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THE EXTENSIVE 1-MEDIAN PROBLEM
WITH RADIUS ON NETWORKS
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Abstract. The median location problem concerns finding locations of one or several
new facilities that minimize the overall weighted distances from the existing to the
new facilities. We address the problem of locating one new facility with a radius r on
networks. Furthermore, the radius r is flexible and the objective function is the conic
combination of the traditional 1-median function and the value r. We call this problem
an extensive 1-median problem with radius on networks. To solve the problem, we first
induce the so-called finite dominating set, that contains all points on the underlying
network and radius values which are candidate for the optimal solution of the problem.
This helps to develop a combinatorial algorithm that solves the problem on a general
network G = (V, E) in O(|E||V |3) time. We also consider the underlying problem
with improved algorithm on trees. Based the convexity of the objective function with
variable radius, we develop a linear time algorithm to find an extensive 1-median
with radius on the underlying tree.
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1. INTRODUCTION

1.1. LITERATURE REVIEW

Recently, location theory has become an interesting topic in operations research
with both theoretical and practical contributions. In a location problem, one finds
optimal locations of one or several new facilities to optimize an objective func-
tion. The most popular objectives are the median and the center functions with
respect to the sum and the max of the weighted distances from the existing fa-
cilities to the new ones. For some references on the classical location problem,
one refers to the books of Drezner and Hamacher [4], Love et al. [12], and Eiselt
et al. [5] or the seminal papers of Kariv and Hakimi [9, 10] and references therein.
Also, some special cases with efficient solution approaches were also studied, e.g., the
1-median problem on trees is solvable in linear time algorithm (see [6, 7]), the 1-center
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problem on the plane and on networks can be solved in linear time (see [3,13]), the
p-median on trees can be solved in O(pn2) time (see [20]), the p-center problem on
trees can be also solved in polynomial time (see [8]).

A facility in classical location problems is often represented by a point on the plane
or on network. However, when the facilities are too large in size with its environment,
one considers the extensive location problem, where the facilities are objects with
shape. For the motivation and solution methods of locating a line/hyperplane in space
that minimizes the median/center objective functions, we can refer to the book of Schö-
bel [18] and references therein. This problem can be applied in constructing an optimal
urban railway. The first who concerned the extensive location problem on a network
was Morgan and Slater [15]. They defined a core of a tree as the path connecting two
different leaves and aimed to find a core with minimum overall distances from vertices
of the tree to it. They proposed a linear time algorithm to solve the problem. Then
the minisum core problem, which finds a path connecting two points on a tree with
specified length to minimize the weighted sum function, was considered by Minieka and
Patel [14]. The mentioned problem with pos/neg vertex weights was also investigated
and solved by Zaferanieh and Fathali [22]. The problem of locating a subtree on
networks was intensively investigated. Kim et al. [11] showed the NP-hardness of the
problem on networks and solved the confined problem on tree networks in an improved
time complexity. Shioura and Shigeno [19] modeled the center subtree problem by
a bottleneck knapsack problem and solved the problem in linear time. It is well-known
that centdian function is a convex combination of the median and center functions.
Then, based on the nestedness property, Tamir et al. [21] solved the centdian subtree
problem on a tree in O(n log n) time. Also, Bhattacharya et al. [2] solved the problem
of locating a center path/tree-shaped facility on a tree by a parametric-pruning method
in O(n log n) time. For survey on the extensive location problems with models and
solution methods, one can see Puerto et al. [17]. Recently, Berger et al. [1] investigated
the single facility median location problem in the space with customers having the
same radius. They developed efficient O(n logc n) algorithm for finding the optimal
location of the problem under l1- and l∞-norm, where c is the dimension of the
environment. The result on general block norm was also discussed. In this paper, we
consider on another hand the extensive 1-median problem on networks where the
server has a radius. This concept of extensive server is applicable in locating a radio
broadcaster, a base transceiver station, a building with cylinder-shaped, etc.

1.2. PROBLEM SETTING

Let us revisit basic concepts concerning the median location problem on a network. Let
G = (V, E) be a connected graph with vertex set V and edge set E. We assign a positive
length ℓe to e for each edge e ∈ E and associate a positive weight wv to v for each
vertex v ∈ V . The distance between two vertices in G is the length of the shortest
path connecting them. By definition, a point on G is either a vertex or lies on the
interior of an edge. In the later situation, a point x on an edge e = (u, v) is identified
by a parameter λ ∈ (0, ℓe) with d(u, x) = λ and d(v, x) = ℓe − λ. Let A(G) stand for
the set of all points in the graph G. The distance d(a, b) between two points a and b
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is defined similarly to the distance of two vertices. The classical 1-median problem
asks to find a point x on G that minimizes the objective function

∑
v∈V wvd(x, v). An

optimal solution to the 1-median problem is called a 1-median of the network. The
1-median problem on networks has been intensively studied with efficient algorithmic
approaches; see [6, 7, 10] to mention a few.

If the facility is too big in relation to its environment to be modeled as a point,
the extensive location is taken into consideration. Let us now define an extensive
facility centered at x with radius r as B(x, r). The mentioned facility presents a station
located at x and cover all the points in G with distance to x being less than or equal
to r. We can mathematically write

B(x, r) := {x′ ∈ A(G) : d(x, x′) ≤ r}.

The distance from a vertex v ∈ V to the extensive facility B(x, r) is defined as

d(v, B(x, r)) := min
x′∈B(x,v)

d(v, x′) = max {0, d(v, x) − r} .

Adjusting the value of radius r yields a corresponding cost Λ(r) which is
a non-decreasing function. Moreover, we take into account the cost with respect to the
median objective function, say Λ′(

∑
v∈V wvd(v, B(x, r))), which is also nondecreasing

in the value of 1-median function. The extensive 1-median problem with radius on G
is to find an extensive facility B(x, r), i.e., a point x on A(G) and a radius r ≥ 0, that
minimizes the combination of the two mentioned costs, that is

F (x, r) := Λ(r) + Λ′
(∑

v∈V

wvd(v, B(x, r))
)

.

In the scope of this paper, we regard the cost functions Λ(r) and
Λ′(
∑

v∈V wvd(v, B(x, r))) as linear functions, i.e.,

Λ(r) := αr and Λ′
(∑

v∈V

wvd(v, B(x, r))
)

:= β
∑

v∈V

wvd(v, B(x, r))

for non-negative α and β. Then we rewrite

F (x, r) := αr + β
∑

v∈V

wvd(v, B(x, r)). (1.1)

If α = 0, we actually know that there is no cost for setting the radius of the extensive
facility. This situation leads to a trivial solution with the radius large enough to cover
all vertices of the graph and the corresponding objective is zero. If β = 0, the 1-median
value does not contribute to the objective. Therefore, any point on the network (with
r = 0) is an optimal solution to the problem.

Let a graph G in Figure 1 be given such that all edge lengths are 2 and all
weights are 1. Let α = β = 1. Consider an extensive facility B(v1, 1), we can compute
F (v1, 1) = 4.
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Fig. 1. An instance of the extensive 1-median problem graph G with radius

The rest of this paper is organized as follows. In Section 2, we study the property
of the problem on general graphs. a finite dominating set result is constructed. Based
on a brute force computation, we solve the problem on graphs in O(|E||V |3) time
and on trees in O(|V |3) time. In Section 3, we discuss the property of the objective
function on a tree graph and then develop a linear time algorithm to find an extensive
1-median with radius on the underlying tree.

2. ON GENERAL GRAPHS

Let a graph G = (V, E) and an extensive facility B(x, r) be given. We denote by

O(x, r) := {v ∈ V | d(x, v) > r}

the set of all vertices that are outside of B(x, r). Furthermore, let

V(x, r) := {v ∈ V : d(x, v) = r}

and
I(x, r) = V \ (O(x, r) ∪ V(x, r))

be the set of vertices in the border and inside of B(x, r), respectively. Then we know
that

d(v, B(x, r)) =
{

d(v, x) − r, if v ∈ O(x, r).
0, otherwise.

We abbreviate the weight of a set S ⊂ V by W (S) :=
∑

v∈S wv. In the following, let
us investigate a property concerning an extensive 1-median B(x, r) of G with relation
to the set V(x, r).

Proposition 2.1. There exists an extensive 1-median B(x, r) on the graph G such
that one of the following conditions are satisfied.

(i) |V(x, r)| ≥ 1 if x is a vertex.
(ii) |V(x, r)| ≥ 2 if x is in the interior of an edge.
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Proof. Part (i). We take a vertex x with |V(x, r)| = 0. For r′ := r + ε with

ε < min
v∈O(x,r)

{d(v, x) − r},

elementary computation gives

F (x, r′) − F (x, r) = (α − βW (O(x, r))) ε

as O(x, r′) = O(x, r). Similarly, for r′′ := r − δ with

δ < min
v∈I(x,r)

{r − d(v, x)} ,

it yields
F (x, r′′) − F (x, r) = − (α − βW (O(x, r))) δ

as O(x, r′′) = O(x, r). As either (α − βW (O(x, r))) or − (α − βW (O(x, r))) is
non-positive, we can improve the objective by adjusting the radius r until |V(x, v)| ≥ 1.
Hence, the mentioned property for the vertex x holds.

Part (ii). If x is not a vertex on G, we analyse the following cases.
Case 1. |V(x, r)| = 1. We can assume that x is an interior point in e = (u, v) such that
d(u, x) = λ < d(u, v). We denote by

A(⋆, x) := {v′ ∈ V : d(v′, x) = d(v′, ⋆) + d(⋆, x)}

for ⋆ ∈ {u, v} and Γ(x) = A(u, x) ∩ A(v, x).
We consider x′ ∈ (u, v) such that d(u, x′) = λ − ε with

ε < min
v′∈A(u,x)∩O(x,r)

{d(x, v′) − r, λ}

and r′ := r + ε. For v′ ∈ A(u, x) ∩ O(x, r), one obtains

d(v′, B(x′, r′)) = d(v′, x′) − r′ = (d(v′, x) − ε) − (r + ε) = d(v′, B(x, r)) − 2ε.

For v′ ∈ (A(v, x)\Γ(x)) ∩ O(x, r), one obtains

d(v′, B(x′, r′)) = d(v′, x′) − r′ = (d(v′, x) + ε) − (r + ε) = d(v′, B(x, r)).

Therefore,
F (x′, r′) − F (x, r) = [α − 2βW (A(u, x) ∩ O(x, r))]ε.

We consider x′′ ∈ (u, v) such that d(u, x′′) = λ + δ with

min
v′∈A(v,x)∩L(x,r)

{d(x, v′) − r, λ}

and r′′ := r − δ. For v′ ∈ (A(u, x)\Γ(x)) ∩ L(x, r), one obtains

d(v′, B(x′′, r′′)) = d(v′, x′′) − r′′ = (d(v′, x) + δ) − (r − δ) = d(v′, B(x, r)) + 2δ.
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For v′ ∈ A(v, x) ∩ O(x, r), one obtains

d(v′, B(x′′, r′′)) = d(v′, x′′) − r′ = (d(v′, x) − ε) − (r − ε) = d(v′, B(x, r)).

Therefore,

F (x′′, r′′) − F (x, r) = −[α − 2βW (A(u, x) ∩ O(x, r)\Γ(x))]δ.

If α − 2βW (A(u, x) ∪ O(x, r)) < 0, we know F (x′, r′) < F (x, r). Furthermore,
as x′ is in an interval from u to x of the edge e, we further imply that

A(u, x) ∩ O(x, r) ⊂ A(u, x′) ∩ O(x, r)

and thus we can improve the objective function until x′ is a vertex of
|V(x′, r′)| ≥ 2. Otherwise, if α − 2βW (A(u, x) ∩ O(x, r)) ≥ 0, we know that
−[α − 2βW (A(u, x) ∩ O(x, r)\Γ(x))] ≤ 0 and hence F (x′′, r′′) ≥ F (x, r). Furthermore,
we know that for x′′ in the interval from x to v of edge e, one obtains

A(u, x′′) ∩ O(x′′, r′′)\Γ(x′′) ⊂ A(u, x) ∩ O(x, r)\Γ(x).

Therefore, we can improve the objective function until x′′ ≡ v or |V(x′′, r′′)| ≥ 2.
Case 2. |V(x, r)| = 0.

By either reducing or increasing the radius r of the extensive facility B(x, r),
we can reduce this case to Case 1 or (i) and also obtain the result.

If r = 0 is fixed, we get the classical 1-median problem on graphs. The finite
dominating set result (see see [10]) states, that there exists 1-median which is indeed
a vertex. This is indeed a special case of Proposition 2.1 with |V(x, 0)| = 1 for x
being vertices. By Proposition 2.1, we now construct a dominating set of the extensive
1-median problem with radius based on the pairs (x, r), where x is the center of the
extensive facility and r is its radius. Let us define the set

P1 := {(v, d(v, v′)) : v, v′ ∈ V }

associated with a vertex v and the distance from v to another vertex v′. For each
pair (x, r) in P1, we know that the extensive facility B(x, r) satisfies condition (i) of
Proposition 2.1. For an edge e = (u, v), we also denote the set

EQ(e) := {x ∈ A(G) : d(x, u) = d(x, v)}.

For the sake of tractability, we just take the boundary points of EQ(e) in the case EQ(e)
includes continuum points. For example, in Figure 2 we take two points v1 and v2 in
the set of equilibrium points with respect to v3 and v4. As the objective function is
piecewise linear according to radius r (see the analysis in Proposition 2.1), the exclusion
of continuum points does not change the optimal solution. Then Q =

⋃
e∈E EQ(e) is

the set of of all equilibrium points in G (see [16]). We set

P2 := {(x, d(x, u)) : x ∈ Q(e) for e = (u, v) and e ∈ E}.
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3 3

Fig. 2. All points in the edges (v1, v2) are equilibrium points of v3 and v4

Then any pair (x, r) in P2 satisfy the criterion (ii) of Proposition 2.1. Hence, we fi-
nally induce P := P1 ∪ P2, that is the set contains all candidate solutions due to
Proposition 2.1.

We now discuss the complexity to find the set P. First, the set P1 can be found
via identifying the distances between all pairs of vertices in G in O(|V |3) time by
Floyd-Warshall algorithm. Applying the approach of of Nickel [16], one finds the set
EQ(e) in O(|V |2). Therefore, the set P2 can be found in O(|E||V |2) time.

In order to solve the extensive 1-median problem on graphs with radius, we apply
a brute force algorithm to compute the objective values at all pairs in P. For the
set P1, we know that the complexity is O(|V |3) as there are O(|V |2) elements in P1.
Also, as there are O(|V |2) many equilibrium points in each edge e, computing all
objective values of elements in P2 costs O(|E||V |3) time. These complexity analysis
leads to the following result.

Theorem 2.2. The extensive 1-median problem with radius on a general graph
G = (V, E) can be solved in O(|E||V |3) time.

Example 2.3. We consider an instance of a graph G = (V, E) as in Figure 1 where
α = β = 1, all edge lengths are 2 and all vertex weights are 1. The objective values
at the facilities B(vi, 0) (B(vi, 2)) for i = 1, 2, 3, 4 are 6 (2); at B(x, 1) (B(x, 3)) for
x being the midpoints of vi and vj for i ̸= j and i, j = 1, 2, 3, 4 are 5 (3). Hence, the
extensive 1-median with radius on G is B(vi, 2) for i = 1, 2, 3, 4.

Let us discuss how to find the an extensive 1-median on a tree T = (V, E) with
radius. For the tree structure, we can simply find the set P2 by

P2 :=
{(

muv,
d(u, v)

2

)
: u, v ∈ V, u ̸= v

}
,

where muv is the midpoint of the unique path connecting u and v in the tree T . The
set P = P1 ∪ P2 can be found in quadratic time by a naive algorithm. Also, we know
that there are O(|V |2) many elements in P and computing the objective value at an
element in P costs linear time. Therefore, we can find an extensive 1-median on a tree
by a brute force algorithm in O(|V |3) time. We consider in the next section some
structural properties of the corresponding problem on trees which help to improve the
complexity significantly.
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3. ON TREE GRAPHS

We first fix the radius r and consider the property of the center x of B(x, r) to
minimize (1.1) for x in A(T ), i.e., we aim to solve the problem

min
x∈A(T )

wvd(x, B(x, r)). (3.1)

We call the minimizer B(x, r) of (3.1) a r-1-median of T . If r = 0, the problem
reduces to minimize

∑
v∈V wvd(v, x) for x ∈ A(T ). Hence, the 0-1-median is indeed

the classical 1-median problem on T and is solvable in linear time; see Goldman [6]
and Hua [7]. Denote by T (x) the set of all subtrees induced by deleting x and all edges
that are incident to or contain x. Assume that T (x) = {T1, T2, . . . , Tk} and denote
the total weight of vertices in a subset S ⊂ V by W (S) :=

∑
v∈S wv, we revisit the

classical 1-median criterion as follows.
Theorem 3.1 (see [6, 7]). The point x is a 1-median of T if and only if

W (Ti) ≤
∑

v∈V wv

2
for all i = 1, . . . , k.

Now let us consider the case r > 0. We denote by

L(Ti, r) := {v ∈ V (Ti) | d(x, v) > r} ,

M(Ti, r) := {v ∈ V (Ti) | d(x, v) ≥ r} ,

C(Ti, r) := {v ∈ V (Ti) | d(x, v) < r}

for a subtree Ti ∈ T (x). We derive the following optimality criterion.
Theorem 3.2 (Optimality criterion). The facility B(x, r) is a r-1-median of T if and
only if

W (L(Ti, r)) ≤
∑k

j=1 W (M(Tj , r))
2

for i = 1, . . . , k.

Proof. As d(v, x) is convex is a convex function along each simple path of the tree
(see Goldman [6]), the distance functions between vertices and the extensive facility
d(v, B(x, r)) = max{0, d(v, x) − r} are convex for all v ∈ V . This implies the convexity
of the objective function

∑n
i=1 wvd(v, B(x, r)) along each path of the tree. Hence, the

extensive facility B(x, r) is an r-1-median of T if it is a local minimizer. Take a vertex
vi in Ti that is incident to v and a point x′ in the interior of x and v′ with

d(x, x′) = ϵ < min
v∈V

{d(x, vi), max{0, d(x, v) − r}}.

By elementary computation, we get

F (x′, r) − F (x, r) =
(∑

j∈{1,...,k}\{i} W (M(Tj , r)) − W (L(Ti, r))
)

ϵ.
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The facility B(x, r) is an r-1-median if F (x′, r) ≥ F (x, r). This fact implies the
optimality criterion in the proposition.

For r = 0, the optimality condition in Theorem 3.2 coincides with the result of
Goldman [6]. Thus, Theorem 3.2 is an extension of the 1-median criterion. Also, we
derive the so-called nestedness property for the extensive 1-median facility on a tree.

Corollary 3.3 (Nestedness property). Any extensive 1-median facility B(x, r) must
contain a 1-median of the tree T .

Proof. Let B(x, r) be an extensive facility such that there is no 1-median v∗ in B(x, r),
i.e., d(v∗, x) > r. In the path P (x, v∗), we take a vertex v adjacent to v∗. We take
a subtree Ti in T (v) such that Ti contains the 1-medians of T . Then

W (Ti) >

∑
v∈V wv

2

as v is not a 1-median of T . We now consider the subtrees T ′
1, T ′

2, . . . , T ′
k in T (x) with

Ti ⊂ T ′
i . Then we get

W (L(T ′
i , r)) >

∑k
j=1 W (M(T ′

j , r))
2 .

Hence, B(x, r) is not an r-1-median of T . Let B(x′, r) be an r-1-median of T , then
∑

v∈V

wvd(v, B(x′, r)) <
∑

v∈V

wvd(v, B(x, r)).

Then we get F (x′, r) < F (x, r). The corollary is proved.

Next we aim to solve the extensive 1-median problem on the tree T with radius, say

min
r>0

x∈A(T )

F (x, r) := αr + β
∑

v∈V

wvd(x, B(x, r)) (3.2)

Next we reformulate (3.2) as a uni-variate optimization problem. We first set

f(r) := αr + β min
x∈A(T )

∑

v∈V

wvd(v, B(x, r)).

Then it is obvious that

min
r>0,x∈A(T )

F (x, r) = min
r>0

f(r).

We get the following result.

Proposition 3.4. The function f(r) is a piecewise linear convex function
for r > 0.
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Proof. For simplicity, we denote the set of all vertices with distances being larger
than r by O instead of O(x, r). For the linearity of f(·), we write

f(r) = αr + β
∑

v∈O
wv(d(v, xr) − r) = (α − βW (O))r +

∑

v∈O
wv(d(v, xr),

where
xr := arg min

x∈A(T )

∑

v∈V

wvd(x, B(x, r)).

This presentation of f(r) shows that this function is piecewise linear with the slope at
r being α − βW (O). We next show the convexity of f(r) by proving that the slope
α − βW (O) is nondecreasing on r.

We also shortly denote Li and Mi instead of L(Ti, r) and M(Ti, r) for the sake of
simplicity. Furthermore, let

Li0 := max
i=1,...,deg(xr)

W (Li).

By Theorem 3.2, we know that

W (Li0) ≤
∑deg(xr)

i=1 W (Mi)
2

or equivalently W (Li0) ≤ ∑i ̸=i0
W (Mi). We consider the following cases.

Case 1. W (Li0) ≤ ∑i ̸=i0
W (Li); see Figure 3 where all vertex weights are 1.

xr

Li0

Fig. 3. An instance of the tree T such that Case 1 holds

Set ε := minv∈O{d(v, xr) − r}, then the point xr satisfies

xr ≡ xr′
= arg min

x∈A(T )

∑

v∈V

wvd(v, B(x, r′))

for r′ ∈ [r, r + ε] as the optimality criterion in Theorem 3.2 holds. Denote by
O′ = O′(xr, r′), we can compute

f(r′) = (α − βW (O′))r′ +
∑

v∈O′

wvd(v, xr).
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Here, we know that W (O′) = W (O) for r′ ∈ [r, r + ε) and W (O′) < W (O) for
r′ = r + ε. Hence, the slope is nondecreasing.
Case 2. W (Li0) >

∑
i̸=i0

W (Li) (see Figure 4).

xr Li0

Fig. 4. An instance of the tree T such that Case 2 holds

Let
vi0 := arg min{d(xr, v) : v ∈ Ti0}.

Set
δ := min

v∈Li0
{d(v, x) − r, d(x, vi0)},

then for r′′ ∈ [r, r + δ], the point xr′′ such that xr′′ in the interior of x and vi0 with
d(xr′′

, xr) = r′′−r
2 satisfies the optimality condition in Theorem 3.2 or

xr′′
= arg min

x∈A(T )

∑

v∈V

wvd(v, B(x, r′)).

Set O′′ = O(xr′′
, r′′) ⊂ O, we get W (O′′) ≤ W (O). Hence, the slope of f(r′′) is larger

than the slope of f(r).
From the previous case analysis, the slope of f(r) is nondecreasing and hence it is

a convex function.

By Proposition 3.4, we can check if a facility B(xr, r) is an extensive 1-median
with radius on T by computing the corresponding slope of f(r). Precisely, if the slope
changes from negative to non-negative, the new facility is an extensive 1-median with
radius on T . Now we develop a combinatorial algorithm for the corresponding problem.
By Corollary 3.3, we know that there is an extensive facility on tree with radius that
contains a 1-median, thus we start with the facility centered at a 1-median of the tree
and radius r := 0. Then, we increase the radius r to the value such that the slope of
f(r) increases (see the two cases in Proposition 3.4) and the current facility B(x, r) is
always an r-1-median. We stop whenever the slope is non-negative.

Algorithm 1 is correct due to the convexity of the objective function f(r). We now
analyze the complexity of the algorithm. In the initialization step, the classical 1-median
on the tree can be found in linear time. Moreover, we can find the set Li, Mi and O
in linear time. In each iteration, we update the slope and Li0 . The total number of
vertices added to the border set V(x, r + ϵ) or Vi0(x, r + ϵ) is O(|V |). Therefore, the
total complexity of the algorithm is linear time.
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Algorithm 1 Solves the extensive 1-median problem on trees with radius.
Input: An instance of a tree T and two positive numbers α, β.
Let x be a classical 1-median of T and set r := 0.
Set Li := {v ∈ V (Ti)|d(x, v) > r} , Mi := {v ∈ V (Ti)|d(x, v) ≥ r} , Ci :=
{v ∈ V (Ti)|d(x, v) < r} for i = 1, . . . , |T (x)|.
Let O :=

⋃|T (x)|
i=1 Li, W (Li0) := maxi=1,...,|T (x)| W (Li) and set slope := α − βW (L).

while slope < 0 do
if W (Li0) >

∑
i ̸=i0

W (Li) then
Set ε := minv∈O{d(v, x) − r} and V(x, r + ε) := {v ∈ V : d(v, x) = r + ε}.
Let r := r + ε and update slope := slope + βW (V(x, r + ε)).
Update Li := Li\(V(x, r+ε)∩V (Ti)) for i = 1, . . . , |T (x)| and choose W (Li0) :=
maxi=1,...,|T (x)| W (Li).

end if
if W (Li0) ≤ ∑i ̸=i0

W (Li) then
Take vi0 := arg min{d(x, v) : v ∈ Ti0}.
Set δ := minv∈Li0

{d(v, x) − r, d(x, vi0)} and Vi0(x, r + δ) := {v ∈ V (Ti0) :
d(v, x) = r + δ}.
Take a point x′ in (x, vi0) such that d(x, x′) = δ and set x := x′.
Let r := r + δ and update slope := slope + βW (Vi0(x, r + δ)).
Update Li0 := Li0\Vi0(x, r + δ) and choose W (Li0) := maxi=1,...,|T (x)| W (Li).

end if
end while
Output: An extensive 1-median B(x, r) with radius on T .

Theorem 3.5. The extensive 1-median problem on with radius trees can be solved in
linear time.
Example 3.6. Let an instance of the tree T = (V, E) be given as in Figue 5 with all
vertex weights are 1. Also, let α = 10 and β = 1 as a part of the input.

v1 v23

v3

1

v4

1

v5

1

v6
1

v7

1

v8
1

v9
1

v10
1

v11

1

v121

v13

1

v14
1

Fig. 5. An instance of the tree T = (V, E) in Example 3.6

Initialization: Take a 1-median x ≡ v1, then we can compute slope := α −
βW (O) = −3 < 0. We also get the set T (x) = {T1, T2, T3} with T1 induced by



The extensive 1-median problem with radius on networks 147

{v2, v5, v6, v11, v12, v13, v14} satisfying W (L1) > W (L2)+W (L3). The slope is slope :=
α − βW (O) = −3 < 0.

Iteration 1. Update x as the midpoint of (v1, v2) and r = 1.5. The slope is updated
as slope := −2. Then T (x) = {T1, T2} with T1 induced by {v2, v5, v6, v11, v12, v13, v14}
satisfying W (L1) = W (L2).

Iteration 2. Update r = 2.5. Then the slope is updated as slope := 2. We stop
the algorithm.

The extensive 1-median with radius on T is B(x, 2.5) with x being the midpoint
of (v1, v2).

4. CONCLUSIONS

We addressed the problem on locating an extensive facility centered with radius on
networks to minimize the conic combination of the radius value and the 1-median
objective with respect to the facility. For the problem on general graphs, we derive
the so-called finite dominating set. Then a brute force algorithm, that computes all
objective values at all elements in the finite dominating set, is applied to to solve the
problem on a graph G = (V, E) in O(|E||V |3). Finally, we developed an improved
algorithm to solve the problem on trees in linear time based on the piecewise linear
convexity of the objective function. Further research on multi-facility median location
with radius on networks is a promising topic. There is an open question if there is the
so-called finite dominating set result for the multi-facility problem on general graphs
and polynomial algorithm on tree graphs as it is important to reduce the search space
for an optimal solution.
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