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Abstract. We prove uniqueness of positive solutions for the problem

−∆pu = λf(u) in Ω, u = 0 on ∂Ω,

where 1 < p < 2 and p is close to 2, Ω is bounded domain in Rn with smooth
boundary ∂Ω, f : [0,∞) → [0,∞) with f(z) ∼ zβ at ∞ for some β ∈ (0, 1), and λ is
a large parameter. The monotonicity assumption on f is not required even for u large.
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1. INTRODUCTION

In this paper, we investigate uniqueness of positive solutions to the p-Laplacian BVP
{

−∆pu = λf(u) in Ω,
u = 0 on ∂Ω,

(1.1)

where ∆pu = div(|∇u|p−2∇u), 1 < p < 2, Ω is a bounded domain in Rn with
boundary ∂Ω, λ is a positive parameter, and f : [0,∞) → [0,∞) is p-sublinear at ∞.

It is well-known that (1.1) has a unique positive solutions for all λ > 0 if f is
continuous on [0,∞) and f(u)

up−1 is strictly decreasing on (0,∞) (see the pioneering
work [3] for p = 2 and [9,10] for its extension to p > 1). When the latter condition
is not satisfied, there is a number of uniqueness results for (1.1) when the parameter
λ is large (see e.g. [5–8,11,12,15,16] and the references therein). We are motivated
by the uniqueness results in [7,8,15,16] for p = 2 and f smooth with f(u) > 0 for
u > 0. In [15], Lin proved uniqueness of positive solutions to (1.1) when f(u) ∼ uβ

for some β ∈ (0, 1), lim supu→∞
uf ′(u)
f(u) < 1, and lim supu→0+ u2|f ′(u)| < ∞. The case

when f is bounded was discussed in [8] and [16], where f(u) → C > 0 as u → ∞
and either f(0) > 0 or f ′(0) > 0 in [8], and limu→∞

f(u)
u = 0, inf [0,∞) f > 0 together

with lim infu→∞ f(u) > lim supu→∞ uf ′(u) in [16]. Note that in these references, the
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nonlinearity f is not required to be increasing or decreasing even for u large. For
p > 1, uniqueness results for (1.1) were obtained in [5, 6, 11, 12] for λ large under
the p-sublinear assumption together with some monotonicity conditions on f. In this
paper, we will provide a uniqueness result in the absence of this common monotonicity
requirement when 1 < p < 2 and p is close to 2, f(u) ∼ uβ at ∞ for some β ∈ (0, 1)
together with some natural conditions at 0 and ∞. Thus our result provides an
extension of the work in [7, 8, 15, 16] from p = 2 to p ∈ (1, 2) with p ∼ 2, which seems
to be the first in the literature. In particular, when applied to the model example
f(u) = uβ + sin2(uβ), where β ∈ (0, 1), Theorem 1.1 below gives uniqueness of positive
solutions to (1.1) provided λ is large and p < 2 is close to 2. A calculation shows
that f(u) is neither increasing nor decreasing even for u large. We refer to the recent
monograph [19] for the abstract results used in this paper, and to [1, 4, 18–20] for the
analysis of related nonlinear problems.

We make the following assumptions:
(A1) f : [0,∞) → [0,∞) is continuous and of class C1 on (0,∞) with f(u) > 0

for u > 0.
(A2) There exists a constant β ∈ (0, 1) such that limu→∞

f(u)
uβ = 1.

(A3) lim supu→∞
uf ′(u)
f(u) < 1.

(A4) lim infu→0+
f(u)
up−1 > 0.

(A5) There exists α ∈ (0, 1) such that lim supu→0+ uα+1|f ′(u)| < ∞.
By a positive solution of (1.1), we mean a function u ∈ C1,ν(Ω̄) for some ν ∈ (0, 1)

with u > 0 in Ω and satisfying (1.1) in the weak sense.
Our main result is the following.

Theorem 1.1. Let 1 < p < 2 and (A1)–(A5) hold. Then if p is sufficiently close to 2,
there exists a constant λ0 > 0 such that (1.1) has a unique positive solution for λ > λ0.
Remark 1.2. (i) Theorem 1.1 is not true for λ > 0 small. Indeed, let α, β ∈ (0, 1) and

f(u) =
{
up−1ea(1−u) for u ∈ (0, 1),
uβ for u ≥ 1,

where a = p − 1 − β. Note that a > 0 if p is sufficiently close to 2. Then (A1)–(A5)
hold. Suppose u is a positive solution of (1.1) with λ < λ1e

β−1, where λ1 denotes
the first eigenvalue of −∆p with Dirichlet boundary condition. Since a ≤ 1 − β,
f(u) ≤ e1−βup−1 for all u ≥ 0. Hence, multiplying the equation in (1.1) by u and
integrating, we get

∫

Ω

|∇u|pdx ≤ λe1−β
∫

Ω

updx < λ1

∫

Ω

updx,

a contradiction with
λ1 = inf

v∈W 1,p
0 (Ω)
v ̸=0

∫
Ω |∇v|pdx∫

Ω |v|pdx .

Hence, (1.1) has no positive solution for λ small.
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(ii) Theorem 1.1 gives uniqueness of positive solutions to (1.1) when

lim sup
u→∞

uf ′(u)
f(u) < p− 1, (1.2)

where p ∈ (1, 2) and is sufficiently close to 2 without requiring any monotonicity of f .
We believe that without any monotonicity assumption, uniqueness for (1.1) for λ
large under conditions (1.2) and (A1), (A2), (A4), (A5) for other values of p is an
open question. Note that a uniqueness result under these conditions together with the
additional assumption that f is nondecreasing on [0,∞) was obtained in [12].

2. PRELIMINARIES

In what follows, we denote by d(x) the distance from x to the boundary ∂Ω. Let
λ1 be the first eigenvalue of −∆p with Dirichlet boundary conditions, and ϕ1 the
corresponding positive normalized eigenfunction, i.e. ∥ϕ1∥∞ = 1.

Lemma 2.1. Let h : [0,∞) → [0,∞) be nondecreasing and D be an open set in Ω.
Suppose there exists q ∈ (0, p− 1) such that u−qh(u) is nonincreasing on (0,∞) and
lim infu→0+ u1−ph(u) > 0. Let g : Ω → [0,∞) be bounded in Ω. Then the problem

−∆pu =
{
h(u) in D,

g(x) in Ω\D, u = 0 on ∂Ω (2.1)

has a positive solution ϕD ∈ C1(Ω̄) with infΩ
ϕD

d > 0. Furthermore,

(i) ϕD → ωp in C1(Ω̄) as |Ω\D| → 0, where ωp is the solution of

−∆pu = h(u) in Ω, u = 0 on ∂Ω. (2.2)

and |A| denotes the Lebesgue measure of A;
(ii) Let h(u) = uβ for some β ∈ (0, 1). Then ωp → ω2 in C1(Ω̄) as p → 2, p < 2.

Proof. We first show that the problem
{

−∆pu = h(u) + g(x) in Ω,
u = 0 on ∂Ω.

(2.3)

has a positive solution by the method of sub- and supersolutions.
Clearly the function ωp defined in (2.2) is a subsolution of (2.3). Note that the

existence and uniqueness of ωp follows from [9,10].
Let ψ ∈ C1(Ω̄) satisfy

−∆pψ = 1 in Ω, ψ = 0 on ∂Ω. (2.4)

Then
−∆p(Mψ) = Mp−1 ≥ Mqh(ψ) + g(x) ≥ h(Mψ) + g(x) in Ω
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for M large since h is nondecreasing with u−qh(u) decreasing, q < p − 1, and g is
bounded in Ω. Thus Mψ is a supersolution of (2.3) with Mψ ≥ ωp in Ω for M large.
Hence, (2.3) has a solution ψ̄ ∈ C1(Ω̄) with ωp ≤ ψ̄ ≤ Mψ in Ω. Next, we show that
the problem

−∆pu =
{
h(u) in D,

0 in Ω\D, u = 0 on ∂Ω (2.5)

has a positive solution. Let ψ0 be the solution of

−∆pu =
{
λ1ϕ

p−1
1 in D,

0 in Ω\D, u = 0 on ∂Ω.

By the strong maximum principle [22], infΩ
ψ0
ϕ1

≥ m1 for some m1 ∈ (0, 1).
Since lim infu→0+ u1−ph(u) > 0, infu∈(0,1] u

1−ph(u) = m0 > 0. Hence

h(εψ0) ≥ h(εm1ϕ1) ≥ (εm1)qh(ϕ1) ≥ (εm1)qm0ϕ
p−1
1

≥ λ1(εϕ1)p−1 = −∆p(εψ0) in D

for ε small. Thus εψ0 is a subsolution of (2.5). Since ωp is a supersolution of (2.5)
with ωp ≥ εψ0 in Ω for ε small, it follows that (2.5) has a solution ψ1 with εψ0 ≤ ψ1
≤ ωp in Ω. Clearly ψ1 and ψ̄ are sub- and supersolution of (2.1) respectively with
ψ1 ≤ ωp ≤ ψ̄ in Ω, and the existence of a solution ϕD ∈ C1(Ω̄) with infΩ

ϕD

d > 0
follows.

(i) Let M > 0 be such that
g(x) ≤ M

for x ∈ Ω. Then
−∆p(ϕD) ≤ h(∥ϕD∥∞) +M in Ω,

which implies by the maximum principle that

−∆p

(
ϕD

(h(∥ϕD∥∞) +M)
1

p−1

)
≤ 1 in Ω.

This implies ϕD ∈ C1,ν(Ω̄) for some ν ∈ (0, 1) and there exists a constant M1 > 0
independent of ϕD such that

|ϕD|C1,ν ≤ M1(h(∥ϕD∥∞) +M)
1

p−1 ≤ M1(h(|ϕD|C1,ν ) +M)
1

p−1 .

In particular,
h(|ϕD|C1,ν ) +M

|ϕD|p−1
C1,ν

≥ 1
Mp−1

1
.

Since limt→∞
h(t)+M
tp−1 = 0, there exists a constant M2 > 0 independent of D such that

|ϕD|C1,ν ≤ M2. Let (Dn) be a sequence of open sets in Ω such that |Ω\Dn| → 0 as
n → ∞, and let ϕn ≡ ϕDn . Then for ξ ∈ W 1,p

0 (Ω),
∫

Ω

|∇ϕn|p−2∇ϕn · ∇ξdx =
∫

Dn

h(ϕn)ξdx+
∫

Ω\Dn

gξdx. (2.6)
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Since |ϕn|C1,ν ≤ M2, there exists ωp ∈ C1(Ω̄) and a subsequence of (ϕn), which we still
denote by (ϕn), such that ϕn → ωp in C1(Ω̄).

Since

∫

Ω\Dn

|gξ|dx ≤ M

∫

Ω\Dn

|ξ|dx ≤ M



∫

Ω

|ξ|pdx




1
p

|Ω\Dn|
p−1

p ,

it follows that
∫

Ω\Dn
|gξ|dx → 0 as n → ∞. Hence by letting n → ∞ in (2.6), we obtain
∫

Ω

|∇wp|p−2∇wp · ∇ξdx =
∫

Ω

h(wp)ξdx

for all ξ ∈ W 1,p
0 (Ω), i.e. ωp is the solution of −∆pu = h(u) in Ω, u = 0 on ∂Ω. Thus

ϕD → ωp in C1(Ω̄) as |Ω\D| → 0, i.e. (i) holds.
(ii) Note that β < p− 1 for p < 2, p ∼ 2, which we assume. Since

−∆pωp = ωβp ≤ ∥ωp∥β∞ in Ω,

it follows that

0 ≤ −∆p


 ωp

∥ωp∥
β

p−1
∞


 ≤ 1 in Ω. (2.7)

By the comparison principle,
ωp

∥ωp∥
β

p−1
∞

≤ ψ in Ω, (2.8)

where ψ is defined in (2.4). Let R > 1 be such that Ω̄ ⊂ B(0, R), where B(0, R)
denotes the open ball centered at 0 with radius R in Rn. Let w satisfy

−∆pw = 1 in B(0, R), w = 0 on ∂B(0, R).

Then ψ ≤ wp in Ω by Lemma 0 in [13]. Since

w(x) = N− 1
p−1 (p− 1)
p

(R
p

p−1 − |x|
p

p−1 ) for x ∈ B(0, R),

it follows that
ψ ≤ R

p
p−1 ≤ R3 in Ω for p > 3/2, (2.9)

i.e ψ is uniformly bounded in Ω by a constant independent of p for p > 3/2.
Hence, (2.8) gives

∥ωp∥∞ ≤ R
3(p−1)
p−1−β ≤ R

4
1−β

for p < 2 sufficiently close to 2, as 3(p−1)
p−1−β ↓ 3

1−β as p ↑ 2. Thus ωp is uniformly bounded
by a constant independent of p for p ∼ 2, p < 2.
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By (2.7)–(2.8) and Lieberman’s regularity result [14, Theorem 1], there exist
constants ν ∈ (0, 1) and C > 0 independent of such p such that

|ωp|C1,ν

∥ωp∥
β

p−1
∞

≤ C,

which implies
|ωp|C1,ν ≤ C∥ωp∥

β
p−1
∞ ≤ CR

4β
(1−β)(p−1) ≤ CR

8β
1−β

for p > 3/2, i.e. ωp is bounded in C1,ν(Ω̄) by a constant independent of p for p < 2,
p ∼ 2. To show that ωp → ω2 in C1(Ω̄) as p → 2, p < 2, let (pn) be such that
pn < 2, pn → 2 as n → ∞. Then for ξ ∈ W 1,p

0 (Ω),
∫

Ω

|∇ωpn |pn−2∇ωpn · ∇ξ dx =
∫

Ω

ωβpn
ξ dx. (2.10)

Since (ωpn) is bounded in C1,ν(Ω̄), it has a subsequence which we still denote by (ωpn)
and a function ϕ ∈ C1(Ω̄) such that ωpn

→ ϕ in C1(Ω̄) as n → ∞.
Let n → ∞ in (2.10), we obtain

∫

Ω

∇ϕ · ∇ξ dx =
∫

Ω

ϕβξ dx for all ξ ∈ W 1,p
0 (Ω),

i.e. ϕ = ω2 in Ω. Hence ωp → ω2 in C1(Ω̄) as p → 2, p < 2, which completes
the proof.

Next, we establish a comparison principle.

Lemma 2.2. Let h, g and D be as in Lemma 2.1. Let u, v ∈ C1(Ω̄) satisfy
infΩ

u
d > 0 and

− ∆pu ≥
{
h(u) in D,

g(x) in Ω\D , u ≥ 0 on ∂Ω
(

resp. − ∆pu ≤
{
h(u) in D,

g(x) in Ω\D , u ≤ 0 on ∂Ω
)
,

(2.11)

−∆pv =
{
h(v) in D,

g(x) in Ω\D , v = 0 on ∂Ω.

Then u ≥ v in Ω (resp. u ≤ v on ∂Ω).

Proof. Since infΩ
u
d > 0 and v ∈ C1(Ω̄), infΩ

u
v > 0. Let c be the largest number such

that u ≥ cv in Ω and suppose c < 1. Then

−∆pu ≥ h(u) ≥ h(cv) ≥ cqh(v) in D,



Uniqueness for a class p-Laplacian problems when a parameter is large 11

which implies

−∆p

(
u

c
q

p−1

)
≥
{
h(v) in D,

g(x) in Ω\D.

By the weak comparison principle [21, Lemma A.2], u ≥ c
q

p−1 v in Ω. This implies
c ≥ c

q
p−1 and so c ≥ 1, a contradiction. Thus u ≥ v in Ω.

Next suppose the inequality ≤ in (2.11) holds. Let C be the smallest positive
number such that u ≤ Cv in Ω and suppose C > 1. Then

−∆pu ≤ h(u) ≤ h(Cv) ≤ Cqh(v) in D,

which implies

−∆p

(
u

C
q

p−1

)
≤
{
h(v) in D,

g(x) in Ω\D.

Hence u ≤ C
q

p−1 v in Ω. This implies C ≤ C
q

p−1 and so C ≤ 1, a contradiction. Thus
u ≤ v in Ω, which completes the proof.

Lemma 2.3. Let (A1)–(A4) hold, β < p− 1, and uλ be a positive solution of (1.1).
Then

lim
λ→∞

uλ(x)
λ

1
p−1−β ωp(x)

= 1 (2.12)

uniformly for x ∈ Ω, where we recall that ωp ∈ C1(Ω̄) is the unique solution of

−∆pu = uβ in Ω, u = 0 on ∂Ω.

Proof. By Lemma 3.1 in [15],
uλ ≥ µϕ1 in Ω

for λ > λ1/k, where k, µ > 0 are such that f(z) > kzp−1 for z ∈ (0, µ].
Let K be a compact subset of Ω and c = minK f(µϕ1) > 0. Then

−∆puλ ≥ λcχK in Ω,

where χK denotes the characteristic function on K. This implies

uλ ≥ (λc)
1

p−1 z ≥ λ
1

p−1 c1d in Ω, (2.13)

where z is the positive solution of −∆pu = χK in Ω, u = 0 on ∂Ω, and
c1 = c

1
p−1 infΩ

z
d > 0.

Let ε ∈ (0, 1). Then there exists a constant A > 0 such that

(1 − ε)zβ ≤ f(z) ≤ (1 + ε)zβ for z > A (2.14)

in view of (A2). The left side inequality in (2.14) implies that

−∆puλ ≥ λ

{
(1 − ε)uβλ, uλ > A,

0, uλ < A.
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Define ũλ = λ− 1
p−1−β uλ. Then

−∆pũλ ≥
{

(1 − ε)ũβλ, uλ > A,

0, uλ < A.

By Lemma 2.2 with h(u) = (1 − ε)uβ , g(x) = 0, it follows that ũλ ≥ ǔλ in Ω, where
ǔλ satisfies

−∆pǔλ =
{

(1 − ε)ǔβλ, uλ > A,

0, uλ < A.

Note that ǔλ = (1 − ε)
1

p−1−βwλ, where wλ satisfies

−∆pwλ =
{
wβλ , uλ > A,

0, uλ < A.

By (2.13),
{x : uλ(x) < A} ⊂

{
x ∈ Ω : d(x) < Ac1λ

− 1
p−1

}
,

from which it follows that |{x : uλ(x) < A}| → 0 as λ → ∞. Hence Lemma 2.1 gives
wλ → ωp in C1(Ω̄), which implies wλ ≥ (1 − ε)ωp in Ω for λ large. Consequently,

uλ = λ
1

p−1−β ũλ ≥ λ
1

p−1−β ǔλ ≥ λ
1

p−1−β (1 − ε)
p−β

p−1−β ωp in Ω. (2.15)

for λ large. By choosing ε small, we obtain uλ ≥ ωp/2 in Ω for λ large, which we assume.
Next, the right side inequality in (2.14) implies

−∆puλ ≤ λ

{
(1 + ε)uβλ, uλ > A,

c2, uλ < A,

where c2 = supz∈[0,A] f(z). Hence

−∆pũλ ≤
{

(1 + ε)ũβλ, uλ > A,

c2, uλ < A.

By Lemma 2.2, ũλ ≤ ûλ in Ω, where ûλ satisfies

−∆pûλ =
{

(1 + ε)ûβλ, uλ > A,

c2, uλ < A.

Note that ûλ = (1 + ε)
1

p−1−βwλ.Since wλ → ωp in C1(Ω̄), wλ ≤ (1 + ε)ωp in Ω for λ
large. Consequently,

uλ = λ
1

p−1−β ũλ ≤ λ
1

p−1−β ûλ ≤ λ
1

p−1−β (1 + ε)
p−β

p−1−β ωp in Ω. (2.16)

Combining (2.15) and (2.16), we deduce that

(1 − ε)
p−β

p−1−β ≤ uλ

λ
1

p−1−β ωp
≤ (1 + ε)

p−β
p−1−β in Ω

for λ large, i.e. (2.12) holds, which completes the proof.
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Lemma 2.4. Let (A1)–(A4) hold and uλ be a positive solution of (1.1) with 1 < p < 2.
Then if p is sufficiently close to 2, there exists a constant M > 0 independent of p
such that

|uλ|C1 ≤ Mλ
1

p−1−β

for λ large.
Proof. Let κ > 1 and β0 ∈ (β, 1). Then β0 < p− 1 if p is sifficiently close to 2. Since
∥uλ∥∞ → ∞ as λ → ∞ in view of Lemma 2.3, it follows from (A2) that

f(u) ≤ κ∥u∥β∞
for λ large. Hence

−∆pu ≤ λκ∥u∥β∞ in Ω,
i.e.

−∆p


 u

(λκ)
1

p−1 ∥u∥
β

p−1
∞


 ≤ 1,

from which it follows that
u

(λκ)
1

p−1 ∥u∥
β

p−1
∞

≤ ψ in Ω,

where ψ is defined in (2.4). Recall that ∥ψ∥∞ is bounded independent of p for p > 3/2
in view of (2.9). Hence by [14, Theorem 1],

|u|C1

(λκ)
1

p−1 ∥u∥
β

p−1
∞

≤ K,

where K > 1 is a constant independent of λ, p. This implies |u|1− β
p−1

C1 ≤ K(λκ)
1

p−1 , i.e.

|u|C1 ≤ K
p−1

p−1−β (λκ)
1

p−1−β ≤ K
β0

β0−β κ
1

β0−β λ
1

p−1−β ≡ Mλ
1

p−1−β ,

which completes the proof.

3. PROOF OF THEOREM 1.1.

Proof. The existence of a positive solution to (1.1) for λ large follows from the method
of sup- and supersolutions. Indeed, it is easy to see that for λ large enough, εϕ1 is
a subsolution of (1.1) for ε small while Mϕ is a supersolution of (1.1) for M large,
where ϕ satisfies −∆pϕ = 1 in Ω, ϕ = 0 on ∂Ω.

Let u, v be positive solutions of (1.1) for λ large and let w = u− v.
By (A3), there exists a constant δ ∈ (0, 1) such that

lim sup
ξ→∞

ξf ′(ξ)
f(ξ) < δ. (3.1)
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Let δ0, δ1 ∈ (0, 1) be such that δδ2(β−1)
0 < δ1. By making p close enough to 2, we can

assume that
ωp ≥ δ0ω2 in Ω (3.2)

(in view of Lemma 2.1(ii)), and δ1 < p− 1, (2M)2−pδδ2(β−1)
0 < δ1, where M is defined

in Lemma 2.4.
By (3.1) and (A2), there exists a constant A > 0 such that

f ′(ξ) ≤ δ

ξ1−β . (3.3)

for ξ > A. Multiplying the equation

−∆pu− (−∆pv) = λ (f(u) − f(v)) in Ω

by w and integrating, we obtain
∫

Ω

(
|∇u|p−2∇u− |∇v|p−2∇v

)
· (∇u− ∇v)dx = λ

∫

Ω

(f(u) − f(v))wdx

= λ

∫

Ω

w2f ′(ξ)dx,
(3.4)

where ξ is between u(x) and v(x). Using the inequality

(|x| + |y|)2−p(|x|p−2x− |y|p−2y) · (x− y) ≥ (p− 1)|x− y|2

for 1 < p ≤ 2 and x, y ∈ Rn (see [17, Lemma 30.1]) with x = ∇u and y = ∇v in (3.4),
we obtain from Lemma 2.4 that

(p− 1)
∫

Ω

|∇w|2dx ≤ λ
1−β

p−1−β (2M)2−p
∫

Ω

w2f ′(ξ)dx. (3.5)

By Lemma 2.3,
u, v ≥ δ0λ

1
p−1−β ωp in Ω (3.6)

for λ large. This, together with (3.2) and (3.3), implies
∫

ξ>A

w2f ′(ξ)dx ≤ δ

∫

ξ>A

w2

ξ1−β dx ≤ δ

δ1−β
0 λ

1−β
p−1−β

∫

ξ>A

w2

ω1−β
p

dx

≤ δδ
2(β−1)
0 λ

β−1
p−1−β

∫

Ω

w2

ω1−β
2

dx ≤ δδ
2(β−1)
0 λ

β−1
p−1−β

∫

Ω

|∇w|2dx,
(3.7)

where we have used the inequality
∫

Ω w
2ωβ−1

2 dx ≤
∫

Ω |∇w|2dx in [15, Lemma 3.5].
Thus

λ
1−β

p−1−β (2M)2−p
∫

ξ>A

w2|f ′(ξ)|dx ≤ (2M)2−pδδ2(β−1)
0

∫

Ω

|∇w|2dx ≤ δ1

∫

Ω

|∇w|2dx.

(3.8)
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By (A5), there exists a constant C > 0 such that

|f ′(ξ)| ≤ C

ξ1+α for ξ ∈ (0, A]. (3.9)

By Hardy’s inequality [2, p. 194], there exists a constant m > 0 such that
∫

Ω

∣∣∣z
d

∣∣∣
2
dx ≤ m

∫

Ω

|∇z|2dx,

for all z ∈ H1
0 (Ω), where d(x) denotes the distance function.

This, together with (3.2), (3.6), and (3.9), implies
∫

ξ<A

w2|f ′(ξ)|dx ≤ C

∫

ξ<A

w2

ξ1+α dx ≤ C

δ
2(1+α)
0 λ

1+α
p−1−β

∫

ξ<A

w2

ω1+α
2

dx

≤ Cλ− 1+α
p−1−β

δ
2(1+α)
0 c1+α

0

∫

ξ<A

w2

d1+α dx ≤ C0λ
− 1+α

p−1−β

∫

Ω

∣∣∣w
d

∣∣∣
2
dx

≤ C1λ
− 1+α

p−1−β

∫

Ω

|∇w|2dx,

where

c0 = inf
Ω

ω2
d
> 0, C0 = C∥d∥1−α

∞
δ

2(1+α)
0 c1+α

0
, and C1 = C0m.

Consequently,

λ
1−β

p−1−β (2M)2−p
∫

ξ<A

w2|f ′(ξ)|dx ≤ C1(2M)2−pλ− α+β
p−1−β

∫

Ω

|∇w|2dx. (3.10)

Combining (3.5), (3.8) and (3.10), we obtain

(p− 1)
∫

Ω

|∇w|2dx ≤ (δ1 + C1

(
(2M)2−pλ− α+β

p−1−β

)∫

Ω

|∇w|2dx,

which implies
∫

Ω |∇w|2dx = 0, i.e. w = 0 on Ω, provided that λ is large enough so that

δ1 + C1

(
(2M)2−pλ− α+β

p−1−β

)
< p− 1.

This completes the proof of Theorem 1.1.
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