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Abstract. The crossing number cr(G) of a graph G is the minimum number of
edge crossings over all drawings of G in the plane. In the paper, we extend known
results concerning crossing numbers of join products of four small graphs with paths
and cycles. The crossing numbers of the join products G∗ + Pn and G∗ + Cn for the
disconnected graph G∗ consisting of the complete tripartite graph K1,1,2 and one
isolated vertex are given, where Pn and Cn are the path and the cycle on n vertices,
respectively. In the paper also the crossing numbers of H∗ + Pn and H∗ + Cn are
determined, where H∗ is isomorphic to the complete tripartite graph K1,1,3. Finally,
by adding new edges to the graphs G∗ and H∗, we are able to obtain crossing numbers
of join products of two other graphs G1 and H1 with paths and cycles.
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1. INTRODUCTION

The crossing number is an important parameter of a graph, as it provides information
about the complexity of the graph and the difficulty of visualizing it [28]. In addition,
the crossing number is related to many other graph parameters and algorithms, such as
planarity testing, graph coloring, and graph embedding. Graphs are widely used to rep-
resent complex networks such as social, communication, and transportation networks.
Reducing the number of edge crossings in network visualizations can help understand
the network’s underlying structure and identify important nodes and connections [1].
In electronic circuit design, minimizing the number of edge crossings is important for
reducing signal interference and improving circuit performance. Graph drawings with
fewer crossings can lead to more efficient and reliable circuit designs [26]. In graph
theory, reducing the number of edge crossings is a fundamental problem in planar
graph theory. Many important graph algorithms and optimization problems are defined
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for planar graphs, where the graphs have no edge crossings [10]. Overall, reducing
the number of crossings on graph edges can help in visualizing and understanding
complex data, improving system performance, and optimizing graph algorithms and
optimizations [8]. Examining the number of crossings of simple graphs is a classic, but
still challenging problem. Garey and Johnson [9] proved that determining cr(G) is an
NP-complete problem. Nevertheless, many researchers are trying to solve this problem.
Note that the exact values of the crossing numbers are known for some families of
graphs, see Clancy et al. [4].

The crossing number cr(G) of a simple graph G with the vertex set V (G) and the
edge set E(G) is the minimum possible number of edge crossings in a drawing of G in
the plane (for the definition of a drawing see Klešč [14]). A drawing with a minimum
number of crossings (an optimal drawing) is always a good drawing, meaning that
no edge crosses itself, no two edges cross more than once, and no two edges incident
with the same vertex cross. Let D be a good drawing of the graph G. We denote
the number of crossings in D by crD(G). Let Gi and Gj be edge-disjoint subgraphs
of G. We denote the number of crossings between edges of Gi and edges of Gj by
crD(Gi, Gj), and the number of crossings among edges of Gi in D by crD(Gi). For
any three mutually edge-disjoint subgraphs Gi, Gj , and Gk of G by [14], the following
equations hold:

crD(Gi ∪ Gj) = crD(Gi) + crD(Gj) + crD(Gi, Gj),
crD(Gi ∪ Gj , Gk) = crD(Gi, Gk) + crD(Gj , Gk).

Throughout this paper, Kleitman’s result [13] on the crossing numbers for some
complete bipartite graphs Km,n are used in several parts of proofs. He proved that

cr(Km,n) =
⌊m

2

⌋⌊m − 1
2

⌋⌊n

2

⌋⌊n − 1
2

⌋
, if m ≤ 6. (1.1)

The join product of two graphs Gi and Gj , denoted Gi + Gj , is obtained from
vertex-disjoint copies of Gi and Gj by adding all edges between V (Gi) and V (Gj). For
|V (Gi)| = m and |V (Gj)| = n, the edge set of Gi + Gj is the union of the disjoint edge
sets of the graphs Gi, Gj , and the complete bipartite graph Km,n. Let Pn and Cn be
the path and the cycle on n vertices, respectively, and let Dn denote the discrete graph
(sometimes called empty graph) on n vertices. The crossings numbers of join products
of paths and cycles with all graphs of order at most four have been well-known for
a long time by Klešč [15,16], and Klešč and Schrötter [18]. It is understandable that
our immediate aim is to establish exact values for crossing numbers of G + Pn and
G + Cn also for all graphs G of order five and six. Of course, the crossing numbers
of G + Pn and G + Cn are already known for a lot of graphs G of order five and
six [2,3,6,7,14,17,20,21,27,30,31,35]. In all these cases, the graph G is connected and
usually contains at least one cycle. Note that cr(G + Pn) and cr(G + Cn) are known
only for some disconnected graphs G on five or six vertices [19,32–34]. To date, the
crossing number of K3 ∪ 2K1 + Pn, K3 ∪ 2K1 + Cn, K4 ∪ K1 + Cn, K1,1,2 ∪ K1 + Pn

and K1,1,2 ∪ K1 + Cn can only be given as a conjecture. The last two open problems
will be solved in our paper. The minimal number of crossings in the Cartesian product
and in the strong product of paths have been studied by Klešč et al. in [22] and [23].
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For this purpose, we present a new technique regarding the use of knowledge from
the subgraphs whose values of crossing numbers are already known. It is appropriate to
combine this idea with possibility of an existence of a separating cycle in some particular
drawing of investigated graph. Let G∗ be the disconnected graph consisting of the
complete tripartite graph K1,1,2 and one isolated vertex. The crossing numbers of
the join products of G∗ with the discrete graphs Dn have been well-known by Klešč et
al. [25] using a lot of properties of cyclic permutations. This established result will be
extended to the same crossing number of G∗ + Pn in Corollary 2.2 due to two special
drawings in Figures 2 and 3 for n even and odd, respectively. Moreover, the result of
cr(G∗ + Cn) in the second main Theorem 4.5 can be estimated for cycles Cn on at
least 4 vertices provided by adding the edge t1t3 only with one additional crossing
to the subdrawing of G∗ + P3 in Figure 3 offers a drawing of G∗ + C3 with just 7
crossings.

Let H∗ be the graph isomorphic to the complete tripartite graph K1,1,3. The
crossing number of H∗ + Dn was determined for any n ≥ 1 by Ho [12], and later
also by Staš [29] again thanks to properties of cyclic permutations. One of the main
goals of the paper is to establish the crossing numbers of the join products of H∗ with
paths Pn and cycles Cn. The obtained results will be presented in Theorem 3.5 and
Theorem 4.9. The paper concludes by giving cr(G1 + Pn), cr(G1 + Cn), cr(H1 + Pn),
and cr(H1 + Cn) in Corollaries 5.1, 5.2, 5.3, and 5.4, respectively, where the graph
G1 is obtained from G∗ by adding new edge joining one vertex of degree two with
the isolated vertex in G∗ and the graph H1 is obtained from H∗ by adding new edge
joining two vertices of degree two. Note that the result in Theorem 3.5 has already
been claimed by Su and Huang [36]. Since this paper does not seem to be available
in English, we have not been able to verify this result. Clancy et al. [4] also placed
an asterisk on a number of the results in their survey to essentially indicate that the
mentioned results appeared in journals do not have a sufficiently rigorous peer-review
process.

2. THE CROSSING NUMBER OF G∗ + Pn

Let G∗ = (V (G∗), E(G∗)) be the disconnected graph on five vertices consist-
ing of the complete tripartite graph K1,1,2 and one isolated vertex, and let also
V (G∗) = {v1, v2, . . . , v5}. In the rest of the paper, let v5 be the vertex notation of
the isolated vertex of G∗ in all considered good subdrawings of the graph G∗. Five
possible non-isomorphic drawings of G∗ were described by Klešč et al. [25]. They are
presented in Figure 1 with the corresponding vertex notation in two drawings.

We consider the join product of the graph G∗ with the discrete graph Dn, which
yields that G∗ + Dn (sometimes used notation G∗ + nK1) consists of just one copy
of G∗ and n vertices t1, t2, . . . , tn. Here, each vertex ti, i = 1, 2, . . . , n, is adjacent to
every vertex of the graph G∗. Let T i, 1 ≤ i ≤ n, denote the subgraph induced by five
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edges incident with the fixed vertex ti. This means that the graph T 1 ∪ . . . ∪ T n is
isomorphic to the complete bipartite graph K5,n and

G∗ + Dn = G∗ ∪
( n⋃

i=1
T i

)
. (2.1)
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Fig. 1. Five possible non-isomorphic drawings of the graph G∗

Determining the crossing numbers of G∗ + Pn and G∗ + Cn will be based on the
following theorem presented in [25].
Theorem 2.1 ([25, Theorem 2]). cr(G∗ + Dn) = 4

⌊
n
2

⌋⌊
n−1

2
⌋

+ 2
⌊

n
2

⌋
for n ≥ 1.

For n even, Figure 2 shows the good drawing of the join product G∗ + Pn with
exactly 4

⌊
n
2

⌋⌊
n−1

2
⌋

+ 2
⌊

n
2

⌋
crossings provided by edges of K5,n cross each other

4
⌊

n
2

⌋⌊
n−1

2
⌋

times and each subgraph T i crosses edges of G∗ just once.
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Fig. 2. The drawing of G∗ + Pn with 4
⌊

n
2

⌋⌊
n−1

2
⌋

+ 2
⌊

n
2

⌋
crossings for n even

For n odd at least 3, Figure 3 shows the good drawing of G∗ + Pn also with
4
⌊

n
2

⌋⌊
n−1

2
⌋

+ 2
⌊

n
2

⌋
crossings by adding one subgraph T

n+1
2 by which edges of each of

the n − 1 subgraphs T i, i ̸= n+1
2 are crossed exactly twice, that is,
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Fig. 3. The drawing of G∗ + Pn with 4
⌊

n
2

⌋⌊
n−1

2
⌋

+ 2
⌊

n
2

⌋
crossings for n odd at least

three

As G∗ + Dn is a subgraph of G∗ + Pn, the lower bound is the same based on
Theorem 2.1 and so, the next result is obvious.
Corollary 2.2. cr(G∗ + Pn) = 4

⌊
n
2

⌋⌊
n−1

2
⌋

+ 2
⌊

n
2

⌋
for n ≥ 2.

3. THE CROSSING NUMBER OF H∗ + Pn

The graph H∗ + Pn contains H∗ + Dn as a subgraph. For subgraphs of H∗ + Pn which
are also subgraphs of H∗ + nK1 we use the same notations as above. Let P ∗

n denote
the path induced on n vertices of H∗ + Pn not belonging to the subgraph H∗. Hence,
P ∗

n consists of the vertices t1, t2, . . . , tn and the edges {ti, ti+1} for i = 1, 2, . . . , n − 1.
One can easily see that

H∗ + Pn = H∗ ∪
( n⋃

i=1
T i

)
∪ P ∗

n . (3.1)

We consider a good drawing D of H∗ + Dn. The rotation rotD(ti) of a vertex ti in
the drawing D as the cyclic permutation that records the (cyclic) counter-clockwise
order in which the edges leave ti have been defined by Hernández-Vélez et al. [11] or
Woodall [37]. We use the notation (12345) if the counter-clockwise order the edges
incident with the vertex ti is tiv1, tiv2, tiv3, tiv4, and tiv5. We recall that rotation
is a cyclic permutation. In the given drawing D, it is highly desirable to separate n
subgraphs T i into three mutually disjoint families of subgraphs depending on how
many times edges of H∗ could be crossed by T i in D. Let us denote by RD and SD
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the set of subgraphs for which crD(H∗, T i) = 0 and crD(H∗, T i) = 1, respectively.
Edges of H∗ are crossed by each remaining subgraph T i at least twice in D. For
T i ∈ RD ∪ SD, let F i denote the subgraph H∗ ∪ T i, i ∈ {1, 2, . . . , n}, of H∗ + Dn and
let D(F i) be its subdrawing induced by D. Clearly, the idea of dividing the subgraphs
T i into three mentioned families is also retained in all drawings of H∗ + Pn.

In a good drawing D of some graph G, we say that a cycle C separates some two
different vertices of the subgraph G \ C if they are contained in different components
of R2 \ C. This considered cycle C is said to be a separating cycle of the graph G in D.
In some proofs of the paper, we will often use the term “region” also in nonplanar
subdrawings. In this case, crossings are considered to be vertices of the “map”.

Lemma 3.1. For n ≥ 2, let D be a good drawing of H∗ + Pn. If there is a separating
cycle C3 of H∗ in the subdrawing D(H∗) with at least one crossing on some edge of
C3 in D(H∗ ∪ P ∗

n), then there are at least 4
⌊

n
2

⌋⌊
n−1

2
⌋

+ n +
⌊

n
2

⌋
+ 2 crossings in D.

Proof. By assumption, let us consider a separating cycle C3 = v1v2v3v1 of H∗ in
the subdrawing D(H∗). Since two remaining vertices of H∗ lie in different regions of
D(C3), there is no subgraph T i by which the edges of C3 are not crossed. Hence, each
subgraph T i crosses edges of C3 at least once, which yields that crD(C3,

⋃n
i=1 T i) ≥ n.

Let G be the graph difference of graphs H∗ and C3, i.e., G is isomorphic to the graph
K2,2 ∪ K1. The exact value for the crossing number of G + Pn is given by Staš and
Petrillová [33], that is, cr(G + Pn) = 4

⌊
n
2

⌋⌊
n−1

2
⌋

+
⌊

n
2

⌋
+ 1. This enforces at least

4
⌊

n
2

⌋⌊
n−1

2
⌋

+
⌊

n
2

⌋
+ 1 + n + 1 crossings in D because some edge of the cycle C3 is also

crossed in D(H∗ ∪ P ∗
n).

As the graph G∗ is a subgraph of the graph H∗, all considered drawings of H∗ can
be achieved from some drawing of G∗ in such a way as shown in Figure 1 by adding
two edges joining the isolated vertex with two vertices of degree three in G∗. In an
effort to reach less than 4

⌊
n
2

⌋⌊
n−1

2
⌋

+ n +
⌊

n
2

⌋
+ 2 crossings in some good drawing D of

H∗ + Pn, it is sufficient to investigate subdrawings of H∗ induced by D in which either
all five vertices of H∗ are placed in one region of D(H∗) on its boundary or there is
no crossing on any edge of separating cycle C3 of H∗ due to Lemma 3.1. Hence, we
obtain only three possible non-isomorphic drawings of H∗ given in Figure 4 satisfying
these restrictions.

Two vertices ti and tj of the graph H∗ + Pn are said to be antipodal in a drawing
of H∗ + Pn if the considered subgraphs T i and T j do not cross. A drawing with no
antipodal vertices is said to be antipode-free.

Lemma 3.2. For n ≥ 4, let D be a good and antipode-free drawing of H∗ +Pn with the
subdrawing of H∗ induced by D given in Figure 4(b). If |RD| ≥ 1 or |SD| < 2

⌈
n−1

2
⌉
,

then there are at least 4
⌊

n
2

⌋⌊
n−1

2
⌋

+ n +
⌊

n
2

⌋
+ 2 crossings in D.

Proof. Let T i be a subgraph from the nonempty set RD. It is easy to verify that the
subgraph F i = H∗ ∪ T i is represented by rotD(ti) = (14352) and each of the n − 1
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Fig. 4. Three possible non-isomorphic drawings of the graph H∗: (a) the planar
drawing of H∗ with a separating cycle C3; (b) the drawing of H∗ with crD(H∗) = 1
and all five vertices of H∗ are placed in one region; (c) the drawing of H∗ with

crD(H∗) = 3 and all five vertices of H∗ are placed in one region

remaining subgraphs T j crosses its edges at least four times over all possible regions
of D(H∗ ∪ T i). Thus, by fixing the subgraph H∗ ∪ T i, we have

crD(H∗ + Pn) ≥ crD(K5,n−1) + crD(K5,n−1, H∗ ∪ T i) + crD(H∗ ∪ T i)

≥ 4
⌊n − 1

2

⌋⌊n − 2
2

⌋
+ 4(n − 1) + 1

≥ 4
⌊n

2

⌋⌊n − 1
2

⌋
+ n +

⌊n

2

⌋
+ 2.

If the set RD is empty, let us assume |SD| < 2
⌈

n−1
2

⌉
. The edges of H∗ \ {v2v3} are

crossed once and at least twice by any subgraph T j ∈ SD and T j ̸∈ SD, respectively.
So

crD

(
H∗ \ {v2v3},

n⋃

j=1
T j

)
≥ |SD| + 2(n − |SD|)

= 2n − |SD| > 2n − 2
⌈n − 1

2

⌉
= 2

⌈n

2

⌉
,

which yields that three edges v1v2, v2v4, v2v5 or v1v3, v3v4, v3v5 are crossed more
than

⌈
n
2

⌉
times by all n subgraphs T j . In the rest of the paper, based on their

symmetry, let there be at least
⌈

n
2

⌉
+ 1 crossings on the edges v1v2, v2v4, and v2v5

over all subgraphs T j . By removing them from the graph H∗, we obtain a subgraph
isomorphic to the complete bipartite graph K1,4. The exact value for the crossing
number of K1,4 + Pn is given by Staš [30], that is, cr(K1,4 + Pn) = 4

⌊
n
2

⌋⌊
n−1

2
⌋

+ 2
⌊

n
2

⌋
.

This enforces crD(H∗ + Pn) ≥ 4
⌊

n
2

⌋⌊
n−1

2
⌋

+ 2
⌊

n
2

⌋
+

⌈
n
2

⌉
+ 1 + 1 because the edge v2v4

is also crossed in D(H∗).

In the proofs of the paper, several parts are based on the previous Lemma 3.1 and
on Theorem 3.3 presented in [29].

Theorem 3.3 ([29, Theorem 1]). cr(H∗ + Dn) = 4
⌊

n
2

⌋⌊
n−1

2
⌋

+ n +
⌊

n
2

⌋
for n ≥ 1.
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In the following, we are able to compute the exact values of crossing numbers of the
join products of the graph H∗ with both paths P2 and P3 using the algorithm located
on the website http://crossings.uos.de/. This algorithm can find the crossing
numbers of small undirected graphs. It uses an ILP formulation, based on Kuratowski
subgraphs, and solves it via branch-and-cut-and-price. The system also generates
verifiable formal proofs, as described by Chimani and Wiedera [5]. Unfortunately,
the capacity of this system is restricted.
Lemma 3.4. cr(H∗ + P2) = 5 and cr(H∗ + P3) = 10.
Theorem 3.5. cr(H∗ + Pn) = 4

⌊
n
2

⌋⌊
n−1

2
⌋

+ n +
⌊

n
2

⌋
+ 2 for n ≥ 2.

Proof. In Figure 5, the edges of K5,n cross each other 4⌊ n
2 ⌋⌊ n−1

2 ⌋ times, each sub-
graph T i, i = 1, . . . , ⌈ n

2 ⌉ on the left side crosses edges of the graph H∗ once and each
subgraph T i, i = ⌈ n

2 ⌉+1, . . . , n on the right side crosses edges of H∗ exactly twice. The
path P ∗

n crosses H∗ twice, and so 4
⌊

n
2

⌋⌊
n−1

2
⌋
+n+

⌊
n
2

⌋
+2 crossings appear among edges

of the graph H∗ + Pn in this drawing. Thus, cr(H∗ + Pn) ≤ 4
⌊

n
2

⌋⌊
n−1

2
⌋

+ n +
⌊

n
2

⌋
+ 2.

v
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v
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v
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Fig. 5. The good drawing of H∗ + Pn with 4
⌊

n
2

⌋⌊
n−1

2
⌋

+ n +
⌊

n
2

⌋
+ 2 crossings

By Lemma 3.4, the result is true for n = 2 and n = 3. To prove the reverse
inequality by induction on n, suppose now that there is a good drawing D of H∗ + Pn

with
crD(H∗ + Pn) ≤ 4

⌊n

2

⌋⌊n − 1
2

⌋
+ n +

⌊n

2

⌋
+ 1 for some n ≥ 4 (3.2)

and that

cr(H∗ + Pm) = 4
⌊m

2

⌋⌊m − 1
2

⌋
+ m +

⌊m

2

⌋
+ 2 for any integer m < n. (3.3)

We first show that the considered drawing D must be antipode-free. For this
purpose, let crD(T i, T j) = 0 hold for two different subgraphs T i and T j . If at least
one of T i and T j , say T i, does not cross H∗, it is not difficult to verify in Figure 4(b)
and (c) that T j must cross H∗ ∪ T i at least three times. Using positive lower bounds
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for the number of crossings of two configurations in [29] (they will also be listed in
Table 1), one can easily to verify that {T i, T j} ̸⊆ SD, that is, crD(H∗, T i ∪ T j) ≥ 3.
We already know using (1.1) that crD(K5,3) ≥ 4, which yields that edges of T i ∪ T j

are crossed by each other subgraph T k, k ̸= i, j at least four times. So, the number
of crossings in D satisfies

crD(H∗ + Pn) ≥ crD(H∗ + Pn−2) + crD(T i ∪ T j) + crD(H∗, T i ∪ T j)
+ crD(K5,n−2, T i ∪ T j)

≥ 4
⌊n − 2

2

⌋⌊n − 3
2

⌋
+ n − 2 +

⌊n − 2
2

⌋
+ 2

+ 0 + 3 + 4(n − 2)

= 4
⌊n

2

⌋⌊n − 1
2

⌋
+ n +

⌊n

2

⌋
+ 2.

The obtained contradiction with the assumption (3.2) does not allow the existence
of two antipodal vertices, that is, D is an antipode-free drawing. As H∗ + Dn is
a subgraph of H∗ + Pn, there are at least 4

⌊
n
2

⌋ ⌊
n−1

2
⌋

+ n +
⌊

n
2

⌋
crossings on edges of

H∗ + Pn due to Theorem 3.3. The vertices ti of the path P ∗
n must be placed at most

in two different regions of D(H∗) because at most one edge of P ∗
n can be crossed in

D. If we use the notation r = |RD| and s = |SD|, then crD(K5,n) ≥ 4
⌊

n
2

⌋⌊
n−1

2
⌋

again
by (1.1) together with (3.2) force the following relation with respect to edge crossings
of the subgraph H∗ in D:

crD(H∗) + 0r + 1s + 2(n − r − s) ≤ crD(H∗) + crD(H∗, K5,n) ≤ n +
⌊n

2

⌋
+ 1,

that is,
crD(H∗) + s + 2(n − r − s) ≤ n +

⌊n

2

⌋
+ 1. (3.4)

The mentioned inequality (3.4) subsequently enforces 2r + s + 1 ≥
⌈

n
2

⌉
+ crD(H∗).

Further, if crD(H∗) = 0 and r = 0, then s ≥
⌈

n
2

⌉
− 1. Now, we will deal with

possibilities of obtaining a subgraph T i ∈ RD ∪ SD in the drawing D and show that a
contradiction with the assumption (3.2) can be obtained in all cases.

Case 1. crD(H∗) = 0. In this case, we can only suppose the planar drawing of H∗

induced by D given in Figure 4(a). Because no face is incident to all five vertices of
H∗ in D(H∗), there is no possibility to obtain a subdrawing of H∗ ∪ T i for a T i ∈ RD,
that is, r = 0. By Lemma 3.1, the edges of P ∗

n do not cross any edge of the separating
cycle C3 = v1v3v5v1 in D. In the rest of the paper, let us also suppose that all vertices
tj of the path P ∗

n are placed in the outer region of the cycle v1v3v5v1. As the set
SD is nonempty using the inequality 3.4, all vertices tj of subgraphs T j ∈ SD must
be placed in the region of D(H∗) with four vertices v1, v4, v3, and v5 of H∗ on its
boundary. For T j ∈ SD, there is only one possible subdrawing of F j \ v2 represented
by the subrotation (1435), which yields that there are exactly two ways of obtaining
the subdrawing of H∗ ∪ T j depending on which of two edges v1v5 and v3v5 is crossed
by the edge tjv2. For both cases of T j ∈ SD described by either (14352) or (14325),
if all vertices of P ∗

n are placed in the same quadrangular region of D(H∗) then it is not
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difficult to verify in five considered regions of D(H∗ ∪ T j) that crD(H∗ ∪ T j , T k) ≥ 4
is fulfilling for each T k, k ̸= j. Thus, by fixing the subgraph H∗ ∪ T j , we have

crD(H∗ + Pn) ≥ crD(K5,n−1) + crD(K5,n−1, H∗ ∪ T j) + crD(H∗ ∪ T j)

≥ 4
⌊n − 1

2

⌋⌊n − 2
2

⌋
+ 4(n − 1) + 1

≥ 4
⌊n

2

⌋⌊n − 1
2

⌋
+ n +

⌊n

2

⌋
+ 2.

This also contradicts the assumption (3.2). It remains to consider the subcase with
an existence of some vertex of P ∗

n in the triangular region of D(H∗) with three vertices
v1, v3, and v4 of H∗ on its boundary. Since some edge of P ∗

n is crossed in D, there are
at least

⌈
n
2

⌉
subgraphs T j by which edges of H∗ are crossed just once again provided

by (3.4) in the form s + 2(n − r − s) ≤ n +
⌊

n
2

⌋
. Hence, by fixing the subgraph T j ,

we have

crD(H∗ + Pn) ≥ crD(H∗ + Pn−1) + crD(K5,n−1, T j) + crD(H∗, T j)

≥ 4
⌊n − 1

2

⌋⌊n − 2
2

⌋
+ n − 1 +

⌊n − 1
2

⌋
+ 2 + 3(s − 1) + 1(n − s) + 1

= 4
⌊n − 1

2

⌋⌊n − 2
2

⌋
+ 2n +

⌊n − 1
2

⌋
+ 2s − 1

≥ 4
⌊n − 1

2

⌋⌊n − 2
2

⌋
+ 2n +

⌊n − 1
2

⌋
+ 2

⌈n

2

⌉
− 1

≥ 4
⌊n

2

⌋⌊n − 1
2

⌋
+ n +

⌊n

2

⌋
+ 2,

where crD(T j , T k) ≥ 3 is also used for any T k ∈ SD, k ̸= j. Only one interchange
of the adjacent elements of (14352) produces the cyclic permutation (14325), and so
crD(T j , T k) ≥

⌊ 5
2
⌋⌊ 4

2
⌋

− 1 = 3. Note that two different subgraphs from SD with same
rotations produce at least four crossings on their edges.

Case 2. crD(H∗) = 1. Again using Lemma 3.1, we can consider only the drawing
of H∗ with the vertex notation in such a way as shown in Figure 4(b). As r = 0
and s ≥ 2

⌈
n−1

2
⌉

≥ 4 due to Lemma 3.2, there are at least four different subgraphs
T i by which edges of H∗ are crossed just once. Thus, we deal with four possible
configurations Ap of H∗ ∪ T i belonging to the nonempty set MD (they have been
already introduced in [29]) and depending on which of four edges of the graph H∗ can
be crossed by the edge tiv2 or tiv3. The lower bounds for number of crossings of two
configurations are presented in Table 1 (they were also established in Table 1 of [29]).

For s ≥ 4 and using the highest values in Table 1, there are at least two different
subgraphs T k, T l ∈ SD with crD(T k, T l) ≥ 4. Thus, by fixing such a considered
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Table 1
The minimum number of crossings between T i and T j such that conf(H∗ ∪ T i) = Ap

and conf(H∗ ∪ T j) = Aq.
A1 A2 A3 A4

A1 4 2 2 2
A2 2 4 2 2
A3 2 2 4 4
A4 2 2 4 4

subgraph T k, we have

crD(H∗ + Pn) ≥ crD(H∗ + Pn−1) + crD(K5,n−1, T k) + crD(H∗, T k)

≥ 4
⌊n − 1

2

⌋⌊n − 2
2

⌋
+ n − 1 +

⌊n − 1
2

⌋

+ 2 + 2(s − 2) + 4 + 1(n − s) + 1

= 4
⌊n − 1

2

⌋⌊n − 2
2

⌋
+ 2n +

⌊n − 1
2

⌋
+ s + 2

≥ 4
⌊n − 1

2

⌋⌊n − 2
2

⌋
+ 2n +

⌊n − 1
2

⌋
+ 2

⌈n − 1
2

⌉
+ 2

≥ 4
⌊n

2

⌋⌊n − 1
2

⌋
+ n +

⌊n

2

⌋
+ 2.

This also confirms a contradiction with the assumption (3.2) in D.
Case 3. crD(H∗) ≥ 2. Based on assumptions of Lemma 3.1, let us consider the

nonplanar subdrawing of H∗ induced by D given in Figure 4(c). For r ≥ 1, the proof
can proceed in the same way as in Lemma 3.2. For r = 0 and s ≥

⌈
n
2

⌉
+ 2 ≥ 4, all

vertices ti of subgraphs T i ∈ SD are placed in the region of D(H∗) with all five vertices
of H∗ on its boundary. We have only two ways to obtain a subdrawing of H∗ ∪ T i

depending on which of two edges of the graph H∗ can be crossed by the edge tiv3 or
tiv4. For both these subdrawings, we can also easily verify in ten possible regions of
D(H∗ ∪ T i) that crD(H∗ ∪ T i, T j) ≥ 4 holds for each other subgraph T j , j ̸= i. Hence,
all these mentioned subcases again contradict (3.2) in D.

We have shown that there is no good drawing D of H∗ + Pn with fewer than
4
⌊

n
2

⌋⌊
n−1

2
⌋

+ n +
⌊

n
2

⌋
+ 2 crossings, and proof of Theorem 3.5 is done.

4. THE CROSSING NUMBERS OF G∗ + Cn AND H∗ + Cn

Let t1, t2, . . . , tn, t1 be the vertex notation of the n-cycle Cn for n ≥ 3. The join
product G∗ + Cn consists of one copy of the graph G∗, one copy of the cycle Cn, and
the edges joining each vertex of G∗ with each vertex of Cn. Let C∗

n denote the cycle as
a subgraph of G∗ +Cn induced on the vertices of Cn not belonging to the subgraph G∗.
The subdrawing D(C∗

n) induced by any good drawing D of G∗ + Cn represents some
drawing of Cn. For the vertices v1, v2, . . . , v5 of the graph G∗, let T vi denote the
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subgraph induced by n edges joining the vertex vi with n vertices of C∗
n. The edges

joining the vertices of G∗ with the vertices of C∗
n form the complete bipartite graph

K5,n, and so

G∗ + Cn = G∗ ∪
( 5⋃

i=1
T vi

)
∪ C∗

n. (4.1)

In the proofs of both main theorems of this section, the following three statements
related to some restricted subdrawings of G + Cn will be also required.

Lemma 4.1 ([15, Lemma 2.2]). For m ≥ 2 and n ≥ 3, let D be a good drawing
of Dm + Cn in which no edge of C∗

n is crossed, and C∗
n does not separate the other

vertices of the graph. Then, for all i, j = 1, 2, . . . , m, two different subgraphs T vi and
T vj cross each other in D at least

⌊
n
2

⌋⌊
n−1

2
⌋

times.

Corollary 4.2 ([24, Corollary 4]). For m ≥ 2 and n ≥ 3, let D be a good drawing
of the join product Dm + Cn in which the edges of C∗

n do not cross each other and
C∗

n does not separate p vertices v1, v2, . . . , vp, 2 ≤ p ≤ m. Let T v1 , T v2 , . . . , T vq , q < p,
be the subgraphs induced on the edges incident with the vertices v1, v2, . . . , vq that do
not cross C∗

n. If k edges of some subgraph T vj induced on the edges incident with the
vertex vj, j ∈ {q + 1, q + 2, . . . , p}, cross the cycle C∗

n, then the subgraph T vj crosses
each of the subgraphs T v1 , T v2 , . . . , T vq at least

⌊
n−k

2
⌋⌊ (n−k)−1

2
⌋

times in D.

Lemma 4.3 ([24, Lemma 1]). For m ≥ 1, let G be a graph of order m. In an optimal
drawing of the join product G + Cn, n ≥ 3, the edges of C∗

n do not cross each other.

Again, using the algorithm on the website http://crossings.uos.de/, we can also
determine the crossing numbers of two small graphs G∗ +C3 and G∗ +C4 in Lemma 4.4.

Lemma 4.4. cr(G∗ + C3) = 7 and cr(G∗ + C4) = 14.

Theorem 4.5. cr(G∗ + Cn) = 4
⌊

n
2

⌋⌊
n−1

2
⌋

+ 2
⌊

n
2

⌋
+ 2 for n ≥ 4.

Proof. By Lemma 4.4, the result holds for n = 4. Into both drawings in Figures 2
and 3, it is possible to add the edge t1tn which forms the cycle C∗

n on vertices of P ∗
n

with just two additional crossings, i.e., C∗
n is crossed by two edges v1v2 and v2v3 of the

graph G∗. Thus, cr(G∗ + Cn) ≤ 4
⌊

n
2

⌋⌊
n−1

2
⌋

+ 2
⌊

n
2

⌋
+ 2, and let suppose that there is

a good drawing D of G∗ + Cn such that

crD(G∗ + Cn) ≤ 4
⌊n

2

⌋⌊n − 1
2

⌋
+ 2

⌊n

2

⌋
+ 1 for some n ≥ 5. (4.2)

By Theorem 2.1, at most one edge of the cycle C∗
n can be crossed in D, and so

edges of C∗
n do not cross each other also by Lemma 4.3. The subdrawing of C∗

n induced
by D divides the plane into two regions with at least four vertices of G∗ in one of
them, and so two possible cases may occur:

Case 1. There is no crossing on edges of C∗
n. Since at least four vertices of G∗ are

placed in one region of D(C∗
n), any two such different considered subgraphs T vi and

T vj cross each other at least
⌊

n
2

⌋⌊
n−1

2
⌋

times by Lemma 4.1. Hence, there are at least
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(4
2
)⌊

n
2

⌋⌊
n−1

2
⌋

≥ 4
⌊

n
2

⌋⌊
n−1

2
⌋

+ 2
⌊

n
2

⌋
+ 2 crossings in D which confirms a contradiction

with the assumption (4.2).
Case 2. There is exactly one crossing on edges of C∗

n, which yields that at least
four vertices of G∗ are placed in one region of D(C∗

n). The graph G∗ with no bridge
cannot force only one crossing on edges of C∗

n. If crD(T v5 , C∗
n) = 1, the same idea as

in Case 1 also contradicts the assumption (4.2). Now, assume crD(T vi , C∗
n) = 1 for

only one i ∈ {1, 2, 3, 4}. For easier reading, let r = |RD|. This, by Lemma 4.1 and
Corollary 4.2 for p = 4, q = 3 and k = 1, enforces at least

(
3
2

)⌊n

2

⌋⌊n − 1
2

⌋
+ 3

⌊n − 1
2

⌋⌊n − 2
2

⌋
+ 1 + 1 + n − r (4.3)

crossings in D, because crD(T vi , T v5) ≥ 1 and crD(G∗, T j) ≥ 1 for any subgraph
T j ̸∈ RD. The number of crossings obtained in (4.3) can confirm a contradiction
in D for all n ≥ 6 or r ≤ 3. In the next, we assume that n = 5 and r = 5.
Klešč et al. [25] proved that if two different subgraphs T i and T j do not cross G∗ in D,
then T i and T j cross each other at least twice. In Table 2, there are all necessary
numbers of crossings between two subgraphs T i and T j with configurations Xk and
Xl of the subgraphs F i = G∗ ∪ T i and F j = G∗ ∪ T j , respectively.

Table 2
The minimum number of crossings between T i and T j such that conf(F i) = Xk

and conf(F j) = Xl, where X = A for the planar subdrawing of G∗ in Figure 1(a) and
X = B for the nonplanar subdrawing of G∗ in Figure 1(c) induced by D, respectively.

X1 X2 X3 X4
X1 4 2 3 3
X2 2 4 3 3
X3 3 3 4 2
X4 3 3 2 4

At least two different subgraphs F i and F j have the same configuration Xk with
crD(T i, T j) ≥ 4, and therefore we obtain at least

(5
2
)
2 + 2 = 22 crossings in D, which

yields a contradiction with (4.2). Finally, let n = 5 and r = 4. In the rest of the paper,
let edges of G∗ be crossed by the subgraph T 5. Moreover, T 5 must cross edges of G∗

just once, otherwise, we receive 2 crossings instead of n − r in (4.3). In this case, we
have at least 16 crossings on edges of

⋃4
i=1 T i again using minimal values in Table 2,

at least 4 crossings between
⋃4

i=1 T i and T 5 due to at most three vertices of G∗ on
boundary in all regions of D(F i), one crossing on edges of C∗

n, and one crossing offers
T 5 ∈ SD on edges of G∗. So, we obtain also at least 22 crossings contradicting the
assumption (4.2).

We have shown that there is no good drawing D of the graph G∗ + Cn with fewer
than 4

⌊
n
2

⌋⌊
n−1

2
⌋

+ 2
⌊

n
2

⌋
+ 2 crossings, and this completes the proof.

Now, let us turn to the crossing numbers of H∗ + Cn. Given the use of arguments
similar to those in the first part of the proof of Lemma 3.2, the proofs of Lemmas 4.6
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and 4.7 can be omitted if crD(H∗) + crD(H∗ + Dn, C∗
n) ≥ 3 is fulfilling in a good

drawing D of H∗ + Cn with the nonempty set RD.
Lemma 4.6. For n ≥ 5, let D be a good drawing of H∗ + Cn with the subdrawing
of H∗ induced by D given in Figure 4(b). If |RD| ≥ 1 with at least two crossings on
edges of the cycle C∗

n, then there are at least 4
⌊

n
2

⌋⌊
n−1

2
⌋

+ n +
⌊

n
2

⌋
+ 4 crossings in D.

Lemma 4.7. For n ≥ 3, let D be a good drawing of H∗ + Cn with the subdrawing of
H∗ induced by D given in Figure 4(c). If |RD| ≥ 1, then there are at least 4

⌊
n
2

⌋⌊
n−1

2
⌋

+
n +

⌊
n
2

⌋
+ 4 crossings in D.

Note that the set RD must be empty if there is a separating cycle C3 of H∗ in the
subdrawing D(H∗) induced by some drawing D of H∗ + Cn. The crossing numbers of
H∗ + C3 and H∗ + C4 in Lemma 4.8 are also given using the algorithm on the website
http://crossings.uos.de/.
Lemma 4.8. cr(H∗ + C3) = 12 and cr(H∗ + C4) = 18.
Theorem 4.9. cr(H∗ + Cn) = 4

⌊
n
2

⌋⌊
n−1

2
⌋

+ n +
⌊

n
2

⌋
+ 4 for n ≥ 3.

Proof. By Lemma 4.8, the result is true for n = 3 and n = 4. In the following, let
n ≥ 5. Into the drawing in Figure 5, it is possible to add the edge t1tn which forms the
cycle C∗

n on vertices of P ∗
n with just two additional crossings, i.e., C∗

n is crossed by two
edges v1v3 and v3v4 of the graph G∗. Thus, cr(H∗ + Cn) ≤ 4

⌊
n
2

⌋⌊
n−1

2
⌋

+ n +
⌊

n
2

⌋
+ 4,

and let suppose that there is a good drawing D of H∗ + Cn such that

crD(H∗ + Cn) ≤ 4
⌊n

2

⌋⌊n − 1
2

⌋
+ n +

⌊n

2

⌋
+ 3 for some n ≥ 5. (4.4)

By Theorem 3.3, at most three edges of the cycle C∗
n can be crossed in D, and

we can also suppose that edges of C∗
n do not cross each other using Lemma 4.3. The

subdrawing of C∗
n induced by D divides the plane into two regions with at least four

vertices of H∗ in one of them, and so four possible cases may occur:
Case 1. There is no crossing on edges of C∗

n, that is, all vertices of H∗ are placed
in one region of D(C∗

n). For i, j ∈ {1, 2, 3, 4, 5}, any two different considered subgraphs
T vi and T vj cross each other at least

⌊
n
2

⌋⌊
n−1

2
⌋

times by Lemma 4.1. Hence, there
are at least

(5
2
)⌊

n
2

⌋⌊
n−1

2
⌋

≥ 4
⌊

n
2

⌋⌊
n−1

2
⌋

+ n +
⌊

n
2

⌋
+ 4 crossings in D which confirms

a contradiction with the assumption (4.4).
Case 2. There is exactly one crossing on edges of C∗

n. All five vertices of the
graph H∗ must be placed in one region of D(C∗

n) because H∗ contains no bridge.
This enforces that there is exactly one vertex vi, i ∈ {1, 2, 3, 4, 5}, such that
crD(T vi , C∗

n) = 1. By Lemma 4.1, Corollary 4.2 for p = 5, q = 4 and k = 1, we
have at least

(4
2
)⌊

n
2

⌋⌊
n−1

2
⌋

+ 4
⌊

n−1
2

⌋⌊
n−2

2
⌋

crossings in D, but the obtained number
of crossings also contradicts (4.4) in D.

In the following, the edges of C∗
n are crossed at least twice in D. Let us first

show that RD = ∅ in the considered drawing D. If the subdrawing D(H∗) contains
a separating cycle C3, then there is no possibility to obtain a subdrawing of H∗ ∪T i for
any T i ∈ RD. Lemma 4.6 or 4.7 contradicts the assumption (4.4) for the subdrawing
of H∗ in D given in Figure 4(b) or (c) if |RD| ≥ 1, respectively. Now, we can assume



The crossing numbers of join products of four graphs of order five. . . 879

that there are at least n crossings between H∗ and
⋃n

i=1 T i, because crD(H∗, T i) ≥ 1
for all i = 1, 2, . . . , n.

Case 3. There are two crossings on edges of C∗
n. We discuss three subcases:

(a) Let crD(H∗, C∗
n) = 2 and C∗

n be crossed twice by only one edge of the graph
H∗. All vertices of H∗ are placed in one region of D(C∗

n) and the same idea as in
Case 1 contradicts the assumption (4.4).

(b) Let either crD(H∗, C∗
n) = 2 and C∗

n be crossed by two different edges of the
graph H∗ or crD(T vi , C∗

n) = 2 for only one vi, i ∈ {1, 2, 3, 4, 5}. Since at least four
vertices of H∗ are placed in one region of D(C∗

n), we have at least
(4

2
)⌊

n
2

⌋⌊
n−1

2
⌋

+ n ≥
4
⌊

n
2

⌋⌊
n−1

2
⌋

+ n +
⌊

n
2

⌋
+ 4 crossings in D according to Lemma 4.1 and RD = ∅.

(c) Let crD(T vi , C∗
n) = 1 and crD(T vj , C∗

n) = 1 for two different subgraphs T vi ,
T vj , where i, j ∈ {1, 2, 3, 4, 5}. Again all five vertices of H∗ are placed in one region
of D(C∗

n). By Lemma 4.1, Corollary 4.2 for p = 5, q = 3 and k = 1, and RD = ∅, we
obtain at least

(3
2
)⌊

n
2

⌋⌊
n−1

2
⌋
+(3+3)

⌊
n−1

2
⌋⌊

n−2
2

⌋
+n crossings contradicting (4.4) in D.

Case 4. There are three crossings on edges of C∗
n. We discuss five following subcases:

(a) Let crD(H∗, C∗
n) = 2 and C∗

n be crossed twice by only one edge of the graph H∗,
and let also there be exactly one T vi , i ∈ {1, 2, 3, 4, 5}, such that crD(T vi , C∗

n) = 1.
All vertices of H∗ are placed in one region of D(C∗

n) and the same idea as in Case 2
contradicts the assumption (4.4).

(b) Let crD(H∗, C∗
n) = 2 and C∗

n be crossed by two different edges of the graph H∗,
and let also there be exactly one T vi , i ∈ {1, 2, 3, 4, 5}, with crD(T vi , C∗

n) = 1.
Four vertices of H∗ are placed in one region and one vertex, say v5, is placed in
other region of D(C∗

n). If crD(C∗
n, T v5) = 1, then the same idea as in Case 3(b)

again confirms a contradiction with (4.4). If crD(C∗
n, T vi) = 1 for i ̸= 5, then there

are at least
(3

2
)⌊

n
2

⌋⌊
n−1

2
⌋

+ 3
⌊

n−1
2

⌋⌊
n−2

2
⌋

+ n + 3 + 1 crossings in D provided by
Lemma 4.1, Corollary 4.2 for p = 4, q = 3 and k = 1, and RD = ∅, also due to three
crossings on edges of C∗

n and crD(T vi , T v5) ≥ 1. The obtained number of crossings
also contradicts (4.4) in D.

(c) Let crD(T vi , C∗
n) = 3 for only one T vi , i ∈ {1, 2, 3, 4, 5}. All vertices of H∗ are

placed in one region of D(C∗
n) and the similar idea as in Case 3(b) contradicts the

assumption (4.4).
(d) Let crD(T vi , C∗

n) = 1 and crD(T vj , C∗
n) = 2 for two distinct i, j ∈ {1, 2, 3, 4, 5}.

By Lemma 4.1, Corollary 4.2 for p = 5, q = 3 and k = 1, k = 2, and RD = ∅, we have
at least

(3
2
)⌊

n
2

⌋⌊
n−1

2
⌋

+ 3
⌊

n−1
2

⌋⌊
n−2

2
⌋

+ 3
⌊

n−2
2

⌋⌊
n−3

2
⌋

+ n crossings contradicting (4.4)
in D provided by again all five vertices of H∗ are placed in one region of D(C∗

n).
(e) Let crD(T vi , C∗

n) = 1, crD(T vj , C∗
n) = 1, and crD(T vl , C∗

n) = 1 for three
distinct i, j, l ∈ {1, 2, 3, 4, 5}. For such a index pair i, j, the subgraph T vi ∪ T vj ∪ C∗

n

is isomorphic to the graph D2 + Cn. Consider n − 2 vertices of the cycle C∗
n incident

with edges of T vi and T vj which do not cross C∗
n. Let us delete all edges of T vi

and T vj which are not incident with these n − 2 vertices. The resulting subgraph
is homeomorphic to the graph D2 + Cn−2 and, in its subdrawing D

′ induced by D,
we obtain crD′(T vi , T vj ) ≥

⌊
n−2

2
⌋⌊

n−3
2

⌋
thanks to Lemma 4.1. Clearly, the same

holds for both remaining index pairs i, l and j, l. Thus, we have at least⌊
n
2

⌋⌊
n−1

2
⌋

+ (2 + 2 + 2)
⌊

n−1
2

⌋⌊
n−2

2
⌋

+ 3
⌊

n−2
2

⌋⌊
n−3

2
⌋

+ n + 3 crossings in D again
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using Lemma 4.1, Corollary 4.2 for p = 5, q = 2 and k = 1, and RD = ∅, also due to
three crossings on edges of C∗

n.
We have shown, in all cases, that there is no good drawing D of the graph H∗ + Cn

with fewer than 4
⌊

n
2

⌋⌊
n−1

2
⌋

+ n +
⌊

n
2

⌋
+ 4 crossings.

5. SOME CONSEQUENCES OF THE MAIN RESULTS

In Figure 6, let G1 be the graph obtained from G∗ by adding the edge v2v5 into the
drawing in Figure 1(a). Since we can add this edge to the graph G∗ without additional
crossings in Figures 2 and 3, the drawing of G1 + Pn with 4

⌊
n
2

⌋⌊
n−1

2
⌋

+ 2
⌊

n
2

⌋
crossings

is obtained. By adding the considered edge v2v5, it is also possible to add the edge
t1tn that creates C∗

n on vertices of P ∗
n with just two additional crossings. The same

holds for the graph H1 if we add the edge v2v5 into the drawing in Figure 4(a), and
therefore, the next results are obvious.

H
1

G
1

v
4

v
5

v
3

v
1

v
2 v

2

v
5

v
1

v
3

v
4

Fig. 6. Two graphs G1 and H1 by adding one edge to the graphs G∗ and H∗

Corollary 5.1. cr(G1 + Pn) = 4
⌊

n
2

⌋⌊
n−1

2
⌋

+ 2
⌊

n
2

⌋
for n ≥ 2.

Corollary 5.2. cr(G1 + Cn) = 4
⌊

n
2

⌋⌊
n−1

2
⌋

+ 2
⌊

n
2

⌋
+ 2 for n ≥ 3.

Note that cr(G1 + C3) = 8 is one more than cr(G∗ + C3) = 7 which is caused by
adding the edge v2v5 in Figure 3. Of course, such a result is confirmed again using the
algorithm on the website http://crossings.uos.de/.

Corollary 5.3. cr(H1 + Pn) = 4
⌊

n
2

⌋⌊
n−1

2
⌋

+ n +
⌊

n
2

⌋
+ 2 for n ≥ 2.

Corollary 5.4. cr(H1 + Cn) = 4
⌊

n
2

⌋⌊
n−1

2
⌋

+ n +
⌊

n
2

⌋
+ 4 for n ≥ 3.

6. CONCLUSIONS

We suppose that similar forms of discussions can be used to estimate unknown values
of the crossing numbers of two remaining connected graphs of order five with a much
larger number of edges in join products with paths and cycles on n vertices. Especially
for the complete graph K5 and the graph K5\e obtained by removing one edge from K5.
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