UNIQUENESS FOR A CLASS p-LAPLACIAN PROBLEMS WHEN A PARAMETER IS LARGE

B. Alreshidi and D.D. Hai
Communicated by Vicenţiu D. Rădulescu

Abstract. We prove uniqueness of positive solutions for the problem

$$
-\Delta_{p} u=\lambda f(u) \text { in } \Omega, u=0 \text { on } \partial \Omega,
$$

where $1<p<2$ and p is close to $2, \Omega$ is bounded domain in \mathbb{R}^{n} with smooth boundary $\partial \Omega, f:[0, \infty) \rightarrow[0, \infty)$ with $f(z) \sim z^{\beta}$ at ∞ for some $\beta \in(0,1)$, and λ is a large parameter. The monotonicity assumption on f is not required even for u large.

Keywords: singular p-Laplacian, uniqueness, positive solutions.
Mathematics Subject Classification: 35J92, 35J75.

1. INTRODUCTION

In this paper, we investigate uniqueness of positive solutions to the p-Laplacian BVP

$$
\begin{cases}-\Delta_{p} u=\lambda f(u) & \text { in } \Omega \tag{1.1}\\ u=0 & \text { on } \partial \Omega\end{cases}
$$

where $\Delta_{p} u=\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right), 1<p<2, \Omega$ is a bounded domain in \mathbb{R}^{n} with boundary $\partial \Omega, \lambda$ is a positive parameter, and $f:[0, \infty) \rightarrow[0, \infty)$ is p-sublinear at ∞.

It is well-known that (1.1) has a unique positive solutions for all $\lambda>0$ if f is continuous on $[0, \infty)$ and $\frac{f(u)}{u^{p-1}}$ is strictly decreasing on $(0, \infty)$ (see the pioneering work [3] for $p=2$ and $[9,10]$ for its extension to $p>1$). When the latter condition is not satisfied, there is a number of uniqueness results for (1.1) when the parameter λ is large (see e.g. $[5-8,11,12,15,16]$ and the references therein). We are motivated by the uniqueness results in $[7,8,15,16]$ for $p=2$ and f smooth with $f(u)>0$ for $u>0$. In [15], Lin proved uniqueness of positive solutions to (1.1) when $f(u) \sim u^{\beta}$ for some $\beta \in(0,1), \lim \sup _{u \rightarrow \infty} \frac{u f^{\prime}(u)}{f(u)}<1$, and $\lim \sup _{u \rightarrow 0^{+}} u^{2}\left|f^{\prime}(u)\right|<\infty$. The case when f is bounded was discussed in [8] and [16], where $f(u) \rightarrow C>0$ as $u \rightarrow \infty$ and either $f(0)>0$ or $f^{\prime}(0)>0$ in [8], and $\lim _{u \rightarrow \infty} \frac{f(u)}{u}=0, \inf _{[0, \infty)} f>0$ together with $\lim \inf _{u \rightarrow \infty} f(u)>\limsup \operatorname{sum}_{u \rightarrow \infty} u f^{\prime}(u)$ in [16]. Note that in these references, the
nonlinearity f is not required to be increasing or decreasing even for u large. For $p>1$, uniqueness results for (1.1) were obtained in $[5,6,11,12]$ for λ large under the p-sublinear assumption together with some monotonicity conditions on f. In this paper, we will provide a uniqueness result in the absence of this common monotonicity requirement when $1<p<2$ and p is close to $2, f(u) \sim u^{\beta}$ at ∞ for some $\beta \in(0,1)$ together with some natural conditions at 0 and ∞. Thus our result provides an extension of the work in $[7,8,15,16]$ from $p=2$ to $p \in(1,2)$ with $p \sim 2$, which seems to be the first in the literature. In particular, when applied to the model example $f(u)=u^{\beta}+\sin ^{2}\left(u^{\beta}\right)$, where $\beta \in(0,1)$, Theorem 1.1 below gives uniqueness of positive solutions to (1.1) provided λ is large and $p<2$ is close to 2 . A calculation shows that $f(u)$ is neither increasing nor decreasing even for u large. We refer to the recent monograph [19] for the abstract results used in this paper, and to $[1,4,18-20]$ for the analysis of related nonlinear problems.

We make the following assumptions:
$\left(\mathrm{A}_{1}\right) f:[0, \infty) \rightarrow[0, \infty)$ is continuous and of class C^{1} on $(0, \infty)$ with $f(u)>0$ for $u>0$.
$\left(\mathrm{A}_{2}\right)$ There exists a constant $\beta \in(0,1)$ such that $\lim _{u \rightarrow \infty} \frac{f(u)}{u^{\beta}}=1$.
$\left(\mathrm{A}_{3}\right) \lim \sup _{u \rightarrow \infty} \frac{u f^{\prime}(u)}{f(u)}<1$.
$\left(\mathrm{A}_{4}\right) \liminf _{u \rightarrow 0^{+}} \frac{f(u)}{u^{p-1}}>0$.
$\left(\mathrm{A}_{5}\right)$ There exists $\alpha \in(0,1)$ such that $\lim \sup _{u \rightarrow 0^{+}} u^{\alpha+1}\left|f^{\prime}(u)\right|<\infty$.
By a positive solution of (1.1), we mean a function $u \in C^{1, \nu}(\bar{\Omega})$ for some $\nu \in(0,1)$ with $u>0$ in Ω and satisfying (1.1) in the weak sense.

Our main result is the following.
Theorem 1.1. Let $1<p<2$ and $\left(\mathrm{A}_{1}\right)-\left(\mathrm{A}_{5}\right)$ hold. Then if p is sufficiently close to 2 , there exists a constant $\lambda_{0}>0$ such that (1.1) has a unique positive solution for $\lambda>\lambda_{0}$.
Remark 1.2. (i) Theorem 1.1 is not true for $\lambda>0$ small. Indeed, let $\alpha, \beta \in(0,1)$ and

$$
f(u)= \begin{cases}u^{p-1} e^{a(1-u)} & \text { for } u \in(0,1) \\ u^{\beta} & \text { for } u \geq 1\end{cases}
$$

where $a=p-1-\beta$. Note that $a>0$ if p is sufficiently close to 2 . Then $\left(\mathrm{A}_{1}\right)-\left(\mathrm{A}_{5}\right)$ hold. Suppose u is a positive solution of (1.1) with $\lambda<\lambda_{1} e^{\beta-1}$, where λ_{1} denotes the first eigenvalue of $-\Delta_{p}$ with Dirichlet boundary condition. Since $a \leq 1-\beta$, $f(u) \leq e^{1-\beta} u^{p-1}$ for all $u \geq 0$. Hence, multiplying the equation in (1.1) by u and integrating, we get

$$
\int_{\Omega}|\nabla u|^{p} d x \leq \lambda e^{1-\beta} \int_{\Omega} u^{p} d x<\lambda_{1} \int_{\Omega} u^{p} d x
$$

a contradiction with

$$
\lambda_{1}=\inf _{\substack{v \in W_{0}^{1, p}(\Omega) \\ v \neq 0}} \frac{\int_{\Omega}|\nabla v|^{p} d x}{\int_{\Omega}|v|^{p} d x}
$$

Hence, (1.1) has no positive solution for λ small.
(ii) Theorem 1.1 gives uniqueness of positive solutions to (1.1) when

$$
\begin{equation*}
\lim \sup _{u \rightarrow \infty} \frac{u f^{\prime}(u)}{f(u)}<p-1 \tag{1.2}
\end{equation*}
$$

where $p \in(1,2)$ and is sufficiently close to 2 without requiring any monotonicity of f. We believe that without any monotonicity assumption, uniqueness for (1.1) for λ large under conditions (1.2) and $\left(\mathrm{A}_{1}\right),\left(\mathrm{A}_{2}\right),\left(\mathrm{A}_{4}\right),\left(\mathrm{A}_{5}\right)$ for other values of p is an open question. Note that a uniqueness result under these conditions together with the additional assumption that f is nondecreasing on $[0, \infty)$ was obtained in [12].

2. PRELIMINARIES

In what follows, we denote by $d(x)$ the distance from x to the boundary $\partial \Omega$. Let λ_{1} be the first eigenvalue of $-\Delta_{p}$ with Dirichlet boundary conditions, and ϕ_{1} the corresponding positive normalized eigenfunction, i.e. $\left\|\phi_{1}\right\|_{\infty}=1$.

Lemma 2.1. Let $h:[0, \infty) \rightarrow[0, \infty)$ be nondecreasing and D be an open set in Ω. Suppose there exists $q \in(0, p-1)$ such that $u^{-q} h(u)$ is nonincreasing on $(0, \infty)$ and $\lim \inf _{u \rightarrow 0^{+}} u^{1-p} h(u)>0$. Let $g: \Omega \rightarrow[0, \infty)$ be bounded in Ω. Then the problem

$$
-\Delta_{p} u=\left\{\begin{array}{ll}
h(u) & \text { in } D, \tag{2.1}\\
g(x) & \text { in } \Omega \backslash D,
\end{array} \quad u=0 \text { on } \partial \Omega\right.
$$

has a positive solution $\phi_{D} \in C^{1}(\bar{\Omega})$ with $\inf _{\Omega} \frac{\phi_{D}}{d}>0$. Furthermore,
(i) $\phi_{D} \rightarrow \omega_{p}$ in $C^{1}(\bar{\Omega})$ as $|\Omega \backslash D| \rightarrow 0$, where ω_{p} is the solution of

$$
\begin{equation*}
-\Delta_{p} u=h(u) \text { in } \Omega, \quad u=0 \text { on } \partial \Omega \tag{2.2}
\end{equation*}
$$

and $|A|$ denotes the Lebesgue measure of A;
(ii) Let $h(u)=u^{\beta}$ for some $\beta \in(0,1)$. Then $\omega_{p} \rightarrow \omega_{2}$ in $C^{1}(\bar{\Omega})$ as $p \rightarrow 2, p<2$.

Proof. We first show that the problem

$$
\begin{cases}-\Delta_{p} u=h(u)+g(x) & \text { in } \Omega \tag{2.3}\\ u=0 & \text { on } \partial \Omega\end{cases}
$$

has a positive solution by the method of sub- and supersolutions.
Clearly the function ω_{p} defined in (2.2) is a subsolution of (2.3). Note that the existence and uniqueness of ω_{p} follows from $[9,10]$.

Let $\psi \in C^{1}(\bar{\Omega})$ satisfy

$$
\begin{equation*}
-\Delta_{p} \psi=1 \text { in } \Omega, \quad \psi=0 \text { on } \partial \Omega \tag{2.4}
\end{equation*}
$$

Then

$$
-\Delta_{p}(M \psi)=M^{p-1} \geq M^{q} h(\psi)+g(x) \geq h(M \psi)+g(x) \text { in } \Omega
$$

for M large since h is nondecreasing with $u^{-q} h(u)$ decreasing, $q<p-1$, and g is bounded in Ω. Thus $M \psi$ is a supersolution of (2.3) with $M \psi \geq \omega_{p}$ in Ω for M large. Hence, (2.3) has a solution $\bar{\psi} \in C^{1}(\bar{\Omega})$ with $\omega_{p} \leq \bar{\psi} \leq M \psi$ in Ω. Next, we show that the problem

$$
-\Delta_{p} u=\left\{\begin{array}{ll}
h(u) & \text { in } D, \tag{2.5}\\
0 & \text { in } \Omega \backslash D,
\end{array} \quad u=0 \text { on } \partial \Omega\right.
$$

has a positive solution. Let ψ_{0} be the solution of

$$
-\Delta_{p} u=\left\{\begin{array}{ll}
\lambda_{1} \phi_{1}^{p-1} & \text { in } D, \\
0 & \text { in } \Omega \backslash D,
\end{array} \quad u=0 \text { on } \partial \Omega\right.
$$

By the strong maximum principle [22], $\inf _{\Omega} \frac{\psi_{0}}{\phi_{1}} \geq m_{1}$ for some $m_{1} \in(0,1)$.
Since $\liminf \inf _{u \rightarrow 0^{+}} u^{1-p} h(u)>0, \inf _{u \in(0,1]} u^{1-p} h(u)=m_{0}>0$. Hence

$$
\begin{aligned}
h\left(\varepsilon \psi_{0}\right) & \geq h\left(\varepsilon m_{1} \phi_{1}\right) \geq\left(\varepsilon m_{1}\right)^{q} h\left(\phi_{1}\right) \geq\left(\varepsilon m_{1}\right)^{q} m_{0} \phi_{1}^{p-1} \\
& \geq \lambda_{1}\left(\varepsilon \phi_{1}\right)^{p-1}=-\Delta_{p}\left(\varepsilon \psi_{0}\right) \text { in } D
\end{aligned}
$$

for ε small. Thus $\varepsilon \psi_{0}$ is a subsolution of (2.5). Since ω_{p} is a supersolution of (2.5) with $\omega_{p} \geq \varepsilon \psi_{0}$ in Ω for ε small, it follows that (2.5) has a solution ψ_{1} with $\varepsilon \psi_{0} \leq \psi_{1}$ $\leq \omega_{p}$ in Ω. Clearly ψ_{1} and $\bar{\psi}$ are sub- and supersolution of (2.1) respectively with $\psi_{1} \leq \omega_{p} \leq \bar{\psi}$ in Ω, and the existence of a solution $\phi_{D} \in C^{1}(\bar{\Omega})$ with $\inf _{\Omega} \frac{\phi_{D}}{d}>0$ follows.
(i) Let $M>0$ be such that

$$
g(x) \leq M
$$

for $x \in \Omega$. Then

$$
-\Delta_{p}\left(\phi_{D}\right) \leq h\left(\left\|\phi_{D}\right\|_{\infty}\right)+M \text { in } \Omega
$$

which implies by the maximum principle that

$$
-\Delta_{p}\left(\frac{\phi_{D}}{\left(h\left(\left\|\phi_{D}\right\|_{\infty}\right)+M\right)^{\frac{1}{p-1}}}\right) \leq 1 \text { in } \Omega
$$

This implies $\phi_{D} \in C^{1, \nu}(\bar{\Omega})$ for some $\nu \in(0,1)$ and there exists a constant $M_{1}>0$ independent of ϕ_{D} such that

$$
\left|\phi_{D}\right|_{C^{1, \nu}} \leq M_{1}\left(h\left(\left\|\phi_{D}\right\|_{\infty}\right)+M\right)^{\frac{1}{p-1}} \leq M_{1}\left(h\left(\left|\phi_{D}\right|_{C^{1, \nu}}\right)+M\right)^{\frac{1}{p-1}} .
$$

In particular,

$$
\frac{h\left(\left|\phi_{D}\right|_{C^{1, \nu}}\right)+M}{\left|\phi_{D}\right|_{C^{1, \nu}}^{p-1}} \geq \frac{1}{M_{1}^{p-1}} .
$$

Since $\lim _{t \rightarrow \infty} \frac{h(t)+M}{t^{p-1}}=0$, there exists a constant $M_{2}>0$ independent of D such that $\left|\phi_{D}\right|_{C^{1, \nu}} \leq M_{2}$. Let $\left(D_{n}\right)$ be a sequence of open sets in Ω such that $\left|\Omega \backslash D_{n}\right| \rightarrow 0$ as $n \rightarrow \infty$, and let $\phi_{n} \equiv \phi_{D_{n}}$. Then for $\xi \in W_{0}^{1, p}(\Omega)$,

$$
\begin{equation*}
\int_{\Omega}\left|\nabla \phi_{n}\right|^{p-2} \nabla \phi_{n} \cdot \nabla \xi d x=\int_{D_{n}} h\left(\phi_{n}\right) \xi d x+\int_{\Omega \backslash D_{n}} g \xi d x . \tag{2.6}
\end{equation*}
$$

Since $\left|\phi_{n}\right|_{C^{1, \nu}} \leq M_{2}$, there exists $\omega_{p} \in C^{1}(\bar{\Omega})$ and a subsequence of $\left(\phi_{n}\right)$, which we still denote by $\left(\phi_{n}\right)$, such that $\phi_{n} \rightarrow \omega_{p}$ in $C^{1}(\bar{\Omega})$.

Since

$$
\int_{\Omega \backslash D_{n}}|g \xi| d x \leq M \int_{\Omega \backslash D_{n}}|\xi| d x \leq M\left(\int_{\Omega}|\xi|^{p} d x\right)^{\frac{1}{p}}\left|\Omega \backslash D_{n}\right|^{\frac{p-1}{p}},
$$

it follows that $\int_{\Omega \backslash D_{n}}|g \xi| d x \rightarrow 0$ as $n \rightarrow \infty$. Hence by letting $n \rightarrow \infty$ in (2.6), we obtain

$$
\int_{\Omega}\left|\nabla w_{p}\right|^{p-2} \nabla w_{p} \cdot \nabla \xi d x=\int_{\Omega} h\left(w_{p}\right) \xi d x
$$

for all $\xi \in W_{0}^{1, p}(\Omega)$, i.e. ω_{p} is the solution of $-\Delta_{p} u=h(u)$ in $\Omega, u=0$ on $\partial \Omega$. Thus $\phi_{D} \rightarrow \omega_{p}$ in $C^{1}(\bar{\Omega})$ as $|\Omega \backslash D| \rightarrow 0$, i.e. (i) holds.
(ii) Note that $\beta<p-1$ for $p<2, p \sim 2$, which we assume. Since

$$
-\Delta_{p} \omega_{p}=\omega_{p}^{\beta} \leq\left\|\omega_{p}\right\|_{\infty}^{\beta} \text { in } \Omega
$$

it follows that

$$
\begin{equation*}
0 \leq-\Delta_{p}\left(\frac{\omega_{p}}{\left\|\omega_{p}\right\|_{\infty}^{\frac{\beta}{p-1}}}\right) \leq 1 \text { in } \Omega \tag{2.7}
\end{equation*}
$$

By the comparison principle,

$$
\begin{equation*}
\frac{\omega_{p}}{\left\|\omega_{p}\right\|_{\infty}^{\frac{\beta}{p-1}}} \leq \psi \text { in } \Omega \tag{2.8}
\end{equation*}
$$

where ψ is defined in (2.4). Let $R>1$ be such that $\bar{\Omega} \subset B(0, R)$, where $B(0, R)$ denotes the open ball centered at 0 with radius R in \mathbb{R}^{n}. Let w satisfy

$$
-\Delta_{p} w=1 \text { in } B(0, R), \quad w=0 \text { on } \partial B(0, R)
$$

Then $\psi \leq w_{p}$ in Ω by Lemma 0 in [13]. Since

$$
w(x)=\frac{N^{-\frac{1}{p-1}}(p-1)}{p}\left(R^{\frac{p}{p-1}}-|x|^{\frac{p}{p-1}}\right) \quad \text { for } x \in B(0, R),
$$

it follows that

$$
\begin{equation*}
\psi \leq R^{\frac{p}{p-1}} \leq R^{3} \text { in } \Omega \text { for } p>3 / 2 \tag{2.9}
\end{equation*}
$$

i.e ψ is uniformly bounded in Ω by a constant independent of p for $p>3 / 2$.

Hence, (2.8) gives

$$
\left\|\omega_{p}\right\|_{\infty} \leq R^{\frac{3(p-1)}{p-1-\beta}} \leq R^{\frac{4}{1-\beta}}
$$

for $p<2$ sufficiently close to 2 , as $\frac{3(p-1)}{p-1-\beta} \downarrow \frac{3}{1-\beta}$ as $p \uparrow 2$. Thus ω_{p} is uniformly bounded by a constant independent of p for $p \sim 2, p<2$.

By (2.7)-(2.8) and Lieberman's regularity result [14, Theorem 1], there exist constants $\nu \in(0,1)$ and $C>0$ independent of such p such that

$$
\frac{\left|\omega_{p}\right|_{C^{1, \nu}}}{\left\|\omega_{p}\right\|_{\infty}^{\frac{\beta}{p-1}}} \leq C
$$

which implies

$$
\left|\omega_{p}\right|_{C^{1, \nu}} \leq C\left\|\omega_{p}\right\|_{\infty}^{\frac{\beta}{p-1}} \leq C R^{\frac{4 \beta}{(1-\beta)(p-1)}} \leq C R^{\frac{8 \beta}{1-\beta}}
$$

for $p>3 / 2$, i.e. ω_{p} is bounded in $C^{1, \nu}(\bar{\Omega})$ by a constant independent of p for $p<2$, $p \sim 2$. To show that $\omega_{p} \rightarrow \omega_{2}$ in $C^{1}(\Omega)$ as $p \rightarrow 2, p<2$, let $\left(p_{n}\right)$ be such that $p_{n}<2, p_{n} \rightarrow 2$ as $n \rightarrow \infty$. Then for $\xi \in W_{0}^{1, p}(\Omega)$,

$$
\begin{equation*}
\int_{\Omega}\left|\nabla \omega_{p_{n}}\right|^{p_{n}-2} \nabla \omega_{p_{n}} \cdot \nabla \xi d x=\int_{\Omega} \omega_{p_{n}}^{\beta} \xi d x . \tag{2.10}
\end{equation*}
$$

Since $\left(\omega_{p_{n}}\right)$ is bounded in $C^{1, \nu}(\bar{\Omega})$, it has a subsequence which we still denote by ($\omega_{p_{n}}$) and a function $\phi \in C^{1}(\bar{\Omega})$ such that $\omega_{p_{n}} \rightarrow \phi$ in $C^{1}(\bar{\Omega})$ as $n \rightarrow \infty$.

Let $n \rightarrow \infty$ in (2.10), we obtain

$$
\int_{\Omega} \nabla \phi \cdot \nabla \xi d x=\int_{\Omega} \phi^{\beta} \xi d x \text { for all } \xi \in W_{0}^{1, p}(\Omega)
$$

i.e. $\phi=\omega_{2}$ in Ω. Hence $\omega_{p} \rightarrow \omega_{2}$ in $C^{1}(\bar{\Omega})$ as $p \rightarrow 2, p<2$, which completes the proof.

Next, we establish a comparison principle.
Lemma 2.2. Let h, g and D be as in Lemma 2.1. Let $u, v \in C^{1}(\bar{\Omega})$ satisfy $\inf _{\Omega} \frac{u}{d}>0$ and

$$
\begin{align*}
& -\Delta_{p} u \geq\left\{\begin{array}{ll}
h(u) & \text { in } D, \\
g(x) & \text { in } \Omega \backslash D
\end{array}, \quad u \geq 0 \text { on } \partial \Omega\right. \tag{2.11}\\
& \left(\text { resp. }-\Delta_{p} u \leq\left\{\begin{array}{ll}
h(u) & \text { in } D, \\
g(x) & \text { in } \Omega \backslash D
\end{array}, \quad u \leq 0 \text { on } \partial \Omega\right)\right. \text {, } \\
& -\Delta_{p} v=\left\{\begin{array}{ll}
h(v) & \text { in } D, \\
g(x) & \text { in } \Omega \backslash D
\end{array}, \quad v=0 \text { on } \partial \Omega .\right.
\end{align*}
$$

Then $u \geq v$ in Ω (resp. $u \leq v$ on $\partial \Omega$).
Proof. Since $\inf _{\Omega} \frac{u}{d}>0$ and $v \in C^{1}(\bar{\Omega}), \inf _{\Omega} \frac{u}{v}>0$. Let c be the largest number such that $u \geq c v$ in Ω and suppose $c<1$. Then

$$
-\Delta_{p} u \geq h(u) \geq h(c v) \geq c^{q} h(v) \text { in } D
$$

which implies

$$
-\Delta_{p}\left(\frac{u}{c^{\frac{q}{p-1}}}\right) \geq \begin{cases}h(v) & \text { in } D \\ g(x) & \text { in } \Omega \backslash D\end{cases}
$$

By the weak comparison principle [21, Lemma A.2], $u \geq c^{\frac{q}{p-1}} v$ in Ω. This implies $c \geq c^{\frac{q}{p-1}}$ and so $c \geq 1$, a contradiction. Thus $u \geq v$ in Ω.

Next suppose the inequality \leq in (2.11) holds. Let C be the smallest positive number such that $u \leq C v$ in Ω and suppose $C>1$. Then

$$
-\Delta_{p} u \leq h(u) \leq h(C v) \leq C^{q} h(v) \text { in } D
$$

which implies

$$
-\Delta_{p}\left(\frac{u}{C^{\frac{q}{p-1}}}\right) \leq \begin{cases}h(v) & \text { in } D \\ g(x) & \text { in } \Omega \backslash D\end{cases}
$$

Hence $u \leq C^{\frac{q}{p-1}} v$ in Ω. This implies $C \leq C^{\frac{q}{p-1}}$ and so $C \leq 1$, a contradiction. Thus $u \leq v$ in Ω, which completes the proof.

Lemma 2.3. Let $\left(\mathrm{A}_{1}\right)-\left(\mathrm{A}_{4}\right)$ hold, $\beta<p-1$, and u_{λ} be a positive solution of (1.1). Then

$$
\begin{equation*}
\lim _{\lambda \rightarrow \infty} \frac{u_{\lambda}(x)}{\lambda^{\frac{1}{p-1-\beta}} \omega_{p}(x)}=1 \tag{2.12}
\end{equation*}
$$

uniformly for $x \in \Omega$, where we recall that $\omega_{p} \in C^{1}(\bar{\Omega})$ is the unique solution of

$$
-\Delta_{p} u=u^{\beta} \text { in } \Omega, \quad u=0 \text { on } \partial \Omega
$$

Proof. By Lemma 3.1 in [15],

$$
u_{\lambda} \geq \mu \phi_{1} \text { in } \Omega
$$

for $\lambda>\lambda_{1} / k$, where $k, \mu>0$ are such that $f(z)>k z^{p-1}$ for $z \in(0, \mu]$.
Let K be a compact subset of Ω and $c=\min _{K} f\left(\mu \phi_{1}\right)>0$. Then

$$
-\Delta_{p} u_{\lambda} \geq \lambda c \chi_{K} \text { in } \Omega
$$

where χ_{K} denotes the characteristic function on K. This implies

$$
\begin{equation*}
u_{\lambda} \geq(\lambda c)^{\frac{1}{p-1}} z \geq \lambda^{\frac{1}{p-1}} c_{1} d \text { in } \Omega \tag{2.13}
\end{equation*}
$$

where z is the positive solution of $-\Delta_{p} u=\chi_{K}$ in $\Omega, u=0$ on $\partial \Omega$, and $c_{1}=c^{\frac{1}{p-1}} \inf _{\Omega} \frac{z}{d}>0$.

Let $\varepsilon \in(0,1)$. Then there exists a constant $A>0$ such that

$$
\begin{equation*}
(1-\varepsilon) z^{\beta} \leq f(z) \leq(1+\varepsilon) z^{\beta} \text { for } z>A \tag{2.14}
\end{equation*}
$$

in view of $\left(\mathrm{A}_{2}\right)$. The left side inequality in (2.14) implies that

$$
-\Delta_{p} u_{\lambda} \geq \lambda \begin{cases}(1-\varepsilon) u_{\lambda}^{\beta}, & u_{\lambda}>A \\ 0, & u_{\lambda}<A\end{cases}
$$

Define $\tilde{u}_{\lambda}=\lambda^{-\frac{1}{p-1-\beta}} u_{\lambda}$. Then

$$
-\Delta_{p} \tilde{u}_{\lambda} \geq \begin{cases}(1-\varepsilon) \tilde{u}_{\lambda}^{\beta}, & u_{\lambda}>A \\ 0, & u_{\lambda}<A\end{cases}
$$

By Lemma 2.2 with $h(u)=(1-\varepsilon) u^{\beta}, g(x)=0$, it follows that $\tilde{u}_{\lambda} \geq \check{u}_{\lambda}$ in Ω, where \check{u}_{λ} satisfies

$$
-\Delta_{p} \check{u}_{\lambda}= \begin{cases}(1-\varepsilon) \check{u}_{\lambda}^{\beta}, & u_{\lambda}>A \\ 0, & u_{\lambda}<A\end{cases}
$$

Note that $\check{u}_{\lambda}=(1-\varepsilon)^{\frac{1}{p-1-\beta}} w_{\lambda}$, where w_{λ} satisfies

$$
-\Delta_{p} w_{\lambda}= \begin{cases}w_{\lambda}^{\beta}, & u_{\lambda}>A \\ 0, & u_{\lambda}<A\end{cases}
$$

By (2.13),

$$
\left\{x: u_{\lambda}(x)<A\right\} \subset\left\{x \in \Omega: d(x)<A c_{1} \lambda^{-\frac{1}{p-1}}\right\}
$$

from which it follows that $\left|\left\{x: u_{\lambda}(x)<A\right\}\right| \rightarrow 0$ as $\lambda \rightarrow \infty$. Hence Lemma 2.1 gives $w_{\lambda} \rightarrow \omega_{p}$ in $C^{1}(\bar{\Omega})$, which implies $w_{\lambda} \geq(1-\varepsilon) \omega_{p}$ in Ω for λ large. Consequently,

$$
\begin{equation*}
u_{\lambda}=\lambda^{\frac{1}{p-1-\beta}} \tilde{u}_{\lambda} \geq \lambda^{\frac{1}{p-1-\beta}} \check{u}_{\lambda} \geq \lambda^{\frac{1}{p-1-\beta}}(1-\varepsilon)^{\frac{p-\beta}{p-1-\beta}} \omega_{p} \text { in } \Omega . \tag{2.15}
\end{equation*}
$$

for λ large. By choosing ε small, we obtain $u_{\lambda} \geq \omega_{p} / 2$ in Ω for λ large, which we assume. Next, the right side inequality in (2.14) implies

$$
-\Delta_{p} u_{\lambda} \leq \lambda \begin{cases}(1+\varepsilon) u_{\lambda}^{\beta}, & u_{\lambda}>A \\ c_{2}, & u_{\lambda}<A\end{cases}
$$

where $c_{2}=\sup _{z \in[0, A]} f(z)$. Hence

$$
-\Delta_{p} \tilde{u}_{\lambda} \leq \begin{cases}(1+\varepsilon) \tilde{u}_{\lambda}^{\beta}, & u_{\lambda}>A \\ c_{2}, & u_{\lambda}<A\end{cases}
$$

By Lemma 2.2, $\tilde{u}_{\lambda} \leq \hat{u}_{\lambda}$ in Ω, where \hat{u}_{λ} satisfies

$$
-\Delta_{p} \hat{u}_{\lambda}= \begin{cases}(1+\varepsilon) \hat{u}_{\lambda}^{\beta}, & u_{\lambda}>A \\ c_{2}, & u_{\lambda}<A\end{cases}
$$

Note that $\hat{u}_{\lambda}=(1+\varepsilon)^{\frac{1}{p-1-\beta}} w_{\lambda}$. Since $w_{\lambda} \rightarrow \omega_{p}$ in $C^{1}(\bar{\Omega}), w_{\lambda} \leq(1+\varepsilon) \omega_{p}$ in Ω for λ large. Consequently,

$$
\begin{equation*}
u_{\lambda}=\lambda^{\frac{1}{p-1-\beta}} \tilde{u}_{\lambda} \leq \lambda^{\frac{1}{p-1-\beta}} \hat{u}_{\lambda} \leq \lambda^{\frac{1}{p-1-\beta}}(1+\varepsilon)^{\frac{p-\beta}{p-1-\beta}} \omega_{p} \quad \text { in } \Omega . \tag{2.16}
\end{equation*}
$$

Combining (2.15) and (2.16), we deduce that

$$
(1-\varepsilon)^{\frac{p-\beta}{p-1-\beta}} \leq \frac{u_{\lambda}}{\lambda^{\frac{1}{p-1-\beta}} \omega_{p}} \leq(1+\varepsilon)^{\frac{p-\beta}{p-1-\beta}} \text { in } \Omega
$$

for λ large, i.e. (2.12) holds, which completes the proof.

Lemma 2.4. Let $\left(\mathrm{A}_{1}\right)-\left(\mathrm{A}_{4}\right)$ hold and u_{λ} be a positive solution of (1.1) with $1<p<2$. Then if p is sufficiently close to 2 , there exists a constant $M>0$ independent of p such that

$$
\left|u_{\lambda}\right|_{C^{1}} \leq M \lambda^{\frac{1}{p-1-\beta}}
$$

for λ large.
Proof. Let $\kappa>1$ and $\beta_{0} \in(\beta, 1)$. Then $\beta_{0}<p-1$ if p is sifficiently close to 2 . Since $\left\|u_{\lambda}\right\|_{\infty} \rightarrow \infty$ as $\lambda \rightarrow \infty$ in view of Lemma 2.3, it follows from $\left(\mathrm{A}_{2}\right)$ that

$$
f(u) \leq \kappa\|u\|_{\infty}^{\beta}
$$

for λ large. Hence

$$
-\Delta_{p} u \leq \lambda \kappa\|u\|_{\infty}^{\beta} \text { in } \Omega
$$

i.e.

$$
-\Delta_{p}\left(\frac{u}{(\lambda \kappa)^{\frac{1}{p-1}}\|u\|_{\infty}^{\frac{\beta}{p-1}}}\right) \leq 1
$$

from which it follows that

$$
\frac{u}{(\lambda \kappa)^{\frac{1}{p-1}}\|u\|_{\infty}^{\frac{\beta}{p-1}}} \leq \psi \text { in } \Omega
$$

where ψ is defined in (2.4). Recall that $\|\psi\|_{\infty}$ is bounded independent of p for $p>3 / 2$ in view of (2.9). Hence by [14, Theorem 1],

$$
\frac{|u|_{C^{1}}}{(\lambda \kappa)^{\frac{1}{p-1}}\|u\|_{\infty}^{\frac{\beta}{p-1}}} \leq K
$$

where $K>1$ is a constant independent of λ, p. This implies $|u|_{C^{1}}^{1-\frac{\beta}{p-1}} \leq K(\lambda \kappa)^{\frac{1}{p^{-1}}}$, i.e.

$$
|u|_{C^{1}} \leq K^{\frac{p-1}{p-1-\beta}}(\lambda \kappa)^{\frac{1}{p-1-\beta}} \leq K^{\frac{\beta_{0}}{\beta_{0}-\beta}} \kappa^{\frac{1}{\beta_{0}-\beta}} \lambda^{\frac{1}{p-1-\beta}} \equiv M \lambda^{\frac{1}{p-1-\beta}},
$$

which completes the proof.

3. PROOF OF THEOREM 1.1.

Proof. The existence of a positive solution to (1.1) for λ large follows from the method of sup- and supersolutions. Indeed, it is easy to see that for λ large enough, $\varepsilon \phi_{1}$ is a subsolution of (1.1) for ε small while $M \phi$ is a supersolution of (1.1) for M large, where ϕ satisfies $-\Delta_{p} \phi=1$ in $\Omega, \phi=0$ on $\partial \Omega$.

Let u, v be positive solutions of (1.1) for λ large and let $w=u-v$.
By $\left(\mathrm{A}_{3}\right)$, there exists a constant $\delta \in(0,1)$ such that

$$
\begin{equation*}
\lim \sup _{\xi \rightarrow \infty} \frac{\xi f^{\prime}(\xi)}{f(\xi)}<\delta \tag{3.1}
\end{equation*}
$$

Let $\delta_{0}, \delta_{1} \in(0,1)$ be such that $\delta \delta_{0}^{2(\beta-1)}<\delta_{1}$. By making p close enough to 2 , we can assume that

$$
\begin{equation*}
\omega_{p} \geq \delta_{0} \omega_{2} \quad \text { in } \Omega \tag{3.2}
\end{equation*}
$$

(in view of Lemma 2.1(ii)), and $\delta_{1}<p-1,(2 M)^{2-p} \delta \delta_{0}^{2(\beta-1)}<\delta_{1}$, where M is defined in Lemma 2.4.

By (3.1) and $\left(\mathrm{A}_{2}\right)$, there exists a constant $A>0$ such that

$$
\begin{equation*}
f^{\prime}(\xi) \leq \frac{\delta}{\xi^{1-\beta}} \tag{3.3}
\end{equation*}
$$

for $\xi>A$. Multiplying the equation

$$
-\Delta_{p} u-\left(-\Delta_{p} v\right)=\lambda(f(u)-f(v)) \text { in } \Omega
$$

by w and integrating, we obtain

$$
\begin{align*}
\int_{\Omega}\left(|\nabla u|^{p-2} \nabla u-|\nabla v|^{p-2} \nabla v\right) \cdot(\nabla u-\nabla v) d x & =\lambda \int_{\Omega}(f(u)-f(v)) w d x \\
& =\lambda \int_{\Omega} w^{2} f^{\prime}(\xi) d x \tag{3.4}
\end{align*}
$$

where ξ is between $u(x)$ and $v(x)$. Using the inequality

$$
(|x|+|y|)^{2-p}\left(|x|^{p-2} x-|y|^{p-2} y\right) \cdot(x-y) \geq(p-1)|x-y|^{2}
$$

for $1<p \leq 2$ and $x, y \in \mathbb{R}^{n}$ (see [17, Lemma 30.1]) with $x=\nabla u$ and $y=\nabla v$ in (3.4), we obtain from Lemma 2.4 that

$$
\begin{equation*}
(p-1) \int_{\Omega}|\nabla w|^{2} d x \leq \lambda^{\frac{1-\beta}{p-1-\beta}}(2 M)^{2-p} \int_{\Omega} w^{2} f^{\prime}(\xi) d x \tag{3.5}
\end{equation*}
$$

By Lemma 2.3,

$$
\begin{equation*}
u, v \geq \delta_{0} \lambda^{\frac{1}{p-1-\beta}} \omega_{p} \text { in } \Omega \tag{3.6}
\end{equation*}
$$

for λ large. This, together with (3.2) and (3.3), implies

$$
\begin{align*}
\int_{\xi>A} w^{2} f^{\prime}(\xi) d x & \leq \delta \int_{\xi>A} \frac{w^{2}}{\xi^{1-\beta}} d x \leq \frac{\delta}{\delta_{0}^{1-\beta} \lambda^{\frac{1-\beta}{p-1-\beta}}} \int_{\xi>A} \frac{w^{2}}{\omega_{p}^{1-\beta}} d x \\
& \leq \delta \delta_{0}^{2(\beta-1)} \lambda^{\frac{\beta-1}{p-1-\beta}} \int_{\Omega} \frac{w^{2}}{\omega_{2}^{1-\beta}} d x \leq \delta \delta_{0}^{2(\beta-1)} \lambda^{\frac{\beta-1}{p-1-\beta}} \int_{\Omega}|\nabla w|^{2} d x \tag{3.7}
\end{align*}
$$

where we have used the inequality $\int_{\Omega} w^{2} \omega_{2}^{\beta-1} d x \leq \int_{\Omega}|\nabla w|^{2} d x$ in [15, Lemma 3.5]. Thus

$$
\begin{equation*}
\lambda^{\frac{1-\beta}{p-1-\beta}}(2 M)^{2-p} \int_{\xi>A} w^{2}\left|f^{\prime}(\xi)\right| d x \leq(2 M)^{2-p} \delta \delta_{0}^{2(\beta-1)} \int_{\Omega}|\nabla w|^{2} d x \leq \delta_{1} \int_{\Omega}|\nabla w|^{2} d x \tag{3.8}
\end{equation*}
$$

By $\left(\mathrm{A}_{5}\right)$, there exists a constant $C>0$ such that

$$
\begin{equation*}
\left|f^{\prime}(\xi)\right| \leq \frac{C}{\xi^{1+\alpha}} \text { for } \xi \in(0, A] \tag{3.9}
\end{equation*}
$$

By Hardy's inequality [2, p. 194], there exists a constant $m>0$ such that

$$
\int_{\Omega}\left|\frac{z}{d}\right|^{2} d x \leq m \int_{\Omega}|\nabla z|^{2} d x
$$

for all $z \in H_{0}^{1}(\Omega)$, where $d(x)$ denotes the distance function.
This, together with (3.2), (3.6), and (3.9), implies

$$
\begin{aligned}
\int_{\xi<A} w^{2}\left|f^{\prime}(\xi)\right| d x & \leq C \int_{\xi<A} \frac{w^{2}}{\xi^{1+\alpha}} d x \leq \frac{C}{\delta_{0}^{2(1+\alpha)} \lambda^{\frac{1+\alpha}{p-1-\beta}}} \int_{\xi<A} \frac{w^{2}}{\omega_{2}^{1+\alpha}} d x \\
& \leq \frac{C \lambda^{-\frac{1+\alpha}{p-1-\beta}}}{\delta_{0}^{2(1+\alpha)} c_{0}^{1+\alpha}} \int_{\xi<A} \frac{w^{2}}{d^{1+\alpha}} d x \leq C_{0} \lambda^{-\frac{1+\alpha}{p-1-\beta}} \int_{\Omega}\left|\frac{w}{d}\right|^{2} d x \\
& \leq C_{1} \lambda^{-\frac{1+\alpha}{p-1-\beta}} \int_{\Omega}|\nabla w|^{2} d x
\end{aligned}
$$

where

$$
c_{0}=\inf _{\Omega} \frac{\omega_{2}}{d}>0, \quad C_{0}=\frac{C\|d\|_{\infty}^{1-\alpha}}{\delta_{0}^{2(1+\alpha)} c_{0}^{1+\alpha}}, \quad \text { and } \quad C_{1}=C_{0} m
$$

Consequently,

$$
\begin{equation*}
\lambda^{\frac{1-\beta}{p-1-\beta}}(2 M)^{2-p} \int_{\xi<A} w^{2}\left|f^{\prime}(\xi)\right| d x \leq C_{1}(2 M)^{2-p} \lambda^{-\frac{\alpha+\beta}{p-1-\beta}} \int_{\Omega}|\nabla w|^{2} d x \tag{3.10}
\end{equation*}
$$

Combining (3.5), (3.8) and (3.10), we obtain

$$
(p-1) \int_{\Omega}|\nabla w|^{2} d x \leq\left(\delta_{1}+C_{1}\left((2 M)^{2-p} \lambda^{-\frac{\alpha+\beta}{p-1-\beta}}\right) \int_{\Omega}|\nabla w|^{2} d x\right.
$$

which implies $\int_{\Omega}|\nabla w|^{2} d x=0$, i.e. $w=0$ on Ω, provided that λ is large enough so that

$$
\delta_{1}+C_{1}\left((2 M)^{2-p} \lambda^{-\frac{\alpha+\beta}{p-1-\beta}}\right)<p-1
$$

This completes the proof of Theorem 1.1.

REFERENCES

[1] A. Alsaedi, V.D. Radulescu, B. Ahmad, Bifurcation analysis for degenerate problems with mixed regime and absorption, Bull. Math. Sci. 11 (2021), Paper no. 2050017.
[2] H. Brezis, Analyse fonctionnelle, théorie et applications, 2nd ed., Masson, Paris, 1983 [in French].
[3] H. Brezis, L. Oswald, Remark on sublinear elliptic equations, Nonlinear Anal. 10 (1986), no. 1, 55-64.
[4] S. Chen, C.A. Santos, M. Yang, J. Zhou, Bifurcation analysis for a modified quasilinear equation with negative exponent, Adv. Nonlinear Anal. 11 (2022), no. 1, 684-701.
[5] K.D. Chu, D.D. Hai, R. Shivaji, Uniqueness for a class of singular quasilinear Dirichlet problem, Appl. Math. Lett. 106 (2020), 106306.
[6] P.T. Cong, D.D. Hai, R. Shivaji, A uniqueness result for a class of singular p-Laplacian Dirichlet problem with non-monotone forcing term, Proc. Amer. Math. Soc. 150 (2021), 633-637.
[7] E.N. Dancer, Uniqueness for elliptic equations when a parameter is large, Nonlinear Anal. 8 (1984), 835-836.
[8] E.N. Dancer, On the number of positive solutions of semilinear elliptic systems, Proc. London Math. Soc. 53 (1986), 429-452.
[9] J.I. Díaz, J.E. Saa, Existence et unicité de solutions positives pur certaines équations elliptiques quasilinéaires, C.R. Acad. Sci. Paris 305 (1987), 521-524.
[10] P. Drábek, J. Hernandez, Existence and uniqueness of positive solutions for some quasilinear elliptic problems, Nonlinear Anal. 44 (2001), 189-204.
[11] Z. Guo, J.R.L. Webb, Uniqueness of positive solutions for quasilinear elliptic equations when a parameter is large, Proc. Roy. Soc. Edinburgh 124 (1994), 189-198.
[12] D.D. Hai, Uniqueness of positive solutions for a class of quasilinear problems, Nonlinear Anal. 69 (2008), 2720-2732.
[13] B. Kawohl, On a family of torsional creep problems, J. Reine Angew. Math. 410 (1990), 1-22.
[14] G.M. Lieberman, Boundary regularity for solutions of degenerate quasilinear elliptic equations, Nonlinear Anal. 12 (1988), 1203-1219.
[15] S.S. Lin, On the number of positive solutions for nonlinear elliptic equations when a parameter is large, Nonlinear Anal. 16 (1991), 283-297.
[16] S.S. Lin, Some uniqueness results for positone problems when a parameter is large, Chinese J. Math. 13 (1985), 67-81.
[17] T. Oden, Qualitative Methods in Nonlinear Mechanics, Prentice Hall, Inc., Englewood Cliffs, New Jersey, 1986.
[18] N.S. Papageorgiou, Double phase problems: a survey of some recent results, Opuscula Math. 42 (2022), no. 2, 257-278.
[19] N.S. Papageorgiou, V.D. Rădulescu, D.D. Repovš, Nonlinear Analysis - Theory and Methods, Springer Monographs in Mathematics, Cham, 2019.
[20] N.S. Papageorgiou, V.D. Rădulescu, D.D. Repovš, Positive solutions for nonlinear Neumann problems with singular terms and convection, J. Math. Pures Appl. 136 (2020), 1-21.
[21] S. Sakaguchi, Concavity properties of solutions of some degenerate quasilinear elliptic Dirichlet problems, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 14 (1987), 403-421.
[22] J.L. Vázquez, A strong maximum principle for some quasilinear elliptic equations, Appl. Math. Optim. 12 (1984), 191-202.
B. Alreshidi

Mississippi State University
Department of Mathematics and Statistics
Mississippi State, MS 39762, USA
D.D. Hai (corresponding author)
dang@math.msstate.edu
Mississippi State University
Department of Mathematics and Statistics
Mississippi State, MS 39762, USA
Received: February 22, 2023.
Revised: August 23, 2023.
Accepted: August 27, 2023.

