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1. INTRODUCTION

Let Ω ⊂ RN (N ≥ 2) be a bounded domain with smooth boundary ∂Ω. Given
pi ∈ C1(Ω), 1 < p−

i ≤ p+
i < N with
p−
i = inf

x∈Ω
pi(x) and p+

i = sup
x∈Ω

pi(x),

we deal with the following quasilinear elliptic system{
−∆pi(x)ui = fi(x, u1, u2,∇u1,∇u2) in Ω,
ui > 0 in Ω, ui = 0 on ∂Ω, i = 1, 2,

(1.1)

where −∆pi(x) stands for the pi(x)-Laplacian differential operator defined by

−∆pi(x)ui = −div(|∇ui|pi(x)−2∇ui), for ui ∈ W
1,pi(x)
0 (Ω).

The nonlinear terms f1(x, u1, u2,∇u1,∇u2) and f2(x, u1, u2,∇u1,∇u2) which
are often expressed as dealing with convection terms, are of Carathéodory
type. Namely, for every (s1, s2, ξ1, ξ2) ∈ (R⋆+)2 ×R2N , we assume that fi(·, s1, s2, ξ1, ξ2)
is Lebesgue measurable in Ω, and, for a.e. x ∈ Ω, fi(x, ·, ·, ·, ·) is continuous
in (R⋆+)2 × R2N . A solution of (1.1) is understood in the weak sense, that is, a pair
(u1, u2) ∈ W

1,p1(x)
0 (Ω) ×W

1,p2(x)
0 (Ω) satisfying∫

Ω

|∇ui|pi(x)−2∇ui∇φi dx =
∫

Ω

fi(x, u1, u2,∇u1,∇u2)φi dx, (1.2)

for all φi ∈ W
1,pi(x)
0 (Ω).
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Our main purpose is to establish the existence and regularity of solutions for
quasilinear singular convective system (1.1) satisfying the assumption:

(Hf ) There exist constants Mi,mi > 0, and functions αi, βi, γi, γ̄i ∈ C(Ω), such that

mis
αi(x)
1 s

βi(x)
2 ≤ fi(x, s1, s2, ξ1, ξ2) ≤ Mi(sαi(x)

1 s
βi(x)
2 + |ξ1|γi(x) + |ξ2|γ̄i(x)),

for a.e. x ∈ Ω, for all s1, s2 > 0 and all ξ1, ξ2 ∈ RN , i = 1, 2.

The dependence of the right hand side terms on the solution and its gradient
deprives system (1.1) of a variational structure. Thereby variational methods are not
applicable. Moreover, due to the presence of convection terms, even the so called
topological methods as sub-supersolutions and fixed points technique cannot be
directly implemented. Another important feature in studying problem (1.1) is that the
nonlinearities can exhibit singularities when the variables u1 and u2 approach zero.
This occur through the following condition

(Hα,β,γ)
|α∓
i | + |β∓

i | < p−
i − 1,

and
0 ≤ min{γ−

i , γ̄
−
i } ≤ max{γ+

i , γ̄
+
i } < p−

i − 1,

where

α∓
i :=

{
α−
i if αi(·) > 0,
α+
i if αi(·) < 0,

β∓
i :=

{
β−
i if βi(·) > 0,
β+
i if βi(·) < 0,

i = 1, 2.

Precisely, singularities appear in system whenever one of the exponents at least is
negative, that is, min{α1, α2, β1, β2} < 0. This represents a major hurdle to overcome.
This difficulty is heightened by the very emphasized singularity character of (1.1)
that stems from (Hα,β,γ) when α∓

i + β∓
i < 0. In this case, hypothesis (Hα,β,γ) is

strengthened by assuming

Hα,β,γ If α∓
i + β∓

i < 0, we have

∣∣α∓
i

∣∣ +
∣∣β∓
i

∣∣ ≤ 1
Np′+

i

,

and

0 ≤ γi(x) ≤ p1(x)
Np′

i(x) and 0 ≤ γi(x) ≤ p2(x)
Np′

i(x) , for x ∈ Ω.

Quasilinear convective system (1.1) has been rarely investigated in the literature.
Actually, according to our knowledge, [21] is the only paper that has addressed this issue
in the regular case, that is when all exponents are positive. Existence result is obtained
applying the recent topological degree of Berkovits. The virtually non-existent works
devoted to the singular case of convective systems is partly due to the involvement
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of the pi(x)-Laplacian operator. This fact results in the lack of properties such as
homogeneity making it highly challenging task to establish a control on solutions and
especially on their gradient. When pi(x) is reduced to be a constant, −∆pi(x) becomes
the well-known pi-Laplacian operator. In this respect, by relying on the a priori
gradient estimate in [6,8], the existence of solutions for singular convective systems
have been investigated in [7, 9]. Still in the context of constant exponents, for singular
system (1.1) defined in whole space RN we quote [16] while for the case of Neumann
boundary condition we refer to [15]. We also mention [2] focusing on a singular system
of type (1.1) corresponding to the semilinear case, that is when pi(x) = 2 (i = 1, 2).

When convection terms are canceled, singular system (1.1) was recently examined
in [1, 3]. In this context, depending on the sign of αi(·) and βi(·), two complementary
structures for the system (1.1) appear: cooperative and competitive structure (see [1]).
Here, the important structural disparity of the latter makes nonlinearities f1 and f2
(without gradient terms) behaving in a drastically different way. This fact has led
in [3] to consider only the cooperative system involving logarithmic growth while in [1],
a separate study corresponding to each structure is required. We emphasize that in
the present work, neither cooperative nor competitive structure on the system (1.1)
is imposed. In fact, these both complementary structures for the system (1.1) are
handled simultaneously without referring to them.

Our main result is stated as follows.

Theorem 1.1. Assume (Hf ) holds. Then:

(i) under assumption (Hα,β,γ) with α∓
i +β∓

i > 0, system (1.1) has a bounded (positive)
solution (u1, u2) in C1,τ

0 (Ω) × C1,τ
0 (Ω), for certain τ ∈ (0, 1), satisfying

ui(x) ≥ c0d(x), for a constant c0 > 0, i = 1, 2, (1.3)

(ii) under assumption (H̃α,β,γ), system (1.1) admits a (positive) solution (u1, u2)
in (W 1,p1(x)

0 (Ω) ∩ L∞(Ω)) × (W 1,p2(x)
0 (Ω) ∩ L∞(Ω)) satisfying (1.3).

Our approach is chiefly based on Schauder’s fixed point theorem. In this respect,
comparison arguments as well as a priori estimates are crucial to get the appropriate
localization of the desired fixed point which is actually solution of (1.1). This is
achieved through a control on solutions and their gradient which in itself represents
a significant feature of our result. At this point, the choice of suitable functions with
an adjustment of adequate constants is crucial. However, this would not be enough
without making use of the new Mean Value Theorem (cf. Theorem 6.1 in Appendix)
that is decisive to offset the lack of homogeneity property and to deal with the variable
exponents attendance. It should be noted that the Mean Value Theorem is a key
ingredient in getting the gradient estimate thus generalizing that corresponding to the
case of constant exponents problems stated in [6, 8].

The rest of the paper is organized as follows. Sections 2 and 3 establish gra-
dient estimates and a priori bounds. Section 4 deals with comparison properties.
Section 5 presents the proof of the main result while Section 6 contains the new Mean
Value Theorem.
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2. A PRIORI ESTIMATES

Let Lp(x)(Ω) be the generalized Lebesgue space that consists of all measurable
real-valued functions u satisfying

ρp(x)(u) =
∫

Ω

|u(x)|p(x)dx < +∞,

endowed with the Luxemburg norm

∥u∥p(x) = inf
{
τ > 0 : ρp(x)

(u
τ

)
≤ 1

}
.

Recall for any u ∈ Lp(x)(Ω) it holds
{

∥u∥p
−

p(x) ≤ ρp(x)(u) ≤ ∥u∥p
+

p(x) if ∥u∥p(x) > 1,
∥u∥p

+

p(x) ≤ ρp(x)(u) ≤ ∥u∥p
−

p(x) if ∥u∥p(x) ≤ 1,
(2.1)

and
∥u∥p(x) = a if and only if ρp(x)

(u
a

)
= 1. (2.2)

The variable exponent Sobolev space W 1,p(·)(Ω), defined by

W 1,p(x)(Ω) = {u ∈ Lp(x)(Ω) : |∇u| ∈ Lp(x)(Ω)},
is endowed with the norm ∥u∥1,p(x) = ∥∇u∥p(x) which makes it a Banach space.
The interested reader may consult [13,18] for more details on Orlicz–Sobolev spaces.
In the sequel, d(x) := d(x, ∂Ω) denotes the euclidean distance of x with respect to the
boundary ∂Ω.

The next lemma is a slight modification of [21, Lemma 5.1] which will be useful
later on.
Lemma 2.1. Let k,m ∈ L∞(Ω) be two real and positive functions with m− > 0.
If u ∈ Lk(x) (Ω) then um(x) ∈ L

k(x)
m(x) (Ω), and there exists x0 ∈ Ω such that

∥∥|u|m(x)∥∥
k(x)
m(x)

= ∥u∥m(x0)
k(x) .

Proof. On account of (2.2), the Mean Value Theorem [4, Theorem 5] ensures the
existence of x0 ∈ Ω such that

1 = ρ k(x)
m(x)


 |u|m(x)

∥∥|u|m(x)
∥∥

k(x)
m(x)


 =

∫

Ω

∣∣∣∣
u

∥u∥k(x)

∣∣∣∣
k(x) ∥u∥k(x)

k(x)
∥∥|u1|m(x)

∥∥
k(x)
m(x)
k(x)
m(x)

dx

=
∥u∥k(x0)

k(x)
∥∥|u1|m(x)

∥∥
k(x0)
m(x0)
k(x)
m(x)

ρk(x)

(
u

∥u∥k(x)

)
=

∥u∥k(x0)
k(x)

∥∥|u|m(x)
∥∥

k(x0)
m(x0)
k(x)
m(x)

,

showing the desired identity.
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A priori gradient estimate is provided in the next lemma. It is a partial extension
of [6, Lemma 1] to problems involving variable exponents.
Lemma 2.2. Let h ∈ L∞(Ω) be a nontrivial sign-constant function and let
u ∈ W

1,p(x)
0 (Ω) be the weak solution of the Dirichlet problem

−∆p(x)u = h(x) in Ω, u = 0 on ∂Ω. (2.3)

Then, there exists a constant k̄p > 0, depending only on p, N , and Ω, such that

∥∇u∥∞ ≤ k̄p∥h∥
1

p±−1
∞ (2.4)

with

p± :=
{
p− if ∥h∥∞ > 1,
p+ if ∥h∥∞ ≤ 1.

Proof. First, assume that ∥h∥∞ ≤ 1. Multiplying (2.3) by φ ∈ W
1,p(·)
0 (Ω), with φ ≥ 0,

and integrating over Ω we obtain
∫

Ω

|∇u|p(x)−2∇u∇φ dx =
∫

Ω

h(x)φ dx ≤
∫

Ω

φ dx =
∫

Ω

|∇ξ|p(x)−2∇ξ∇φ dx,

where ξ(x) is the p(x)-torsion function defined by

−∆p(x)ξ = 1 in Ω, ξ = 0 on ∂Ω.

The weak comparison principle implies ∥u∥∞ ≤ ∥ξ∥∞ while the regularity theorem
in [12] ensures the existence of constants τ ∈ (0, 1) and k̄p > 0 such that
∥u∥C1,τ (Ω) ≤ k̄p.

Now we deal with the case ∥h∥∞ > 1. By Theorem 6.1 in the Appendix, there
exists x0 ∈ Ω such that

∫

Ω

|∇(∥h∥
−1

p−−1
∞ u)|p(x)−2∇(∥h∥

−1
p−−1
∞ u)∇φ dx

=
∫

Ω

∥h∥
−(p(x)−1)

p−−1
∞ |∇u|p(x)−2∇u∇φ dx

= ∥h∥
−(p(x0)−1)

p−−1
∞

∫

Ω

|∇u|p(x)−2∇u∇φ dx = ∥h∥
−(p(x0)−1)

p−−1
∞

∫

Ω

h(x)φ dx

≤ ∥h∥
−(p−−1)

p−−1
∞

∫

Ω

h(x)φ dx =
∫

Ω

∥h∥−1
∞ h(x)φ dx ≤

∫

Ω

φ dx.

Thus, in view of the previous argument, it follows that

∥h∥
−1

p−−1
∞ |u|1,α ≤ k̄p,

showing that (2.4) holds true. This ends the proof.
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The case when h in (2.3) is not an L∞-bounded function is handled in the next
lemma which provides an a priori L∞-estimate of solutions for (2.3).

Lemma 2.3. Assume h ∈ Lp
′(x)(Ω) ∩ LN (Ω) in (2.3). Then, there exists a constant

C > 0, depending only on N, p and Ω, such that

∥u∥∞ ≤ C ∥h∥
1

p±−1
LN (Ω) ,

(2.5)

with

p± :=
{
p− if ∥h∥LN (Ω) > 1,
p+ if ∥h∥LN (Ω) ≤ 1.

Proof. For each k ∈ N, consider the set Ak = {x ∈ Ω : u(x) > k}, where u is the
solution of (2.3). Thus, to prove (2.5) amounts to show that

|Ak| = 0 for any k > k0,

where
k0 := C ∥h∥

1
p±−1
LN (Ω) , (2.6)

with a constant C > 0 that will be chosen later on. By contradiction assume that
there exists k > k0 such that |Ak| ≠ 0. Testing (2.3) with (u− k)+ leads to

∫

Ak

|∇u|p(x)
dx =

∫

Ak

h (x) (u− k)+dx ≤ ∥h∥LN (Ω)
∥∥(u− k)+∥∥

LN′ (Ak) . (2.7)

One has ∫

Ak

|∇u|p(x)
dx ≥ ∥∇u∥p

−

Lp− (A−
k

)
+ ∥∇u∥p

+

Lp+ (A+
k

),

where A−
k := Ak∩{|∇u| ≥ 1} and A+

k := Ak∩{|∇u| < 1}. Hölder’s inequality together
with classical Sobolev and Lebesgue embeddings imply

∥∥(u− k)+∥∥
LN′ (Ak) ≤ C1

∫

Ak

|∇u|dx

≤ C1

(
|A−
k |

p−−1
p− ∥∇u∥Lp− (A−

k
) + |A+

k |
p+−1

p+ ∥∇u∥Lp+ (A+
k

)

)
,

(2.8)

as well as

∥∇u∥p
±

Lp± (A±
k

)
≥ ∥∇u∥Lp± (A±

k
)(∥∇u∥L1(A±

k
)|A±

k |−
p±−1

p± )p
±−1

≥ ∥∇u∥Lp± (A±
k

)(C
−1
1 ∥u∥LN′ (A±

k
)|A±

k |−
p±−1

p± )p
±−1

≥ ∥∇u∥Lp± (A±
k

)(C
−1
1 k|A±

k |
1

N′ − p±−1
p± )p

±−1,

(2.9)
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for a certain constant C1 > 0. Then, gathering (2.7)–(2.9) together, we infer that

∥∇u∥Lp− (A−
k

)

[
(C−1

1 k|A−
k |

1
N′ − p−−1

p− )p−−1 − C1 ∥h∥LN (Ω) |A−
k |

p−−1
p−

]

+∥∇u∥Lp+ (A+
k

)

[
(C−1

1 k|A+
k |

1
N′ − p+−1

p+ )p+−1 − C1 ∥h∥LN (Ω) |A+
k |

p+−1
p+

]
≤ 0.

(2.10)

Now, fix C > 0 in (2.6) as follows

C := max{Cp
−′

1 , Cp
+′

1 }|Ω|1− 1
N′ .

Then, for k > k0, it follows that
[
(C−1

1 k|A±
k |

1
N′ − p±−1

p± )p
±−1 − C1 ∥h∥LN (Ω) |A±

k |
p±−1

p±

]
≥ 0,

which contradicts (2.10). This completes the proof.

3. AN AUXILIARY SYSTEM

For each (z1, z2) ∈ W
1,p1(x)
0 (Ω) ×W

1,p2(x)
0 (Ω), we consider the auxiliary problem

{
−∆pi(x)ui = fi(x, z1, z2,∇z1,∇z2) in Ω
ui = 0 on ∂Ω, i = 1, 2.

(P(z1,z2))

Lemma 3.1. Assume (H̃α,β,γ) holds. Suppose that

zi(x) ≥ c̃d(x) and ∥∇zi∥pi(x) ≤ L̃, (3.1)

for some constants c̃, L̃ > 0 independent of z1 and z2. Then, for L̃ large enough,
problem (P(z1,z2)) admits a unique solution (u1, u2) in W

1,p1(x)
0 (Ω) × W

1,p2(x)
0 (Ω)

satisfying
∥∇ui∥pi(x) ≤ L̃, i = 1, 2. (3.2)

Proof. First, we claim that

fi(·, z1, z2,∇z1,∇z2) ∈ Lp
′
i(x)(Ω) ∩ LN (Ω), for i = 1, 2. (3.3)

We only show that fi ∈ Lp
′
i(x)(Ω) in (3.3) because fi ∈ LN (Ω) can be justified similarly

by substituting p′
i(·) with N in the argument below. By (Hf ), we have

∥fi (·, z1, z2,∇z1,∇z2)∥p′
i
(x)

≤ Mi

(
∥zαi(·)

1 z
βi(·)
2 ∥p′

i
(x) +

∥∥|∇z1|γi(·)∥∥
p′

i
(x) +

∥∥|∇z2|γi(·)∥∥
p′

i
(x)

)
.

(3.4)

Lemma 2.1 together with (H̃α,β,γ) imply
∥∥∥|∇z1|γi(·)

∥∥∥
p′

i
(x)

+
∥∥∥|∇z2|γi(·)

∥∥∥
p′

i
(x)

= ∥∇z1∥γi(xi
0)

γi(x)p′
i
(x) + ∥∇z2∥γi(xi

1)
γi(x)p′

i
(x)

≤ C(∥∇z1∥γi(xi
0)

p1(x) + ∥∇z2∥γi(xi
1)

p2(x) ),
(3.5)
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for certain xi0, x
i
1 ∈ Ω and a constant C > 0. From 3.1 we have

∥zαi(·)
1 z

βi(·)
2 ∥p′

i
(x) ≤





∥(c̃d(·))αi(·)+βi(·)∥p′
i
(x) if α+

i , β
+
i < 0,

∥(c̃d(·))αi(·)zβi(·)
2 ∥p′

i
(x) if α+

i < 0 < β−
i ,

∥(c̃d(·))βi(·)zαi(·)
1 ∥p′

i
(x) if β+

i < 0 < α−
i .

By (H̃α,β,γ), Hölder’s inequality gives

∥zαi(·)
1 z

βi(·)
2 ∥p′

i
(x) ≤ C0





∥(c̃d(·))αi(·)+βi(·)∥p′
i
(x) if α+

i , β
+
i < 0,∥∥(c̃d(·))αi(·)∥∥

N′p′
i

(x)
N′−p′

i
(x)βi(x)

∥zβi(·)
2 ∥ N′

βi(x)
if α+

i < 0 < β−
i ,

∥∥(c̃d(·))βi(·)∥∥
N′p′

i
(x)

N′−p′
i

(x)αi(x)

∥zαi(·)
1 ∥ N′

αi(x)
if β+

i < 0 < α−
i .

(3.6)
Observe that

∫

Ω

d(x)(αi(x)+βi(x))p′
i(x) dx

=
∫

{d≥1}

d(x)(αi(x)+βi(x))p′
i(x) dx+

∫

{d<1}

d(x)(αi(x)+βi(x))p′
i(x) dx

≤ |Ω| +
∫

{d<1}

d(x)(α+
i

+β+
i

)(p′
i)+

dx.

Then, owing to [20, Lemma on page 726], which is applicable since (α+
i +β+

i )(p′
i)+ > −1

(see (Hα,β,γ)), we infer that
∫

Ω

d(x)(αi(x)+βi(x))p′
i(x) dx < +∞. (3.7)

Thence, from (2.1), we derive that

∥(c̃d(·))αi(·)+βi(·)∥p′
i
(x) < +∞. (3.8)

On account of (H̃α,β,γ) the same conclusion can be drawn for the cases α+
i < 0 < β−

i

and β+
i < 0 < α−

i . Hence, a similar argument as above produces
∥∥(c̃d(·))αi(·)∥∥

N′p′
i

(x)
N′−p′

i
(x)βi(x)

,
∥∥(c̃d(·))βi(·)∥∥

N′p′
i

(x)
N′−p′

i
(x)αi(x)

< +∞. (3.9)

Reporting (3.8)–(3.9) in (3.6), by Lemma 2.1, there exist xi2, xi3 ∈ Ω such that

∥zαi(·)
1 z

βi(·)
2 ∥p′

i
(x) ≤ C1(1 + ∥z|αi(·)|

1 ∥ N′
|αi(x)|

+ ∥z|βi(·)|
2 ∥ N′

|βi(x)|
)

= C1(1 + ∥z1∥|αi(xi
2)|

N ′ + ∥z2∥|βi(xi
3)|

N ′ ),
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where C1 > 0 is a constant. The Sobolev embedding W 1,pi(x)
0 (Ω) ↪→ LN

′(Ω) together
with Hölder’s inequality lead to

∥zαi(·)
1 z

βi(·)
2 ∥p′

i
(x) ≤ C̃1(1 + ∥∇z1∥|αi(xi

2)|
p1(x) + ∥∇z2∥|βi(xi

3)|
p2(x) ), (3.10)

for some constant C̃1 > 0. Gathering (3.4), (3.5) and (3.10) together it follows that

∥fi (·, z1, z2,∇z1,∇z2)∥p′
i
(x)

≤ C2(1 + ∥∇z1∥|αi(xi
2)|

p1(x) + ∥∇z2∥|βi(xi
3)|

p2(x) ∥∇z1∥γi(xi
0)

p1(x) + ∥∇z2∥γi(xi
1)

p2(x) ),
(3.11)

for certain constant C2 > 0. Repeating the argument above by starting in (3.4) with
N instead of p′

i(·) and by using (Hα,β,γ), we get

∥fi (·, z1, z2,∇z1,∇z2)∥N
≤ C̃2(1 + ∥∇z1∥|αi(x̂i

2)|
p1(x) + ∥∇z2∥|βi(x̂i

3)|
p2(x) + ∥∇z1∥γi(x̂i

0)
p1(x) + ∥∇z2∥γi(x̂i

1)
p2(x) )

≤ C̃2(1 + ∥∇z1∥max{|αi(x̂i
2)|,γi(x̂i

0)}
p1(x) + ∥∇z2∥max{|βi(x̂i

3)|,γi(x̂i
1)}

p2(x) ),
(3.12)

where C̃2 > 0 is a constant. Hence, on the basis of (3.1), the claim follows.
Consequently, the unique solvability of (P(z1,z2)) comes directly from the

Browder–Minty Theorem (see, e.g., [5]).
The task is now to show that the estimate (3.2) holds true. Thanks to Lemma 2.1,

there exist xi4 ∈ Ω such that

∥∇ui∥
pi(xi

4)
pi(x) =

∫

Ω

|∇ui|pi(x)dx. (3.13)

Testing (P(z1,z2)) with (u1, u2), Hölder’s inequality and the embedding

W
1,pi(x)
0 (Ω) ↪→ LN

′
(Ω)

entail
∫

Ω

|∇ui|pi(x)dx ≤
∫

Ω

fi (x, z1, z2,∇z1,∇z2)u1dx

≤ C0 ∥fi (·, z1, z2,∇z1,∇z2)∥N ∥∇ui∥pi(x),

(3.14)

for a constant C0 > 0. Combining (3.13)–(3.14) with (3.12) and bearing in mind (3.1),
one derives that

∥∇ui∥pi(x) ≤ [C0 ∥fi (., z1, z2,∇z1,∇z2)∥N ]
1

pi(xi
4)−1

≤ C̃3(1 + ∥∇z1∥max{|αi(x̂i
2)|,γi(x̂i

0)}
p1(x) + ∥∇z2∥max{|βi(x̂i

3)|,γi(x̂i
1)}

p2(x) )
1

pi(xi
4)−1

≤ C̃3(1 + L̃max{|αi(x̂i
2)|,γi(x̂i

0)} + L̃max{|βi(x̂i
3)|,γi(x̂i

1)})
1

pi(xi
4)−1 ≤ L̃,
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provided that L̃ > 0 is sufficiently large, where C̃3 > 0 is a constant independent of zi.
This is possible because, according to (H̃α,β,γ), one has

max{|αi(x̂i2)|, |βi(x̂i3)|, γi(x̂i0), γi(x̂i1)} < pi(xi4) − 1.

This completes the proof.

Lemma 3.2. Under assumptions (Hf ) and (H̃α,β,γ), for (z1, z2) satisfying (3.1), there
exists a constant L > 1 independent of zi such that every solution (u1, u2) of (P(z1,z2))
belongs to L∞(Ω) × L∞(Ω) and satisfies the estimate

∥ui∥∞ < L. (3.15)

Proof. It is a direct consequence of Lemma 2.3 where (3.12) as well as (H̃α,β,γ) and
(3.1) are used.

4. COMPARISON RESULTS

Let ξi, ξi,δ ∈ C1,τ (Ω), τ ∈ (0, 1), be the solutions of the Dirichlet problems

−∆pi(x)ξi(x) = 1 in Ω, ξi(x) = 0 on ∂Ω (4.1)

and

−∆piξi,δ(x) =
{

1 in Ω\Ωδ
−1 in Ωδ

, ξi,δ(x) = 0 on ∂Ω, (4.2)

where
Ωδ := {x ∈ Ω : d(x) < δ},

with a fixed δ > 0 sufficiently small.

Lemma 4.1. There are constants τ > 0 and c1, kp1 , kp2 > 1 > c0 such that

c0d(x) ≤ ξi,δ(x) ≤ ξi(x) ≤ c1d(x) for all x ∈ Ω (4.3)

and
∥ξi,δ∥C1,τ (Ω) , ∥ξi∥C1,τ (Ω) ≤ kpi

, i = 1, 2. (4.4)

Proof. From (4.1) and (4.2), it is readily seen that ξi,δ(x) ≤ ξi(x) for all x ∈ Ω,
for i = 1, 2. The Strong Maximum Principle together with [1, Lemma 3] entail
ξi,δ(x) ≥ c0d(x) in Ω, for δ > 0 sufficiently small in (4.2) while, invoking Lemma 2.2,
we infer that (4.4) holds true. Moreover, using (4.4), a similar argument to that in the
proof of [9, Lemma 3.1] shows that the last inequality in (4.3) is verified. This ends
the proof.
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For a constant C > 1 set

ui = C−1ξi,δ and ui = Cξi. (4.5)

We claim that ui ≥ ui in Ω. Indeed, observe, from (4.1) and (4.2), that the integrals
∫

Ω\Ωδ

|∇ξi,δ|pi(x)−2∇ξi,δ∇φi dx, (4.6)

−
∫

Ωδ

|∇ξi,δ|pi(x)−2∇ξi,δ∇φi dx, (4.7)

∫

Ω

|∇ξi|pi(x)−2∇ξi∇φi dx, (4.8)

are positive for all φi ∈ W
1,pi(x)
0 (Ω) with φi ≥ 0. This is crucial so that Theorem 6.1 in

the Appendix is applicable. By (4.5) and thanks to Theorem 6.1, there exist x1
i , x

2
i ∈ Ω

such that
∫

Ω

|∇ui|pi(x)−2∇ui∇φi dx

=
∫

Ω

C−(pi(x)−1)|∇ξi,δ|pi(x)−2∇ξi,δ∇φi dx

=
∫

Ω\Ωδ

C−(pi(x)−1)|∇ξi,δ|pi(x)−2∇ξi,δ∇φi dx

−
∫

Ωδ

(−C−(pi(x)−1)|∇ξi,δ|pi(x)−2∇ξi,δ∇φi) dx

= C−(pi(x1
i )−1)

∫

Ω\Ωδ

|∇ξi,δ|pi(x)−2∇ξi,δ∇φi dx

− C−(pi(x2
i )−1)

∫

Ωδ

(−|∇ξi,δ|pi(x)−2∇ξi,δ∇φi) dx.

(4.9)

Using (4.2) we obtain
∫

Ω

|∇ui|pi(x)−2∇ui∇φi dx = C−(pi(x1
i )−1)

∫

Ω\Ωδ

φi dx− C−(pi(x2
i )−1)

∫

Ωδ

φi dx

≤ C−(p−
i

−1)
∫

Ω\Ωδ

φi dx− C−(p+
i

−1)
∫

Ωδ

φi dx.

(4.10)
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Again, Theorem 6.1 and (4.1) imply

∫

Ω

|∇ui|pi(x)−2∇ui∇φi dx =
∫

Ω

Cpi(x)−1|∇ξi|pi(x)−2∇ξi∇φi dx

= Cpi(x0
i )−1

∫

Ω

|∇ξi|pi(x)−2∇ξi∇φi dx

≥ Cp
−
i

−1
∫

Ω

|∇ξi|pi(x)−2∇ξi∇φi dx = Cp
−
i

−1
∫

Ω

φi dx,

(4.11)

for certain x0
i ∈ Ω. Then, combining (4.10)–(4.11) together implies

∫

Ω

|∇ui|pi(x)−2∇ui∇φi dx ≤
∫

Ω

|∇ui|pi(x)−2∇ui∇φi dx,

for all φi ∈ W
1,pi(x)
0 (Ω) with φi ≥ 0, provided that C > 0 is large enough. This proves

the claim.

Set

R := max
i=1,2

{1, kpi
}, (4.12)

where kp1 and kp2 are given by (4.4). The following results allow us to achieve useful
comparison properties.

Proposition 4.2. Assume (Hα,β,γ) is fulfilled with α∓
i + β∓

i > 0 (i = 1, 2). Then, for
C > 0 large enough in (4.5), it holds

−∆pi(x)ui ≤ mi





u
αi(x)
1 u

βi(x)
2 if α−

i , β
−
i > 0

u
αi(x)
1 u

βi(x)
2 if α+

i < 0 < β−
i

u
αi(x)
1 u

βi(x)
2 if β+

i < 0 < α−
i

in Ω, (4.13)

−∆pi(x)ui ≥ 2Mi(RC)max{γ+
i
,γ̄+

i
}+Mi





u
αi(x)
1 u

βi(x)
2 if α−

i , β
−
i > 0

u
αi(x)
1 u

βi(x)
2 if α+

i < 0 < β−
i

u
αi(x)
1 u

βi(x)
2 if β+

i < 0 < α−
i

in Ω, (4.14)

where R > 0 is provided in (4.12), for i = 1, 2.
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Proof. Assume α−
i , β

−
i > 0. From (4.5) and Lemma 4.1, we have

mi

∫

Ω

u
αi(x)
1 u

βi(x)
2 φi dx = mi

∫

Ω

C−(αi(x)+βi(x))ξ
αi(x)
1,δ ξ

βi(x)
2,δ φi dx

≥ mi

∫

Ω

(Cc−1
0 )−(αi(x)+βi(x))d(x)αi(x)+βi(x)φi dx

≥ mi(Cc−1
0 )−(α+

i
+β+

i
)


δα

+
i

+β+
i

∫

Ω\Ωδ

φi dx+
∫

Ωδ

d(x)αi(x)+βi(x)φi dx




≥ C−(p−
i

−1)
∫

Ω\Ωδ

φi dx− C−(p+
i

−1)
∫

Ωδ

φi dx,

(4.15)

for all φi ∈ W
1,pi(x)
0 (Ω) with φi ≥ 0, i = 1, 2, and for C > 0 large enough. Thus,

combining (4.10) together with (4.15), we infer that
∫

Ω

|∇ui|pi(x)−2∇ui∇φi dx ≤ mi

∫

Ω

u
αi(x)
1 u

βi(x)
2 φi dx,

for all φi ∈ W
1,pi(x)
0 (Ω) with φi ≥ 0, for i = 1, 2. This proves the first case in (4.13).

Next, we show (4.14) for α−
i , β

−
i > 0. Using (4.5), (4.12), (4.1) and (4.11), it follows

that

Mi

∫

Ω

(uαi(x)
1 u

βi(x)
2 + 2(RC)max{γ+

i
,γ̄+

i
})φi dx

= Mi

∫

Ω

(Cαi(x)+βi(x)ξ
αi(x)
1 ξ

βi(x)
2 + 2(RC)max{γ+

i
,γ̄+

i
})φi dx

≤ Mi

∫

Ω

(Cα
+
i

+β+
i Rα

+
i

+β+
i + 2(RC)max{γ+

i
,γ̄+

i
})φi dx

≤ M̃R max{Cα+
i

+β+
i , Cmax{γ+

i
,γ̄+

i
}}

∫

Ω

φi dx

≤ Cp
−
i

−1
∫

Ω

φi dx ≤
∫

Ω

|∇ui|pi(x)−2∇ui∇φi dx,

for φi ∈ W
1,pi(x)
0 (Ω) with φi ≥ 0, i = 1, 2, and for C > 0 large enough.

Now, we deal with the other cases in (4.13) and (4.14) with respect to the sign of
the exponents. We only prove the inequalities corresponding to the case α+

i < 0 < β−
i
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because the complementary situation β+
i < 0 < α−

i is carried out in a similar way.
So assume α+

i < 0 < β−
i . On account of Lemma 4.1 and (Hα,β,γ) one has

∫

Ω

Cαi(x)−βi(x)ξ
αi(x)
1 ξ

βi(x)
2,δ φi dx

≥ Cα
−
i

−β+
i Rα

−
i (c0δ)β

+
i

∫

Ω\Ωδ

φi dx+ Cα
−
i

−β+
i c

β+
i

0 c
α−

i
1

∫

Ωδ

d(x)αi(x)+βi(x)φi dx

≥ C−(p−
i

−1)
∫

Ω\Ωδ

φi dx− C−(p+
i

−1)
∫

Ωδ

φi dx,

for all φi ∈ W
1,pi(x)
0 (Ω) with φi ≥ 0, provided that C > 0 is large enough. Then, on

the basis of 4.5, (4.1), (4.2) and (4.10), one gets

mi

∫

Ω

u
αi(x)
1 u

βi(x)
2 φi dx ≥

∫

Ω

|∇ui|pi(x)−2∇ui∇φi dx.

Next, we show (4.14) when α+
i < 0 < β−

i . By (4.12), (Hα,β), (3.15), (4.3) and
Lemma 4.1, it follows that

Mi

∫

Ω

(uαi(x)
1 u

βi(x)
2 + 2(RC)max{γ+

i
,γ̄+

i
})φi dx

= Mi

∫

Ω

(C−αi(x)+βi(x)ξ
αi(x)
1,δ ξ

βi(x)
2 + 2(RC)max{γ+

i
,γ̄+

i
})φi dx

≤ MiC
−α−

i
+β+

i


(c0δ)α

−
i Rβ

+
i

∫

Ω\Ωδ

φi dx+ c
β+

i
1 c

α−
i

0

∫

Ωδ

d(x)α
−
i

+β+
i φi dx




+ 2(RC)max{γ+
i
,γ̄+

i
})

∫

Ω

φi dx ≤ Cp
−
i

−1
∫

Ω

φi dx,

(4.16)

for φi ∈ W
1,pi(x)
0 (Ω) with φi ≥ 0, provided that C > 0 is large enough. Thus, gathering

(4.11)–(4.16) together yields
∫

Ω

|∇ui|pi(x)−2∇ui∇φi dx ≥ M1

∫

Ω

(uαi(x)
1 u

βi(x)
2 + 2(RC)max{γ+

i
,γ̄+

i
})φidx.

Proposition 4.3. Assume (H̃α,β,γ) is fulfilled. Then, for C > 0 large enough in
(4.12), it holds

−∆pi(x)ui ≤ mi





Lα
−
i u

βi(x)
2 if α+

i < 0 < β−
i

Lβ
−
i u

αi(x)
1 if β+

i < 0 < α−
i

Lα
−
i

+β−
i if α+

i , β
+
i < 0

in Ω, for i = 1, 2,

where the constant L > 1 is provided by Lemma 3.2.
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Proof. Assume α+
i < 0 < β−

i . The case β+
i < 0 < α−

i can be handled in much the
same way. By (4.5), (4.3) and (4.10), one has

mi

∫

Ω

Lα
−
i u

βi(x)
2 φidx = miL

α−
i

∫

Ω

(C−1ξ2,δ)βi(x)φidx

≥ miL
α−

i C−β+
i

∫

Ω

(c0d(x))βi(x)φidx

≥ miL
α−

i C−β+
i ((c0δ)β

+
i

∫

Ω\Ωδ

φidx+
∫

Ωδ

(c0d(x))βi(x)φidx)

≥
∫

Ω

|∇ui|pi(x)−2 ∇ui∇φidx,

for all φi ∈ W
1,pi(x)
0 (Ω) with φi ≥ 0, and for C > 0 large enough. If α+

i , β
+
i < 0, from

(4.10), it follows that

mi

∫

Ω

Lα
−
i

+β−
i φidx = miL

α−
i

+β−
i




∫

Ω\Ωδ

φidx+
∫

Ωδ

φidx




≥
∫

Ω

|∇ui|pi(x)−2 ∇ui∇ϕidx,

for all φi ∈ W
1,pi(x)
0 (Ω) with φi ≥ 0, provided C > 0 is sufficiently large. This ends

the proof.

5. PROOF OF THE MAIN RESULT

5.1. CASE α∓
i + β∓

i > 0

Using the functions in (4.5) as well as the constant R > 0 in (4.12), we introduce the
closed, bounded and convex set

KC =
{

(y1, y2) ∈ C1
0 (Ω)2 : ui ≤ yi ≤ ui in Ω and ∥∇yi∥∞ ≤ CR

}
.

Define the map

T : KC → C1
0 (Ω) × C1

0 (Ω), (z1, z2) 7→ T (z1, z2) = (u1, u2)(z1,z2),

where (u1, u2) is required to satisfy (P(z1,z2)). It is worth noting that solutions of
problem (P(z1,z2)) coincide with the fixed points of the operator T . To reach the
desired conclusion, we shall apply Schauder’s fixed point theorem.
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For (z1, z2) ∈ KC we have

z
αi(x)
1 z

βi(x)
2 ≤





u
αi(x)
1 u

βi(x)
2 if α−

i , β
−
i > 0,

u
αi(x)
1 u

βi(x)
2 if α+

i < 0 < β−
i ,

u
αi(x)
1 u

βi(x)
2 if β+

i < 0 < α−
i .

In Ω, using (4.5) together with Lemma 4.1, we obtain

z
αi(x)
1 z

βi(x)
2 ≤





Cα
+
i

+β+
i d(x)αi(x)+βi(x) if α−

i , β
−
i > 0

C−α−
i

+β+
i d(x)αi(x)+βi(x) if α+

i < 0 < β−
i

Cα
+
i

−β−
i d(x)αi(x)+βi(x) if β+

i < 0 < α−
i

≤





Cα
+
i

+β+
i diam(Ω)αi(x)+βi(x) if α−

i , β
−
i > 0

C−α−
i

+β+
i diam(Ω)αi(x)+βi(x) if α+

i < 0 < β−
i

Cα
+
i

−β−
i diam(Ω)αi(x)+βi(x) if β+

i < 0 < α−
i .

Thus, we derive from (Hf ), (4.5) and Lemma 4.1 the estimate

|fi(x, z1, z2,∇z1,∇z2)| ≤ Mi(zαi(x)
1 z

βi(x)
2 + |∇z1|γi(x) + |∇z2|γ̄i(x))

≤ MiC
|α±

i
|+|β±

i
|L0 + 2Mi(CR)max{γ+

i
,γ̄+

i
} in Ω,

(5.1)

where constant L0 > 0 is independent of C.
Consequently, the unique solvability of (u1, u2) in (P(z1,z2)), which is readily derived

from Minty Browder’s Theorem (see, e.g., [5]), guarantees that T is well defined.
Moreover, the regularity theory up to the boundary in [12] yields (u1, u2) ∈ C1,τ

0 (Ω)2

for certain τ ∈ (0, 1) and a constant R̂ > 0 such that it holds

∥ui∥C1,τ (Ω) < R̂. (5.2)

Proposition 5.1. KC is invariant by the operator T .
Proof. Using the fact that z1, z2 ∈ KC , it follows that

z
αi(x)
1 z

βi(x)
2 ≥





u
αi(x)
1 u

βi(x)
2 if α−

i , β
−
i > 0

u
αi(x)
1 u

βi(x)
2 if α+

i < 0 < β−
i

u
αi(x)
1 u

βi(x)
2 if β+

i < 0 < α−
i

in Ω.

Then, bearing in mind (Hf ) and Proposition 4.2, the weak comparison principle entails

u1 ≤ y1 ≤ u1 and u2 ≤ u2 ≤ u2 in Ω. (5.3)

On the other hand, since max{|α±
i | + |β±

i |, γ+
i , γ̄

+
i } < p−

i − 1, it follows from (5.1) that

|fi(x, z1, z2,∇z1,∇z2)| ≤ (CR)p−
i

−1,

provided that C is sufficiently large. Hence, thanks to Lemma 2.2, we infer that

∥∇u1∥∞ , ∥∇u2∥∞ ≤ CR. (5.4)

Consequently, gathering (5.2)–(5.4) together yields (u1, u2) ∈ KC , showing that
T (KC) ⊂ KC .
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Proposition 5.2. T is compact and continuous.

Proof. On the basis of (5.2) and the compactness of the embedding C1,τ (Ω) ⊂ C1
0 (Ω)

we infer that T (C1
0 (Ω) ×C1

0 (Ω)) is a relatively compact subset of C1
0 (Ω) ×C1

0 (Ω). This
shows the compactness of the operator T .

Next, we prove that T is continuous with respect to the topology of
C1

0 (Ω) × C1
0 (Ω). Let (z1,n, z2,n) → (z1, z2) in C1

0 (Ω) × C1
0 (Ω) for all n. Denoting

(u1,n, u2,n) = T (z1,n, z2,n), we have from (5.2) that (u1,n, u2,n) ∈ C1,τ (Ω) × C1,τ (Ω).
By the Ascoli–Arzelà Theorem, there holds

(u1,n, u2,n) → (u1, u2) in C1
0 (Ω) × C1

0 (Ω).

On the other hand, for z1, z2 ∈ KC one has

fi(x, z1,n, z2,n,∇z1,n,∇z2,n) → fi(x, z1, z2,∇z1,∇z2) ∈ W−1,p′
i(x)(Ω).

Thus, we conclude that T is continuous.

5.2. CASE α∓
i + β∓

i ≤ 0

Using the functions ui (i = 1, 2) in (4.5), theW 1,pi(x)- gradient estimate L̃ in Lemma 3.1
as well as the L∞-bound L in Lemma 3.2, we introduce the set

K̃L̃ =



(y1, y2) ∈

∏

i=1,2
W

1,pi(x)
0 (Ω) : ui ≤ yi ≤ L in Ω and ∥∇yi∥pi(x) ≤ L̃



 ,

which is closed, bounded and convex in W 1,p1(x)
0 (Ω)×W

1,p2(x)
0 (Ω). Define the operator

T̃ : K̃L̃ → W
1,p1(x)
0 (Ω) ×W

1,p2(x)
0 (Ω), (z1, z2) 7→ T̃ (z1, z2) = (u1, u2),

where (u1, u2) is required to satisfy (P(z1,z2)). On account of (4.3), (4.5) and Lemma 3.1,
we deduce that (u1, u2) is the unique solution of problem (P(z1,z2)). Then, the map T̃
is well defined.

Proposition 5.3. The set K̃L̃ is invariant by the operator T̃ .

Proof. For any (z1, z2) ∈ K̃L̃, combining (Hf ) with Proposition 4.3 we derive that
ui ≥ ui in Ω (i = 1, 2). Moreover, Lemma 3.2 implies that ui ≤ L while Lemma 3.1
ensures that there exists a large constant L̃ > 0 such that ∥∇yi∥pi(x) ≤ L̃. Hence,
ui ∈ K̃L̃ establishing that T̃ (K̃L̃) ⊂ K̃L̃.

Proposition 5.4. The map T̃ is compact and continuous.

Proof. Let (z1,n, z2,n) → (z1, z2) in W
1,p1(x)
0 (Ω) ×W

1,p2(x)
0 (Ω), that is,

(z1,n, z2,n) → (z1, z2) in Lp1(x)(Ω) × Lp2(x)(Ω)
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and
(∇z1,n,∇z2,n) → (∇z1,∇z2) in

(
Lp1(x)(Ω)

)N
×

(
Lp2(x)(Ω)

)N
,

with (z1,n, z2,n) ∈ K̃L̃. According to [14, Theorem 2.4], the whole sequences (z1,n, z2,n)
and (∇z1,n,∇z2,n) converge in measure to (z1, z2) and (∇z1,∇z2), respectively. Con-
sequently, given that the function fi is of Carathéodory type, one can write

fi (x, z1,n(x), z2,n(x),∇z1,n(x),∇z2,n(x))
−→ fi (x, z1(x), z2(x),∇z1(x),∇z2(x)) for a.e. x ∈ Ω.

Again, [14, Theorem 2.4] ensures that (∇z1,n,∇z2,n) converges to (∇z1,∇z2) in
modular, that is

lim
n→∞

ρpi(x) (∇zi,n − ∇zi) = 0,

or equivalently

(|∇z1,n − ∇z1|p1(x)
, |∇z2,n − ∇z2|p2(x)) → 0 in L1(Ω) × L1(Ω).

Then, there exists a subsequence (|∇z1,nk
− ∇z1|p1(x)

, |∇z2,nk
− ∇z1|p2(x)) and posi-

tive measurable functions (g1, g2) ∈ L1(Ω) × L1(Ω) such that
{

|∇z1,nk
(x) − ∇z1(x)|p1(x) ≤ g1(x)

|∇z2,nk
(x) − ∇z2(x)|p2(x) ≤ g2(x)

for a.e. x ∈ Ω. (5.5)

Here, it is worth noting that zi ∈ [ui, L] since zi,n ∈ [ui, L] . Moreover, from Lemma 4.1
and (4.5) it holds

z
αi(x)
1,n z

βi(x)
2,n ≤





u
αi(x)
1 u

βi(x)
2 if α+

i , β
+
i < 0

u
αi(x)
1 Lβi(x) if α+

i < 0 < β−
i

Lαi(x)u
βi(x)
2 if β+

i < 0 < α−
i .

≤ M0





d(x)αi(x)+βi(x) if α+
i , β

+
i < 0

d(x)αi(x) if α+
i < 0 < β−

i

d(x)βi(x) if β+
i < 0 < α−

i ,

(5.6)

for a certain positive constant M0 := M0(L,C, c0, αi, βi).
Assume that α±

i + β±
i < 0. On account of (Hf ) and (5.6), we deduce from (5.5)

that

|fi (x, z1,n, z2,n,∇z1,n,∇z2,n)| ≤ Mi(zαi(x)
1,n z

βi(x)
2,n + |∇z1,n|γi(x) + |∇z2,n|γ̄i(x))

≤ Mi

(
K(x) +

{
g1(x)

1
p1(x) + |∇z1|

}γi(x)
+

{
g2(x)

1
p2(x) + |∇z2|

}γi(x) )
.

where

K(x) =





(c̃d(x))αi(x)+βi(x) if α+
i , β

+
i < 0,

(c̃d(x))αi(x)
∥∥∥zβi(x)

2,n

∥∥∥
∞

if α+
i < 0 < β−

i ,∥∥∥zαi(x)
1,n

∥∥∥
∞

(c̃d(x))βi(x) if β+
i < 0 < α−

i .
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Setting

Gi(x) = Mi

(
K(x) +

{
g1(x)

1
p1(x) + |∇z1|

}γi(x)
+

{
g2(x)

1
p2(x) + |∇z2|

}γi(x) )
,

we claim that Gi ∈ Lp
′
i(x)(Ω). Indeed, since g1, g2 ∈ L1(Ω), it is readily seen that

{
g1(x)

1
p1(x) + |∇z1|

}γi(x)
∈ L

p1(x)
γi(x) (Ω) (5.7)

and {
g2(x)

1
p2(x) + |∇z2|

}γi(x)
∈ L

p2(x)
γi(x) (Ω). (5.8)

Assumption (H̃α,β,γ) ensures that the embeddings

L
p1(x)
γi(x) (Ω) ↪→ Lp

′
i(x)(Ω) and L

p2(x)
γi(x) (Ω) ↪→ Lp

′
i(x)(Ω)

hold true, while (H̃α,β,γ) together with an argument similar to (3.7) guarantee that
∫

Ω

K(x)p
′
i(x)dx < ∞. (5.9)

Then, gathering (5.7)–(5.9) together we conclude that Gi(x) ∈ Lp
′
i(x)(Ω), showing the

claim.
The generalized Lebesgue’s Dominated Convergence Theorem (see [10,

Lemma 3.2.8]) implies that

fi (x, z1,nk
, z2,nk

,∇z1,nk
,∇z2,nk

) → fi (x, z1, z2,∇z1,∇z2) in Lp
′
i(x)(Ω).

The convergence principle implies that the entire sequence (fi (x, z1,n, z2,n,∇z1,n,∇z2,n))
converges to fi (x, z1, z2,∇z1,∇z2) in Lp

′
i(x)(Ω) ↪→ W−1,p′

i(x)(Ω), showing the conti-
nuity of T̃ .

Furthermore, it is worth noting that the operator T̃ can be written as

T̃ :=
(
L−1

1 ◦ Φ1, L−1
2 ◦ Φ2

)
,

where Li = −∆pi(x) and Φi(z1, z2) = fi (x, z1, z2,∇z1,∇z2) for all (z1, z2) ∈ K̃L̃. Thus,
the compactness of the embedding Lp′

i(x)(Ω) ↪→ W−1,p′
i(x)(Ω) implies that Φi (KR̃) is

a relatively compact subset of W−1,p′
i(x)(Ω), hence the compactness of Φi. Therefore,

the boundedness of L−1
i (see [19, Theorem 3.2]), leads to the compactness of T̃ . The

proof is completed.

5.3. PROOF OF THEOREM 1.1

By virtue of Propositions 5.1 and 5.2 (resp. Propositions 5.3 and 5.4), we are in
a position to apply Schauder’s fixed point theorem (see, e.g., [24]) to the set KC
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(resp. K̃L̃) and the map T : KC → KC (resp. T̃ : K̃L̃ → K̃L̃). This ensures the
existence of (u1, u2) ∈ KC (resp. (u1, u2) ∈ K̃L̃ satisfying (u1, u2) = T (u1, u2) (resp.
(u1, u2) = T̃ (u1, u2)). Taking into account the definition of T (resp. T̃ ), it turns out
that (u1, u2) ∈ C1,τ (Ω)×C1,τ (Ω) for certain τ ∈ (0, 1) (resp. (u1, u2) ∈ (W 1,p1(x)

0 (Ω)∩
L∞(Ω)) × (W 1,p2(x)

0 (Ω) ∩ L∞(Ω))) is a (positive) solution of problem (P). Moreover,
because the solution (u1, u2) lies in KC (resp. K̃L̃), Lemma 4.1 implies that (1.3) is
fulfilled. This completes the proof.

6. APPENDIX

Denoting B1 the unit ball and S1 the unit sphere of RN , let Ψϵ,Πϵ : RN → R be
sequences of mollifiers defined for ϵ > 0 by

Ψϵ(x) = 1
ϵN

Ψ
(x
ϵ

)
and Πϵ(x) = 1

ϵN
Π

(x
ϵ

)
, (6.1)

with Ψ : B1 → R a bump function satisfying

Ψ(x) = C−1e
− 1

1−|x|2 , C =
∫

B1

e
− 1

1−|x|2 dx, and Π = C
−1
π,

where π ∈ C1
0 (B1) is the solution of the problem

{
−∆π = 1 in B1,

π = 0 on S1,

and C =
∫
B1
π(x)dx. Both the functions Ψ and Π satisfy

∫

RN

Ψ(x)dx =
∫

RN

Π(x)dx = 1. (6.2)

The Mean Value Theorem is stated as follows.

Theorem 6.1. Let u ∈ W
1,p(x)
0 (Ω) be the solution of a nonlinear elliptic equation of

the form
−∆p(x)u = h(x) in Ω, u = 0 on ∂Ω, (6.3)

where h is a sign-constant function. Let f : Ω → R be a Lipschitz continuous function
satisfying −∞ < m ≤ f(x) ≤ M < ∞ for some constants m,M . Then, for any
sign-constant function ϕ ∈ W

1,p(x)
0 (Ω), there exists a real γ ∈ [m,M ], depending on ϕ,

such that ∫

Ω

f(x)|∇u|p(x)−2∇u∇ϕdx = γ

∫

Ω

h(x)ϕdx. (6.4)
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Remark 6.2. Actually, equality (6.4) shall be proved for any nonnegative function
ϕ ∈ C∞

0 (Ω), and the generalization to W 1,p(x)
0 (Ω) is deduced by a density argument.

Also, without loss of generality, we will assume that h is nonnegative, because otherwise,
instead of (6.3), we consider the problem

−∆p(x)u = −h(x) in Ω, u = 0 on ∂Ω,

whose solution is û = −u. Similarly, we will assume that ϕ is nonnegative.
Proof of Theorem 6.1. Inspired by [4], the proof of (6.4) is divided in four steps.
Step 1. For any functions f, g : RN → R, denote ⋆ the classical convolution product
defined by

f ⋆ g(x) =
∫

RN

f(x− z)g(z)dz, for any x ∈ Ω,

and set
ϕϵ = ϕ ⋆Πϵ,

Ω(y) = {x ∈ Ω | f(x) ≤ y} , y ∈ [m,M ] ,
Ωϵ = {x ∈ Ω | d(x, ∂Ω) ≥ ϵ} ,
aϵ,Ω(y) = 1Ω(y)∩Ωϵ

⋆Ψϵ.

(6.5)

Let F̆ϵ, Fϵ : [m,M ] → R (ϵ > 0) be the functionals defined for any nonnegative function
ϕ ∈ C∞

0 (Ω) by

F̆ϵ(y) =
∫

Ω

aϵ,Ω(y)(x) f(x)|∇u|p(x)−2∇u∇ϕϵdx,

Fϵ(y) =
∫

Ω

aϵ,Ω(y)(x) |∇u|p(x)−2∇u∇ϕϵdx,

where u refers to the solution of problem (6.3). We claim that

lim
ϵ→0

∣∣∣∣∣∣

M∫

m

dF̆ϵ(y) −
M∫

m

ydFϵ(y)

∣∣∣∣∣∣
= 0. (6.6)

Indeed, let Pn = {m = y0 < . . . < yn = M} be a partition of the interval [m,M ] such
that N = yk − yk−1 = δ < η, and let y′

k ∈ [yk−1, yk]. We check that
∣∣∣∣∣
n∑

k=1

[
F̆ϵ(yk) − F̆ϵ(yk−1)

]
−

n∑

k=1
y′
k [Fϵ(yk) − Fϵ(yk−1)]

∣∣∣∣∣

=

∣∣∣∣∣∣

n∑

k=1

∫

Ω

(f(x) − y′
k)aϵ,Ωk

(x)|∇u|p(x)−2∇u∇ϕϵdx

∣∣∣∣∣∣
.

(6.7)
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with
Ωk = {x ∈ Ω | yk−1 < f(x) ≤ yk} = Ω(yk)\Ω(yk−1)

and
aϵ,Ωk

= aϵ,Ω(yk) − aϵ,Ω(yk−1).

For any x ∈ Ωk ∩ Ωϵ +Bϵ(0), there exists (y, s) ∈ Ωk ∩ Ωϵ ×Bϵ(0), such that x = y+ s.
From the Mean Value Theorem, and the C-Lipschitz regularity of f , we infer that

|f(x) − y′
k| ≤ |f(y + s) − f(y)| + |f(y) − y′

k| ≤ C|s| + |yk − yk−1| ≤ Cϵ+ η.

Since aϵ,Ω(y0) = aϵ,Ω(m) = 0, and aϵ,Ω(yn) = aϵ,Ω(M) = aϵ,Ω, it holds

n∑

k=1
aϵ,Ωk

(x) = aϵ,Ω(x). (6.8)

Gathering (6.7)–(6.8) together leads to
∣∣∣∣∣
n∑

k=1

[
F̆ϵ(yk) − F̆ϵ(yk−1)

]
−

n∑

k=1
y′
k [Fϵ(yk) − Fϵ(yk−1)]

∣∣∣∣∣

≤ (Cϵ+ η)
∫

Ω

aϵ,Ω|∇u|p(x)−1 |∇ϕϵ| dx.
(6.9)

Observe that

lim
ϵ→0

aϵ,Ω(y) = 1Ω(y) (y ∈ [m,M ]) and lim
ϵ→0

∇ϕϵ = ∇ϕ a.e. in Ω, (6.10)

see for example [11, Theorem 7, page 714]. Thus, (6.9)–(6.10) together imply

lim
ϵ→0

lim
η→0

∣∣∣∣∣
n∑

k=1

[
F̆ϵ(yk) − F̆ϵ(yk−1)

]
−

n∑

k=1
y′
k [Fϵ(yk) − Fϵ(yk−1)]

∣∣∣∣∣ = 0.

This achieves the proof of (6.6).
Step 2. After integrating by parts, we may write that

M∫

m

ydFϵ(y) = [MFϵ(M) −mFϵ(m)] −
M∫

m

Fϵ(y)dy,

which implies, according to (6.6),

lim
ϵ→0

∣∣∣∣∣∣

(
F̆ϵ(M) − F̆ϵ(m)

)
−


MFϵ(M) −mFϵ(m) −

M∫

m

Fϵ(y)dy




∣∣∣∣∣∣
= 0. (6.11)
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By definition of Fϵ and F̆ϵ, (6.11) becomes

lim
ϵ→0

∣∣∣∣∣∣

∫

Ω

aϵ,Ω(x) f(x)|∇u|p(x)−2∇u∇ϕϵdx

−M

∫

Ω

aϵ,Ω(x) |∇u|p(x)−2∇u∇ϕϵdx

+
M∫

m




∫

Ω

aϵ,Ω(y)(x) |∇u|p(x)−2∇u∇ϕϵdx


 dy

∣∣∣∣∣∣
= 0.

(6.12)

By the way, aϵ,Ω(y) = aϵ,Ω − aϵ,Ω\Ω(y), so from (6.12) we obtain

lim
ϵ→0

∣∣∣∣∣∣

∫

Ω

aϵ,Ω(x) f(x)|∇u|p(x)−2∇u∇ϕϵdx

−m

∫

Ω

aϵ,Ω(x) |∇u|p(x)−2∇u∇ϕϵdx

−
M∫

m




∫

Ω

aϵ,Ω\Ω(y)(x) |∇u|p(x)−2∇u∇ϕϵdx


 dy

∣∣∣∣∣∣
= 0.

(6.13)

Step 3. Set A(y) = Ω(y) (resp. A(y) = Ω\Ω(y)). Assume that ϕ ≥ 0 is constant in A(y).
Then from the Dominated Convergence Theorem and (6.10) we get

lim
ϵ→0

M∫

m




∫

Ω

aϵ,A(y)(x) |∇u|p(x)−2∇u∇ϕϵdx


 dy

=
M∫

m




∫

Ω

1A(y)(x) |∇u|p(x)−2∇u∇ϕdx


 dy = 0.

(6.14)

Now suppose that ϕ is not constant in A(y). For (ϵ, y, ϕ) ∈ R⋆+ × [m,M ] × (C∞
0 (Ω))+

fixed, we claim that there exists a nonnegative function Φϵ,y ∈ W
1,p(x)
0 (Ω) such that

∇Φϵ,y = aϵ,A(y)∇ϕϵ a.e. in Ω. (6.15)

Indeed, consider the singular quasilinear elliptic problem




−∆v = −|aϵ,A(y)∇ϕϵ|2v−1 − 2div
(
aϵ,A(y)∇ϕϵ

)
in Ω,

v > 0 in Ω,
v = 0 on ∂Ω.

(6.16)
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Here, the divergence of the vector aϵ,A(y)∇ϕϵ must be interpreted in the classical
sense, which is possible since the convolution ϕϵ (resp. aϵ,A(y)) involves the function ϕ
(resp. Ψϵ) which is infinitely differentiable. We are going to prove the existence of at
least one solution for (6.16) in the sense of distributions, i.e., there exists vϵ ∈ H1

0 (Ω)
such that

∫

Ω

∇vϵ∇ξdx = −
∫

Ω

|aϵ,A(y)∇ϕϵ|2v−1
ϵ ξdx− 2

∫

Ω

div
(
aϵ,A(y)∇ϕϵ

)
ξdx

for every ξ ∈ H1
0 (Ω).

Existence of a solution for (6.16). Define

aϵ(x) = |aϵ,A(y)∇ϕϵ|,
bϵ(x) = div

(
aϵ,A(y)∇ϕϵ

)
,

Kϵ =
{
w ∈ C1

0 (Ω) : vϵ ≤ w ≤ vϵ
}
,

vϵ = λϵ−1/2ψ,

vϵ = max{λϵ−1/2∥ψ∥∞, ∥bϵ∥∞∥χ∥∞},
fϵ(x, z) = −a2

ϵ(x)z−1 − 2bϵ(x), z ∈ Kϵ,

ϕ̂(x) = 1A(y)(x) min
ϵ∈(0,1)

∫

B1(0)

ϕ(x− ϵy)dy,

where ψ, χ ∈ C1
0 (Ω) are respectively the solutions of the problems

{
−∆ψ = ϕ̂ in Ω,
ψ = 0 on ∂Ω,

and
{

−∆χ = 1 in Ω,
χ = 0 on ∂Ω,

(6.17)

see [22, Proposition 2.1]. The fact that ϕ ≥ 0 is not constant in A(y) implies that ϕ̂ is
a positive nontrivial function, hence the existence of λ > 0 such that

d(x) ≤ λψ(x) for all x ∈ Ω, (6.18)

with d(x) := d(x, ∂Ω), see [23, Theorems 1 and 2]. Let z ∈ Kϵ, consider the auxiliary
problem

{
−∆v = fϵ(x, z) in Ω,
v = 0 on ∂Ω.

(6.19)

Following the ideas of [22], we prove that fϵ ∈ Lq(Ω). Indeed, due to the classical
Mean Value Theorem, the estimation aϵ,A(y)(x) ≤ ∥∇aϵ,A(y)∥∞d(x) with (6.18) imply

a2
ϵz

−1 ≤ a2
ϵv

−1
ϵ = |aϵ,A(y)∇ϕϵ|2(λϵ−1/2ψ)−1 ≤ ϵ1/2∥∇aϵ,A(y)∥∞|∇ϕϵ|2, (6.20)

hence a2
ϵz

−1 ∈ Lq(Ω) for any q > N . Consequently, fϵ ∈ Lq(Ω), and from [22,
Proposition 2.1] there exists v̌ϵ ≡ Az ∈ C1

0 (Ω) satisfying (6.19). Since the mapping
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S : Kϵ → Lq(Ω), defined by Sz = fϵ(x, z), is continuous and bounded, it follows
from [17, Lemma 2.1] that A : Kϵ → C1

0 (Ω) is compact. It remains to prove that
A : Kϵ → Kϵ. Indeed, let z ∈ Kϵ and v̌ϵ = Az. Then −∆v̌ϵ ≤ ∥bϵ∥∞ = −∆(∥bϵ∥∞χ),
χ defined in (6.17), which implies according to the weak comparison principle that
v̌ϵ ≤ ∥bϵ∥∞χ ≤ vϵ.

Now to prove that vϵ ≤ v̌ϵ, we proceed as in [17]. Let

Bs = {x ∈ Ω : fϵ(x, ·) < λsϕ̂(x)} (s > 0)

and let vs,ϵ be the solution of the problem

−∆v = s−1fs,ϵ(x, vϵ) ≡ s−1

{
fϵ(x, vϵ) in Bs

λsϕ̂(x) in Ω\Bs
, v = 0 on ∂Ω.

Notice that −∆v̌ϵ = fϵ(x, z) ≥ fs,ϵ(x, vϵ) = −∆ (svs,ϵ), and from the weak comparison
principle we have v̌ϵ ≥ svs,ϵ. Also, setting v0 = λψ, ψ defined in (6.17), then v0 satisfies
−∆v0 = λϕ̂. From [17, Lemma 2.1], and using (6.18) and (6.20), there exists C > 0
independent of vs,ϵ and v0 such that

|vs,ϵ − v0|C1 ≤ C
∥∥∥s−1fs,ϵ − λϕ̂

∥∥∥
q

= C




∫

Bs

∣∣∣s−1[−a2
ϵ(x)v−1

ϵ − 2bϵ(x)] − λϕ̂(x)
∣∣∣
q

dx




1/q

≤ C|Bs|1/q
(
s−1

[
ϵ1/2∥∇aϵ,A(y)∥∞∥∇ϕϵ∥2

∞ + 2∥bϵ∥∞
]

+ λ∥ϕ̂∥∞
)

≤ C|Bs|1/qMs,ϵ,

(6.21)

where

Ms,ϵ=s−1[ϵ−1/2∥∇ψ∥∞∥∇ϕ∥2
∞ + 2ϵ−1∥∇ψ∥∞∥∇ϕ∥∞ + 2∥∆ϕ∥∞] + λ∥ϕ∥∞|B1|.

Also, from (6.18), we check that

v̌ϵ ≥ svs,ϵ ≥ λs
(
λ−1v0 − λ−1|vs,ϵ − v0|C1d(x)

)
≥ λs(1 − |vs,ϵ − v0|C1)ψ. (6.22)

Now, consider the set

G = {x ∈ Ω : d(x, ∂[A(y) ∩ Ωϵ]) ≥ ϵ}.

If x ∈ G, bϵ(x) = 1A(y)(x)∆ϕϵ(x), and by definition of ϕϵ it occurs

−2bϵ(x) = 21A(y)(x)ϕ ⋆ (−∆Πϵ)(x) = 2ϵ−2C
−1
1A(y)(x)

∫

B1(0)

ϕ(x− ϵy)dy. (6.23)
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Assume that ϵ > 0 is small enough so that ϵ−1/2 ≥ λC + 2−1N∥∇ϕ∥∞∥∇π∥∞.
From (6.23) we deduce that

−2bϵ(x) ≥ (2λ+ C
−1
N∥∇ϕ∥∞∥∇π∥∞)ϵ−3/2

1A(y)(x)
∫

B1(0)

ϕ(x− ϵy)dy. (6.24)

Besides, considering that λ > 0 satisfies (6.18), for any (x, z) ∈ G×Kϵ we get

−a2
ϵ(x)z−1 ≥ −|aϵ,A(y)∇ϕϵ|2v−1

ϵ ≥ −|aϵ,A(y)∇ϕϵ|2(ϵ−1/2d(x))−1

≥ −C−1
N∥∇ϕ∥∞∥∇π∥∞ϵ

−3/2
1A(y)(x)

∫

B1(0)

ϕ(x− ϵy)dy. (6.25)

Therefore, combining (6.24) and (6.25), in the set G we end up with

fϵ(x, z) ≥ 2λϵ−3/2
1A(y)(x)

∫

B1(0)

ϕ(x− ϵy)dy ≥ λsϕ̂(x),

with s = 2ϵ−1/2. Consequently Bs ⊂ Ω\G, where Bs = {x ∈ Ω : fϵ(x, .) < λsϕ̂(x)},
and so |Bs| ≤ |Ω\G| < kN ϵ

N for some constant kN > 0. Applying (6.21) with
s = 2ϵ−1/2 and q ∈ (N, (4/3)N), we may write, for ϵ > 0 small enough,

|vs,ϵ − v0|C1 ≤ Cϵ3/4Ms,ϵ < ϵ1/4M < 1/2, (6.26)

where M > 0 is some constant independent of ϵ. We deduce from (6.22) and (6.26)
that

v̌ϵ ≥ λ(s/2)ψ = λϵ−1/2ψ = vϵ.

Therefore v̌ϵ ∈ Kϵ, and the existence of a solution of (6.16) follows from Schauder’s
fixed point theorem.
Proof of (6.15). Let vϵ ∈ Kϵ be a solution of (6.16). We show that

∫

Ω

∣∣∇vϵ − aϵ,A(y)∇ϕϵ
∣∣2
dx = 0.

Indeed, multiplying (6.16) by vϵ and integrating over Ω, we may write

0 =
∫

Ω

[
|∇vϵ|2 +

∣∣aϵ,A(y)∇ϕϵ
∣∣2 + 2div(aϵ,A(y)∇ϕϵ)vϵ

]
dx

=
∫

Ω

[
|∇vϵ|2 − 2aϵ,A(y)∇ϕϵ.∇vϵ +

∣∣aϵ,A(y)∇ϕϵ
∣∣2

]
dx

=
∫

Ω

∣∣∇vϵ − aϵ,A(y)∇ϕϵ
∣∣2
dx.
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As a consequence, we define Φϵ,y ≡ vϵ in (6.15).
Step 4. Since u is a solution of problem (6.3), and thanks to the positivity of the
functions h and Φϵ,y, from (6.15) we have

Iϵ =
M∫

m




∫

Ω

aϵ,A(y)(x) |∇u|p(x)−2∇u∇ϕϵdx


 dy

=
M∫

m




∫

Ω

|∇u|p(x)−2∇u∇Φϵ,ydx


 dy

=
M∫

m




∫

Ω

h(x)Φϵ,ydx


 dy ≥ 0.

(6.27)

Besides, using the same argument as in (6.14), we prove that the sequence Iϵ converges
as ϵ → 0. Therefore from (6.27) we deduce that lim

ϵ→0
Iϵ ≥ 0, and combining (6.12) and

(6.13), we end up with

m lim
ϵ→0

∫

Ω

aϵ,Ω(x) |∇u|p(x)−2∇u∇ϕϵdx

≤ lim
ϵ→0

∫

Ω

aϵ,Ω(x) f(x)|∇u|p(x)−2∇u∇ϕϵdx

≤ M lim
ϵ→0

∫

Ω

aϵ,Ω(x) |∇u|p(x)−2∇u∇ϕϵdx.

The Dominated Convergence Theorem and (6.10) imply that

m

∫

Ω

h(x)ϕdx = m

∫

Ω

|∇u|p(x)−2∇u∇ϕdx

≤
∫

Ω

f(x)|∇u|p(x)−2∇u∇ϕdx

≤ M

∫

Ω

|∇u|p(x)−2∇u∇ϕdx = M

∫

Ω

h(x)ϕdx.

This leads to the existence of γ ∈ [m,M ], depending on ϕ, such that
∫

Ω

f(x)|∇u|p(x)−2∇u∇ϕdx = γ

∫

Ω

h(x)ϕdx.

This completes the proof.
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