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Abstract. We prove uniqueness of positive solutions for the problem
—Apu = Af(u) in Q, u=0on 0Q,

where 1 < p < 2 and p is close to 2, € is bounded domain in R™ with smooth
boundary 9, f : [0,00) — [0,00) with f(z) ~ 2% at oo for some 3 € (0,1), and X is
a large parameter. The monotonicity assumption on f is not required even for u large.
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1. INTRODUCTION

In this paper, we investigate uniqueness of positive solutions to the p-Laplacian BVP
—Apu=Af(u) inQ, (1)
u =0 on 0f),

where Apu = div(|Vu[P~™?Vu),1 < p < 2, Q is a bounded domain in R” with
boundary 052, A is a positive parameter, and f : [0,00) — [0, 00) is p-sublinear at occ.

It is well-known that (1.1) has a unique positive solutions for all A > 0 if f is
continuous on [0, 00) and quf)l is strictly decreasing on (0,00) (see the pioneering
work [3] for p = 2 and [9,10] for its extension to p > 1). When the latter condition
is not satisfied, there is a number of uniqueness results for (1.1) when the parameter
A is large (see e.g. [5-8,11,12,15,16] and the references therein). We are motivated
by the uniqueness results in [7,8,15,16] for p = 2 and f smooth with f(u) > 0 for
u > 0. In [15], Lin proved uniqueness of positive solutions to (1.1) when f(u) ~ u?
for some S € (0,1),limsup,,_, % < 1, and limsup,,_, o+ u?|f/(u)| < co. The case
when f is bounded was discussed in [8] and [16], where f(u) - C > 0 as u — o
and either £(0) > 0 or f/(0) > 0 in [8], and lim, o 2% = 0, infjg o) f > 0 together
with liminf, o f(uw) > limsup,,_,., uf'(u) in [16]. Note that in these references, the
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nonlinearity f is not required to be increasing or decreasing even for u large. For
p > 1, uniqueness results for (1.1) were obtained in [5,6,11,12] for A large under
the p-sublinear assumption together with some monotonicity conditions on f. In this
paper, we will provide a uniqueness result in the absence of this common monotonicity
requirement when 1 < p < 2 and p is close to 2, f(u) ~ u” at oo for some 3 € (0,1)
together with some natural conditions at 0 and oo. Thus our result provides an
extension of the work in [7,8,15,16] from p = 2 to p € (1,2) with p ~ 2, which seems
to be the first in the literature. In particular, when applied to the model example
f(u) = u” +sin?(u?), where 3 € (0,1), Theorem 1.1 below gives uniqueness of positive
solutions to (1.1) provided A is large and p < 2 is close to 2. A calculation shows
that f(u) is neither increasing nor decreasing even for u large. We refer to the recent
monograph [19] for the abstract results used in this paper, and to [1,4,18-20] for the
analysis of related nonlinear problems.
We make the following assumptions:

(A1) f :[0,00) — [0,00) is continuous and of class C*' on (0,00) with f(u) > 0
for u > 0.
Ay) There exists a constant 8 € (0, 1) such that lim,_, % =1.

)

A3) limsup,_, . “J{(/S)‘) <1
)
)

A4) liminf, o+ 249 > 0.
A

5) There exists a € (0, 1) such that lim sup,,_,q+ v f/(u)| < co.

(
(
(
(
By a positive solution of (1.1), we mean a function u € C*¥(Q) for some v € (0,1)

with w > 0 in © and satisfying (1.1) in the weak sense.
Our main result is the following.

Theorem 1.1. Let 1 < p < 2 and (A1)—(As) hold. Then if p is sufficiently close to 2,

there exists a constant Ag > 0 such that (1.1) has a unique positive solution for X > Ag.
Remark 1.2. (i) Theorem 1.1 is not true for A > 0 small. Indeed, let o, 8 € (0, 1) and
uP~ =% for u € (0,1),
=" ®1)
U foru > 1,

where a = p — 1 — 8. Note that a > 0 if p is sufficiently close to 2. Then (A1)—(As)
hold. Suppose u is a positive solution of (1.1) with A < A;e®~!, where \; denotes
the first eigenvalue of —A, with Dirichlet boundary condition. Since a < 1 — §,
f(u) < e'=ByP~! for all u > 0. Hence, multiplying the equation in (1.1) by u and

integrating, we get
/|Vu|pd:c < Aelfﬂ/updx < Al/upd:r,

Q Q Q
a contradiction with
) Jo IVv[Pdz
A= inf S
vewdr () Jq lvlPde
v#0

Hence, (1.1) has no positive solution for A small.
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(ii) Theorem 1.1 gives uniqueness of positive solutions to (1.1) when

lim sup UJJ:(IS;)

where p € (1,2) and is sufficiently close to 2 without requiring any monotonicity of f.
We believe that without any monotonicity assumption, uniqueness for (1.1) for A
large under conditions (1.2) and (A1), (As), (A4), (As) for other values of p is an
open question. Note that a uniqueness result under these conditions together with the
additional assumption that f is nondecreasing on [0, 00) was obtained in [12].

<p-1 (1.2)

2. PRELIMINARIES

In what follows, we denote by d(z) the distance from z to the boundary 9. Let
A1 be the first eigenvalue of —A, with Dirichlet boundary conditions, and ¢; the
corresponding positive normalized eigenfunction, i.e. ||¢1]/co = 1.

Lemma 2.1. Let h : [0,00) — [0,00) be nondecreasing and D be an open set in .
Suppose there exists ¢ € (0,p — 1) such that u~h(u) is nonincreasing on (0,00) and
liminf, o+ u'=Ph(u) > 0. Let g : Q — [0,00) be bounded in Q. Then the problem

—Ayu= Aw) zn D, u=0 on 90N (2.1)
g(x) in Q\D,

has a positive solution ¢pp € C*(Q) with infq %’ > 0. Furthermore,
(i) ¢p — wp in CH(Q) as |[Q\D| — 0, where w, is the solution of
—Apu=h(u) inQ, uw=0 on N (2.2)
and |A| denotes the Lebesgue measure of A; B
(ii) Let h(u) = u® for some B € (0,1). Then w, — wy in C1(Q) asp — 2, p < 2.
Proof. We first show that the problem

{Apu = h(u) +g(z) inQ,

2.3
u=20 on 0N. (23)

has a positive solution by the method of sub- and supersolutions.
Clearly the function w, defined in (2.2) is a subsolution of (2.3). Note that the
existence and uniqueness of w, follows from [9,10].

Let ¢ € C'(Q) satisfy
—App=1inQ, ¢ =0 on Q. (2.4)

Then
—Ap (M) = MP~1 > Mh(y) + g(x) > h(My) + g(x) in Q
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for M large since h is nondecreasing with u~9h(u) decreasing, ¢ < p — 1, and g is
bounded in Q. Thus M) is a supersolution of (2.3) with My > w,, in Q for M large.
Hence, (2.3) has a solution ¢ € C'(Q) with w, < ¢ < M4 in Q. Next, we show that
the problem

0 in Q\D,

has a positive solution. Let 1y be the solution of

D)
—Ayu = A1 Tn ’ u =0 on 99.
0 in Q\D,

—Apu = {h(u) in D, u =0 on 90 (2.5)

By the strong maximum principle [22], infq ¢° > my for some my € (0,1).
Since lim inf,,_,o+ u' ~Ph(u) > 0, inf,c0,1) u u=Ph(u) = mg > 0. Hence

h(etho) = hiemidn) = (ema) h(d1) = (ema)mod "
> A1(€¢1)p = p(5¢0) in D
for e small. Thus ety is a subsolution of (2.5). Since w, is a supersolution of (2.5)
with wy, > evyp in Q for e small, it follows that (2.5) has a solution ¢; with g < ¥
< wp in Q. Clearly ¢, and ¢ are sub- and supersolution of (2.1) respectively with
Y1 < w, <9 in Q, and the existence of a solution ¢p € C1(Q) with infq %’ >0
follows.
(i) Let M > 0 be such that
glx) <M

for x € Q. Then
—Au(¢p) < h(l|¢p|loo) + M in Q,

which implies by the maximum principle that

—Ap< ¢ 1>§1inQ.
(h(llgpllec) + M) 7T

This implies ¢p € C**(Q) for some v € (0,1) and there exists a constant M; > 0
independent of ¢p such that

6plcre < My(A(||¢p]loo) + M)7T < My (h(|¢p|orw) + M)7=T

In particular,

Wloplorw) + M 1
e Mp b
h(t)+M

Since lim; oo —=1— = 0, there exists a constant M3 > 0 independent of D such that
|op|ory < Ms. Let (D,,) be a sequence of open sets in € such that |Q\D,,| — 0 as
n — oo, and let ¢, = ¢p . Then for £ € Wy (Q),

/ Vo P2V, - Védr = / h(on)Edx + / gédx. (2.6)

Q D, Q\Dn
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Since |¢y|c1e < Mo, there exists w, € C'() and a subsequence of (¢,,), which we still
denote by (¢,,), such that ¢,, — w, in C1(Q).
Since

:
[ lselae < ar [ jelae < ar (| [igras | o,
Q

Q\D., Q\D,

it follows that fQ\D |g€|dz — 0 as n — oo. Hence by letting n — oo in (2.6), we obtain

/ |Vw, |P~?Vw, - Védr = / h(wy)édx
Q

Q

for all £ € Wol’p(i ), i.e. wp is the solution of —A,u = h(u) in Q,u = 0 on 0. Thus
ép — w, in CH(Q) as |Q\D| — 0, i.e. (i) holds.
(ii) Note that § < p — 1 for p < 2,p ~ 2, which we assume. Since

—Apwp = W;[j < ||WpH£o in €2,

it follows that

Wp

lwpllse™
By the comparison principle,
<4 i@, (2.8)
lop &

where 1) is defined in (2.4). Let R > 1 be such that Q C B(0, R), where B(0, R)
denotes the open ball centered at 0 with radius R in R™. Let w satisfy

—Apw=1in B(0,R), w=0ondB(0,R).

Then 9 < w, in Q by Lemma 0 in [13]. Since

1
N 7=1(p—1
wiz) = XD pot s for g€ B(O, R),
p
it follows that .
Y < R7—1 < R in Q for p > 3/2, (2.9)

i.e 9 is uniformly bounded in Q by a constant independent of p for p > 3/2.
Hence, (2.8) gives
3(p=1) 4
leoplloc < REH < R
for p < 2 sufficiently close to 2, as 2(_”;_1% J % as p T 2. Thus wy, is uniformly bounded
by a constant independent of p for p ~ 2, p < 2.
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By (2.7)—(2.8) and Lieberman’s regularity result [14, Theorem 1], there exist
constants v € (0,1) and C' > 0 independent of such p such that

Wicl <C,
lap |1

which implies
B

lwylere < Cllwp| LT < CRTPGD < CRT

for p > 3/2, i.e. wp is bounded in C’l"’(f__l) by a constant independent of p for p < 2,
p ~ 2. To show that w, — we in C'(Q) as p — 2, p < 2, let (p,) be such that
Pn < 2,pn — 2 as n — oco. Then for £ € WyP(Q),

/ |Vwp,,
Q

Since (wp, ) is bounded in C**(9), it has a subsequence which we still denote by (w,, )
and a function ¢ € C*(Q) such that w,, — ¢ in C1(Q) as n — .
Let n — oo in (2.10), we obtain

P2y, - VE do = / wh ¢ dw. (2.10)
Q

/qu - VE dx = /¢ﬂ§ dz for all £ € WyP(Q),
Q Q

ie. ¢ = wy in Q. Hence w, — wy in C'(Q) as p — 2, p < 2, which completes
the proof. O

Next, we establish a comparison principle.

Lemma 2.2. Let h, g and D be as in Lemma 2.1. Let u,v € CY(Q) satisfy
info 7 > 0 and

in D
—Apu > h(w) m ", u>0 on 0N
g(x) in Q\D
(2.11)
in D
resp. — Apu < ) m ", u<0onof|,
g(x) in Q\D
—Apv = h(v) m D, , v =0 on 0.
g(x) in Q\D

Then u > v in Q (resp. u < v on 9NQ).

Proof. Since infq 4§ >0 and v € C! (Q), info = > 0. Let ¢ be the largest number such
that u > cv in Q and suppose ¢ < 1. Then

—Apu > h(u) > h(cv) > c¢?h(v) in D,
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()= e

By the weak comparison principle [21, Lemma A.2], u > c7 Ty in Q. This implies

which implies

c> ¢~ and so ¢ > 1, a contradiction. Thus u > v in Q.
Next suppose the inequality < in (2.11) holds. Let C' be the smallest positive
number such that v < Cv in 2 and suppose C > 1. Then

—Apu < h(u) < h(Cv) < Clh(v) in D,

—Ap< uq )S h(v) %nD,

Cr1 g(x) in Q\D.

Hence u < C7 1y in Q. This implies C' < C7=1 and so C < 1, a contradiction. Thus
u < wv in , which completes the proof. O

which implies

Lemma 2.3. Let (A1)—(Ay) hold, 5 <p—1, and uy be a positive solution of (1.1).
Then
lm — 2@y (2.12)
A—00 )\mwp(z)
uniformly for x € €, where we recall that w, € CI(Q) is the unique solution of

pru:uﬁ inQ, u=0 on JN.

Proof. By Lemma 3.1 in [15],
ux > pgr in

for A > A1 /k, where k, 1 > 0 are such that f(z) > kzP~! for 2 € (0, u].
Let K be a compact subset of 2 and ¢ = ming f(u¢,) > 0. Then

—Apuy > Acxk in €,
where x i denotes the characteristic function on K. This implies
uy > ()\c)ﬁz > A7 Teyd in Q, (2.13)

where z is the positive solution of —Ay,u = xx in Q,u = 0 on 09, and
= crT info 5 > 0.
Let € € (0,1). Then there exists a constant A > 0 such that

(1—e)2? < f(z2) <(1+4¢e)2f for z> A (2.14)

in view of (As). The left side inequality in (2.14) implies that

_ B
CAyuy > A (1—e)uy, uy> A,
0, uy < A.
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Define @y = = u). Then

(1- 5)115, uy > A,

—Aply >
pA_{O, uy < A.

By Lemma 2.2 with h(u) = (1 — ¢)u?, g(z) = 0, it follows that @y > iy in 2, where
U, satisfies

CA Gy — (1—6)12&?, u,\>A,
P 0, uy < A.

Note that @y = (1 — a)ﬁwx, where w), satisfies
8 A
_prk = {’UJ)\, Ux > )
0, uy < A.
By (2.13),
{z:ur(z) < A} C {x €:d(x) < Acl)\_plﬁ}’

from which it follows that [{z : ux(z) < A}| — 0 as A — oo. Hence Lemma 2.1 gives

wy — wp in CH(Q), which implies wy > (1 — €)w, in Q for A large. Consequently,

uy = AFTB iy > AFTB iy > AFF (1 — )7 T Bw, in €. (2.15)

for A large. By choosing ¢ small, we obtain uy > w,/2 in 2 for A large, which we assume.
Next, the right side inequality in (2.14) implies
B
—Apuy < A {(1 +e)uy, ux> A4,
ca, uy < A,

where ca = sup,¢(, 4] f(2). Hence

~3
CALa < (1 +e)ay, uy> A,
ca, uy < A.

By Lemma 2.2, u) < @) in 2, where @) satisfies

N {(1+E)ﬁ§, uy > A,
prux =
Ca, uy < A.

Note that 4y = (1 + E)P*Lﬁ wy.Since wy — w, in CH(Q),wy < (14 &)w, in Q for A
large. Consequently,

uxy = A\FTB @y, < AT Ay, < AFTE (1 4 6) 7R w, in €. (2.16)
Combining (2.15) and (2.16), we deduce that
uy

T <1+ e)pfiﬁ in Q
AT,

(1- )77 <

for X large, i.e. (2.12) holds, which completes the proof. O
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Lemma 2.4. Let (A1)—(A4) hold and uy be a positive solution of (1.1) with1 < p < 2.
Then if p is sufficiently close to 2, there exists a constant M > 0 independent of p
such that )

luxlcr < MAFT=7

for X large.

Proof. Let k > 1 and Sy € (8,1). Then Sy < p — 1 if p is sifficiently close to 2. Since
[lualloc = 00 as A — oo in view of Lemma 2.3, it follows from (A3) that

Flu) < wlul%
for X large. Hence
—Ayu < Akllul) in Q,
ie.

u
-8, | ———— | <1

(Ar) 7 [lul| 55

)

from which it follows that

u .
5 < in Q,

(AR) 7T fJu| 5T

where 9 is defined in (2.4). Recall that ||9)||e is bounded independent of p for p > 3/2
in view of (2.9). Hence by [14, Theorem 1],

|u|c

- =K
()7 [uf &

1

1—_B_
where K > 1 is a constant independent of X, p. This implies |u|,, "~" < K(Ak)7=T, ie.

p—1 1 Bo 1 1 1
lulcr < KP=1-F (Ak)P=1-F < KPo—B KPo-B\p=1-8 = M\p=1-5

which completes the proof. O

3. PROOF OF THEOREM 1.1.

Proof. The existence of a positive solution to (1.1) for A large follows from the method
of sup- and supersolutions. Indeed, it is easy to see that for A large enough, e¢; is
a subsolution of (1.1) for ¢ small while M¢ is a supersolution of (1.1) for M large,
where ¢ satisfies —Ap¢ =1 in 2, ¢ = 0 on .

Let u,v be positive solutions of (1.1) for A large and let w = u — v.

By (As), there exists a constant ¢ € (0,1) such that

e
fim sup =576)

< 4. (3.1)
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Let dg, 01 € (0,1) be such that 65§(ﬁ71) < 61. By making p close enough to 2, we can
assume that
wp > dpwe in (3.2)

(in view of Lemma 2.1(ii)), and &; < p — 1, (2M)277562" ") < §;, where M is defined
in Lemma 2.4.
By (3.1) and (Aj), there exists a constant A > 0 such that

0

£ < g5

(3.3)

for £ > A. Multiplying the equation
—Apu— (=Apv) = A(f(u) — f(v)) in Q

by w and integrating, we obtain

) wdx

/ (IVulP~2Vu — |Vu[P2V0) - (Vu — Vo)dz = A
Q

A

w

3.4
Q/

where ¢ is between u(z) and v(z). Using the inequality

(lz| + ly))> P (|=P 2 = [y y) - (x —y) = (p — 1)|z — y|?

for 1 <p<2andx,yeR" (see [17, Lemma 30.1]) with x = Vu and y = Vv in (3.4),
we obtain from Lemma 2.4 that

(p—1) [ |Vw|?dz < X775 2M)>P | wf'(€)dz. (3.5)
/ /

By Lemma 2.3,
1
U, v > JpAP—1-Fw, in Q (3.6)
for A large. This, together with (3.2) and (3.3), implies

6 w?
/ f dx<(5/ 1ﬁ - / dzx
B plf 1-p5
§ (5 A [£>A Wp

E>A E>A

< 520V AT T /

(3.7)

dw < 360" D A#rs /lwl da,
W2

where we have used the inequality [, w? wl e < Jo IVw|?dz in [15, Lemma 3.5].
Thus
AFTOE (2M)2 P / w?|f(€)|dz < (2M)2*p56§(5_1)/|Vw|2dx < 51/|Vw|2dx.
Q Q

E>A
(3.8)
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By (As), there exists a constant C' > 0 such that

for £ € (0, 4]. (3.9)

, C
(€] < £ita

By Hardy’s inequality [2, p. 194], there exists a constant m > 0 such that

/‘2‘2dgc§m/|Vz|2d9L‘7
Q Q

for all 2 € H}(2), where d(x) denotes the distance function.
This, together with (3.2), (3.6), and (3.9), implies

2 C ,w2
wzflfdwgC/w—de — / dx

E<A E<A E<A
O\ »— 1 =17 w? _ _lta w |2
< 5207a) ita / d1+adx§Co)\ —1-7 /‘E’ dx
0 Co
E<A Q

<CONTFIE / \Vw|2dz,

where
LW _ Cldlze _
[ lgf? > O7 O() = W, and 01 = O()m.
Consequently,
AT (2M)*~P / w2 f(€)|dx < CL(2M)> PN /|Vw| dx. (3.10)

E<A

Combining (3.5), (3.8) and (3.10), we obtain

(p— 1)/|Vw|2dx < (014 Cy ((2M)2*pxipfffﬂ)/|vw|2dz,
Q Q

which implies [, |[Vw|?dr = 0, i.e. w = 0 on Q, provided that ) is large enough so that
b1+ (M)A ) <p- 1.

This completes the proof of Theorem 1.1. O
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