfloor\frac{n-1}{2}\right\rfloor+n+\left\lfloor\frac{n}{2}\right\rfloor+3 \quad \text { for some } n \geq 5 \tag{4.4}
\end{equation*}
$$

By Theorem 3.3, at most three edges of the cycle C_{n}^{*} can be crossed in D, and we can also suppose that edges of C_{n}^{*} do not cross each other using Lemma 4.3. The subdrawing of C_{n}^{*} induced by D divides the plane into two regions with at least four vertices of H^{*} in one of them, and so four possible cases may occur:

Case 1. There is no crossing on edges of C_{n}^{*}, that is, all vertices of H^{*} are placed in one region of $D\left(C_{n}^{*}\right)$. For $i, j \in\{1,2,3,4,5\}$, any two different considered subgraphs $T^{v_{i}}$ and $T^{v_{j}}$ cross each other at least $\left\lfloor\frac{n}{2}\right\rfloor\left\lfloor\frac{n-1}{2}\right\rfloor$ times by Lemma 4.1. Hence, there are at least $\binom{5}{2}\left\lfloor\frac{n}{2}\right\rfloor\left\lfloor\frac{n-1}{2}\right\rfloor \geq 4\left\lfloor\frac{n}{2}\right\rfloor\left\lfloor\frac{n-1}{2}\right\rfloor+n+\left\lfloor\frac{n}{2}\right\rfloor+4$ crossings in D which confirms a contradiction with the assumption (4.4).

Case 2. There is exactly one crossing on edges of C_{n}^{*}. All five vertices of the graph H^{*} must be placed in one region of $D\left(C_{n}^{*}\right)$ because H^{*} contains no bridge. This enforces that there is exactly one vertex $v_{i}, i \in\{1,2,3,4,5\}$, such that $\operatorname{cr}_{D}\left(T^{v_{i}}, C_{n}^{*}\right)=1$. By Lemma 4.1, Corollary 4.2 for $p=5, q=4$ and $k=1$, we have at least $\binom{4}{2}\left\lfloor\frac{n}{2}\right\rfloor\left\lfloor\frac{n-1}{2}\right\rfloor+4\left\lfloor\frac{n-1}{2}\right\rfloor\left\lfloor\frac{n-2}{2}\right\rfloor$ crossings in D, but the obtained number of crossings also contradicts (4.4) in D.

In the following, the edges of C_{n}^{*} are crossed at least twice in D. Let us first show that $R_{D}=\emptyset$ in the considered drawing D. If the subdrawing $D\left(H^{*}\right)$ contains a separating cycle C_{3}, then there is no possibility to obtain a subdrawing of $H^{*} \cup T^{i}$ for any $T^{i} \in R_{D}$. Lemma 4.6 or 4.7 contradicts the assumption (4.4) for the subdrawing of H^{*} in D given in Figure $4(\mathrm{~b})$ or (c) if $\left|R_{D}\right| \geq 1$, respectively. Now, we can assume
that there are at least n crossings between H^{*} and $\bigcup_{i=1}^{n} T^{i}$, because $\operatorname{cr}_{D}\left(H^{*}, T^{i}\right) \geq 1$ for all $i=1,2, \ldots, n$.

Case 3. There are two crossings on edges of C_{n}^{*}. We discuss three subcases:
(a) Let $\operatorname{cr}_{D}\left(H^{*}, C_{n}^{*}\right)=2$ and C_{n}^{*} be crossed twice by only one edge of the graph H^{*}. All vertices of H^{*} are placed in one region of $D\left(C_{n}^{*}\right)$ and the same idea as in Case 1 contradicts the assumption (4.4).
(b) Let either $\operatorname{cr}_{D}\left(H^{*}, C_{n}^{*}\right)=2$ and C_{n}^{*} be crossed by two different edges of the graph H^{*} or $\operatorname{cr}_{D}\left(T^{v_{i}}, C_{n}^{*}\right)=2$ for only one $v_{i}, i \in\{1,2,3,4,5\}$. Since at least four vertices of H^{*} are placed in one region of $D\left(C_{n}^{*}\right)$, we have at least $\binom{4}{2}\left\lfloor\frac{n}{2}\right\rfloor\left\lfloor\frac{n-1}{2}\right\rfloor+n \geq$ $4\left\lfloor\frac{n}{2}\right\rfloor\left\lfloor\frac{n-1}{2}\right\rfloor+n+\left\lfloor\frac{n}{2}\right\rfloor+4$ crossings in D according to Lemma 4.1 and $R_{D}=\emptyset$.
(c) Let $\operatorname{cr}_{D}\left(T^{v_{i}}, C_{n}^{*}\right)=1$ and $\operatorname{cr}_{D}\left(T^{v_{j}}, C_{n}^{*}\right)=1$ for two different subgraphs $T^{v_{i}}$, $T^{v_{j}}$, where $i, j \in\{1,2,3,4,5\}$. Again all five vertices of H^{*} are placed in one region of $D\left(C_{n}^{*}\right)$. By Lemma 4.1, Corollary 4.2 for $p=5, q=3$ and $k=1$, and $R_{D}=\emptyset$, we obtain at least $\binom{3}{2}\left\lfloor\frac{n}{2}\right\rfloor\left\lfloor\frac{n-1}{2}\right\rfloor+(3+3)\left\lfloor\frac{n-1}{2}\right\rfloor\left\lfloor\frac{n-2}{2}\right\rfloor+n$ crossings contradicting (4.4) in D.

Case 4. There are three crossings on edges of C_{n}^{*}. We discuss five following subcases:
(a) Let $\mathrm{cr}_{D}\left(H^{*}, C_{n}^{*}\right)=2$ and C_{n}^{*} be crossed twice by only one edge of the graph H^{*}, and let also there be exactly one $T^{v_{i}}, i \in\{1,2,3,4,5\}$, such that $\mathrm{cr}_{D}\left(T^{v_{i}}, C_{n}^{*}\right)=1$. All vertices of H^{*} are placed in one region of $D\left(C_{n}^{*}\right)$ and the same idea as in Case 2 contradicts the assumption (4.4).
(b) Let $\operatorname{cr}_{D}\left(H^{*}, C_{n}^{*}\right)=2$ and C_{n}^{*} be crossed by two different edges of the graph H^{*}, and let also there be exactly one $T^{v_{i}}, i \in\{1,2,3,4,5\}$, with $\operatorname{cr}_{D}\left(T^{v_{i}}, C_{n}^{*}\right)=1$. Four vertices of H^{*} are placed in one region and one vertex, say v_{5}, is placed in other region of $D\left(C_{n}^{*}\right)$. If $\operatorname{cr}_{D}\left(C_{n}^{*}, T^{v_{5}}\right)=1$, then the same idea as in Case $3(\mathrm{~b})$ again confirms a contradiction with (4.4). If $\operatorname{cr}_{D}\left(C_{n}^{*}, T^{v_{i}}\right)=1$ for $i \neq 5$, then there are at least $\binom{3}{2}\left\lfloor\frac{n}{2}\right\rfloor\left\lfloor\frac{n-1}{2}\right\rfloor+3\left\lfloor\frac{n-1}{2}\right\rfloor\left\lfloor\frac{n-2}{2}\right\rfloor+n+3+1$ crossings in D provided by Lemma 4.1, Corollary 4.2 for $p=4, q=3$ and $k=1$, and $R_{D}=\emptyset$, also due to three crossings on edges of C_{n}^{*} and $\operatorname{cr}_{D}\left(T^{v_{i}}, T^{v_{5}}\right) \geq 1$. The obtained number of crossings also contradicts (4.4) in D.
(c) Let $\operatorname{cr}_{D}\left(T^{v_{i}}, C_{n}^{*}\right)=3$ for only one $T^{v_{i}}, i \in\{1,2,3,4,5\}$. All vertices of H^{*} are placed in one region of $D\left(C_{n}^{*}\right)$ and the similar idea as in Case 3(b) contradicts the assumption (4.4).
(d) Let $\operatorname{cr}_{D}\left(T^{v_{i}}, C_{n}^{*}\right)=1$ and $\operatorname{cr}_{D}\left(T^{v_{j}}, C_{n}^{*}\right)=2$ for two distinct $i, j \in\{1,2,3,4,5\}$. By Lemma 4.1, Corollary 4.2 for $p=5, q=3$ and $k=1, k=2$, and $R_{D}=\emptyset$, we have at least $\binom{3}{2}\left\lfloor\frac{n}{2}\right\rfloor\left\lfloor\frac{n-1}{2}\right\rfloor+3\left\lfloor\frac{n-1}{2}\right\rfloor\left\lfloor\frac{n-2}{2}\right\rfloor+3\left\lfloor\frac{n-2}{2}\right\rfloor\left\lfloor\frac{n-3}{2}\right\rfloor+n$ crossings contradicting (4.4) in D provided by again all five vertices of H^{*} are placed in one region of $D\left(C_{n}^{*}\right)$.
(e) Let $\operatorname{cr}_{D}\left(T^{v_{i}}, C_{n}^{*}\right)=1, \operatorname{cr}_{D}\left(T^{v_{j}}, C_{n}^{*}\right)=1$, and $\operatorname{cr}_{D}\left(T^{v_{l}}, C_{n}^{*}\right)=1$ for three distinct $i, j, l \in\{1,2,3,4,5\}$. For such a index pair i, j, the subgraph $T^{v_{i}} \cup T^{v_{j}} \cup C_{n}^{*}$ is isomorphic to the graph $D_{2}+C_{n}$. Consider $n-2$ vertices of the cycle C_{n}^{*} incident with edges of $T^{v_{i}}$ and $T^{v_{j}}$ which do not cross C_{n}^{*}. Let us delete all edges of $T^{v_{i}}$ and $T^{v_{j}}$ which are not incident with these $n-2$ vertices. The resulting subgraph is homeomorphic to the graph $D_{2}+C_{n-2}$ and, in its subdrawing D^{\prime} induced by D, we obtain $\operatorname{cr}_{D^{\prime}}\left(T^{v_{i}}, T^{v_{j}}\right) \geq\left\lfloor\frac{n-2}{2}\right\rfloor\left\lfloor\frac{n-3}{2}\right\rfloor$ thanks to Lemma 4.1. Clearly, the same holds for both remaining index pairs i, l and j, l. Thus, we have at least $\left\lfloor\frac{n}{2}\right\rfloor\left\lfloor\frac{n-1}{2}\right\rfloor+(2+2+2)\left\lfloor\frac{n-1}{2}\right\rfloor\left\lfloor\frac{n-2}{2}\right\rfloor+3\left\lfloor\frac{n-2}{2}\right\rfloor\left\lfloor\frac{n-3}{2}\right\rfloor+n+3$ crossings in D again
using Lemma 4.1, Corollary 4.2 for $p=5, q=2$ and $k=1$, and $R_{D}=\emptyset$, also due to three crossings on edges of C_{n}^{*}.

We have shown, in all cases, that there is no good drawing D of the graph $H^{*}+C_{n}$ with fewer than $4\left\lfloor\frac{n}{2}\right\rfloor\left\lfloor\frac{n-1}{2}\right\rfloor+n+\left\lfloor\frac{n}{2}\right\rfloor+4$ crossings.

5. SOME CONSEQUENCES OF THE MAIN RESULTS

In Figure 6 , let G_{1} be the graph obtained from G^{*} by adding the edge $v_{2} v_{5}$ into the drawing in Figure 1(a). Since we can add this edge to the graph G^{*} without additional crossings in Figures 2 and 3, the drawing of $G_{1}+P_{n}$ with $4\left\lfloor\frac{n}{2}\right\rfloor\left\lfloor\frac{n-1}{2}\right\rfloor+2\left\lfloor\frac{n}{2}\right\rfloor$ crossings is obtained. By adding the considered edge $v_{2} v_{5}$, it is also possible to add the edge $t_{1} t_{n}$ that creates C_{n}^{*} on vertices of P_{n}^{*} with just two additional crossings. The same holds for the graph H_{1} if we add the edge $v_{2} v_{5}$ into the drawing in Figure 4(a), and therefore, the next results are obvious.

G_{1}

H_{1}

Fig. 6. Two graphs G_{1} and H_{1} by adding one edge to the graphs G^{*} and H^{*}

Corollary 5.1. $\operatorname{cr}\left(G_{1}+P_{n}\right)=4\left\lfloor\frac{n}{2}\right\rfloor\left\lfloor\frac{n-1}{2}\right\rfloor+2\left\lfloor\frac{n}{2}\right\rfloor$ for $n \geq 2$.
Corollary 5.2. $\operatorname{cr}\left(G_{1}+C_{n}\right)=4\left\lfloor\frac{n}{2}\right\rfloor\left\lfloor\frac{n-1}{2}\right\rfloor+2\left\lfloor\frac{n}{2}\right\rfloor+2$ for $n \geq 3$.
Note that $\operatorname{cr}\left(G_{1}+C_{3}\right)=8$ is one more than $\operatorname{cr}\left(G^{*}+C_{3}\right)=7$ which is caused by adding the edge $v_{2} v_{5}$ in Figure 3. Of course, such a result is confirmed again using the algorithm on the website http://crossings.uos.de/.
Corollary 5.3. $\operatorname{cr}\left(H_{1}+P_{n}\right)=4\left\lfloor\frac{n}{2}\right\rfloor\left\lfloor\frac{n-1}{2}\right\rfloor+n+\left\lfloor\frac{n}{2}\right\rfloor+2$ for $n \geq 2$.
Corollary 5.4. $\operatorname{cr}\left(H_{1}+C_{n}\right)=4\left\lfloor\frac{n}{2}\right\rfloor\left\lfloor\frac{n-1}{2}\right\rfloor+n+\left\lfloor\frac{n}{2}\right\rfloor+4$ for $n \geq 3$.

6. CONCLUSIONS

We suppose that similar forms of discussions can be used to estimate unknown values of the crossing numbers of two remaining connected graphs of order five with a much larger number of edges in join products with paths and cycles on n vertices. Especially for the complete graph K_{5} and the graph $K_{5} \backslash e$ obtained by removing one edge from K_{5}.

Acknowledgements

The authors would like to thank the referees for their careful readings and many constructive comments to improve the quality of the paper.

REFERENCES

[1] O. Aichholzer, R. Fabila-Monroy, A. Fuchs, C. Hidalgo-Toscano, I. Parada, B. Vogtenhuber, F. Zaragoza, On the 2-colored crossing number, [in:] Proceedings of the 27th International Symposium on Graph Drawing and Network Visualization, Lecture Notes in Computer Science (2019), 87-100.
[2] Š. Berežný, M. Staš, On the crossing number of the join of the wheel on six vertices with a path, Carpathian J. Math. 38 (2022), no. 2, 337-346.
[3] Š. Berežný, M. Staš, On the crossing numbers of the join products of five graphs on six vertices with discrete graphs, Carpathian J. Math. 39 (2023), no. 2, 371-382.
[4] K. Clancy, M. Haythorpe, A. Newcombe, A survey of graphs with known or bounded crossing numbers, Australasian J. Combin. 78 (2020), no. 2, 209-296.
[5] M. Chimani, T. Wiedera, An ILP-based proof system for the crossing number problem, 24th Proceedings of the Annual European Symposium on Algorithms (2016), 1-13.
[6] E. Draženská, On the crossing number of join of graph of order six with path, Proc. CJS 2019: 22th Czech-Japan Seminar on Data Analysis and Decision Making (2019), 41-48.
[7] E. Draženská, Crossing numbers of join product of several graphs on 6 vertices with path using cyclic permutation, Proc. MME 2019: Proceedings of the 37th international conference (2019), 457-463.
[8] G. Fridman, Y. Vasiliev, V. Puhkalo, V. Ryzhov, A mixed-integer program for drawing orthogonal hyperedges in a hierarchical hypergraph, Mathematics 10 (2022), no. 5, 689.
[9] M.R. Garey, D.S. Johnson, Crossing number is NP-complete, SIAM J. Algebraic. Discrete Methods 4 (1983), no. 3, 312-316.
[10] E. Gethner, L. Hogben, B. Lidicky, F. Pfender, A. Ruiz, M. Young, On crossing numbers of complete tripartite and balanced complete multipartite graphs, J. Graph Theory $\mathbf{8 4}$ (2017), no. 4, 552-565.
[11] C. Hernández-Vélez, C. Medina, G. Salazar, The optimal drawing of $K_{5, n}$, Electronic Journal of Combinatorics 21 (2014), no. 4, Paper 4.1, 29 pp.
[12] P.T. Ho, The crossing number of $K_{1,1,3, n}$, Ars Combinatoria 99 (2011), 461-471.
[13] D.J. Kleitman, The crossing number of $K_{5, n}$, J. Combinatorial Theory 9 (1970), no. 4, 315-323.
[14] M. Klešč, The crossing number of join of the special graph on six vertices with path and cycle, Discrete Math. 310 (2010), no. 9, 1475-1481.
[15] M. Klešč, The join of graphs and crossing numbers, Electron. Notes in Discrete Math. 28 (2007), 349-355.
[16] M. Klešč, The crossing numbers of join of cycles with graphs of order four, Proc. Aplimat 2019: 18th Conference on Applied Mathematics (2019), 634-641.
[17] M. Klešč, Š. Schrötter, The crossing numbers of join of paths and cycles with two graphs of order five, Combinatorial Algorithms, Springer, LNCS 7125 (2012), 160-167.
[18] M. Klešč, Š. Schrötter, The crossing numbers of join products of paths with graphs of order four, Discuss. Math. Graph Theory 31 (2011), no. 2, 321-331.
[19] M. Klešč, M. Staš, Cyclic permutations in determining crossing numbers, Discuss. Math. Graph Theory 42 (2022), no. 4, 1163-1183.
[20] M. Klešč, M. Valo, Minimum crossings in join of graphs with paths and cycles, Acta Electrotechnica et Informatica 12 (2012), no. 3, 32-37.
[21] M. Klešč, D. Kravecová, J. Petrillová, The crossing numbers of join of special graphs, Electrical Engineering and Informatics 2: Proceeding of the Faculty of Electrical Engineering and Informatics of the Technical University of Košice (2011), 522-527.
[22] M. Klešč, D. Kravecová, J. Petrillová, On the crossing numbers of Cartesian products of paths with special graphs, Carpathian J. Math. 30 (2014), no. 3, 317-325.
[23] M. Klešč, J. Petrillová, M. Valo, Minimal number of crossings in strong product of paths, Carpathian J. Math. 29 (2013), no. 1, 27-32.
[24] M. Klešč, J. Petrillová, M. Valo, On the crossing numbers of Cartesian products of wheels and trees, Discuss. Math. Graph Theory 37 (2017), no. 2, 399-413.
[25] M. Klešč, M. Staš, J. Petrillová, The crossing numbers of join of special disconnected graph on five vertices with discrete graphs, Graphs and Combinatorics 38 (2022), no. 2, Article no. 35.
[26] R.K. Nath, B. Sen, B.K. Sikdar, Optimal synthesis of QCA logic circuit eliminating wire-crossings, IET Circuits, Devices and Systems 11 (2017), no. 3, 201-208.
[27] Z. Ouyang, J. Wang, Y. Huang, The crossing number of join of the generalized Petersen graph $P(3,1)$ with path and cycle, Discuss. Math. Graph Theory 38 (2018), no. 2, 351-370.
[28] M. Schaefer, The graph crossing number and its variants: A survey, The Electronic Journal of Combinatorics (2013), \#DS21.
[29] M. Staš, Alternative proof on the crossing number of $K_{1,1,3, n}$, Acta Electrotechnica et Informatica 19 (2019), no. 1, 19-24.
[30] M. Staš, The crossing numbers of join products of paths and cycles with four graphs of order five, Mathematics 2021, 9(11), 1277.
[31] M. Staš, On the crossing numbers of the join products of six graphs of order six with paths and cycles, Symmetry 2021, 13(12), 2441.
[32] M. Staš, Parity properties of configurations, Mathematics 2022, 10(12), 1998.
[33] M. Staš, J. Petrillová, On the join products of two special graphs on five vertices with the path and the cycle, J. Math. Model. and Geometry 6 (2018), no. 2, 1-11.
[34] M. Staš, M. Švecová, The crossing numbers of join products of paths with three graphs of order five, Opuscula Math. 42 (2022), no. 4, 635-651.
[35] M. Staš, J. Valiska, On the crossing numbers of join products of $W_{4}+P_{n}$ and $W_{4}+C_{n}$, Opuscula Math. 41 (2021), no. 1, 95-112.
[36] Z. Su, Y. Huang, Crossing number of join of three 5-vertex graphs with P_{n}, App. Math. China 29 (2014), no. 2, 245-252.
[37] D.R. Woodall, Cyclic-order graphs and Zarankiewicz's crossing number conjecture, J. Graph Theory 17 (1993), no. 6, 657-671.

Michal Staš (corresponding author)
michal.stas@tuke.sk
(D) https://orcid.org/0000-0002-2837-8879

Technical University of Košice
Faculty of Electrical Engineering and Informatics
Department of Mathematics and Theoretical Informatics
042-00 Košice, Slovak Republic

Mária Timková
maria.timkova@tuke.sk
© https://orcid.org/0000-0001-5499-9399
Technical University of Košice
Faculty of Electrical Engineering and Informatics
Department of Mathematics and Theoretical Informatics
042-00 Košice, Slovak Republic
Received: September 6, 2022.
Revised: June 14, 2023.
Accepted: June 24, 2023.

