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1. INTRODUCTION

This paper aims to establish the two-weight norm inequalities for the rough fractional
integral operators on Morrey spaces. The rough fractional integral operators are
introduced by Muckenhoupt and Wheeden in [15]. It is an extension of the fractional
integral operators (Riesz potentials). For the applications of these operators, the reader
may consult [15].

The mapping properties of the rough fractional integral operators on power-weighted
Lebesgue spaces were obtained in [15]. It had been extended to weighted Lebesgue
spaces in [4]. The results given in [4] are the one-weight norm inequalities for the
rough fractional integral operators. The one-weight norm inequalities are special cases
of two-weight norm inequalities. The Stein–Weiss inequality, which gives the mapping
properties of the fractional integral operators on power weighted Lebesgue spaces,
is one of the pioneer results on two-weight norm inequalities for fractional integral
operators. The two-weight norm for the rough fractional integral operators had been
established in [3].

The mapping property of fractional integral operators on Morrey type spaces is
one of the important extensions for the study of the fractional integral operators.
The classical results are the Spanne’s result [19] and the Adams inequalities [1]. The
mapping properties of the fractional integral operators on Morrey give applications
on Schrödinger equation, see [18]. The mapping properties for the singular integral
operators and the fractional integral operators on some generalizations of Morrey
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spaces such as weak Morrey space, Orlicz–Morrey spaces, Morrey spaces with variable
exponents and Morrey–Banach spaces are given in [2, 5–7,12,13,16,17,20,21,25].

The one-weight norm inequalities for maximal operator, singular integral operators
and fractional integral operators on Morrey spaces are given by the mapping properties
of these operators on the weighted Morrey spaces. These mapping properties are
provided in [14]. The two-weight norm inequalities on Morrey spaces aand Herz spaces
are given in [9, 22–24,26]. In this paper, we extend the two-weight norm inequalities
for the rough fractional integral operators on Lebesgue spaces to Morrey spaces.

This paper is organized as follows. Section 2 presents the definition of the rough
fractional integral operators and its two-weight norm inequalities on Lebesgue spaces.
The main result of this paper, the two-weight norm inequalities of the rough fractional
integral operators on Morrey spaces are established in Section 3.

2. PRELIMINARIES

Let 0 < α < n and Ω be a homogeneous function on Rn with degree zero, that is,
for any x ∈ Rn and λ > 0

Ω(λx) = Ω(x),
and Ω ∈ Ls(Sn−1), where Sn−1 denotes the unit sphere in Rn. The fractional integral
operator with rough kernel is defined by

TΩ,αf(x) =
∫

Rn

Ω(x − y)
|x − y|n−α

f(y)dy.

Notice that the above operator is also named as the fractional integral operator
with homogeneous kernel, see [10,15].

The rough fractional maximal operator MΩ,α is defined by

MΩ,αf(x) = sup
r>0

1
rn−α

∫

|x−y|<r

|Ω(x − y)∥f(y)|dy.

Let B(z, r) = {x ∈ Rn : |x − z| < r} denote the open ball with center z ∈ Rn

and radius r > 0. Let B = {B(z, r) : z ∈ Rn, r > 0}. For any Lebesgue measurable
set E, let |E| and χE be the Lebesgue measure and the characteristic function of E,
respectively.

We now state the classes of weight functions used in this paper. We begin with the
well known Muckenhoupt weight functions.
Definition 2.1. For 1 < p < ∞, a locally integrable function u : Rn → [0, ∞) is said
to be an Ap weight if

sup
B∈B


 1

|B|

∫

B

u(x)dx





 1

|B|

∫

B

u(x)− p′
p dx




p

p′

< ∞,

where p′ = p
p−1 and |B| denotes the Lebesgue measure of B ∈ B.
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Next, we recall the classes of weight functions used in [4] for the studies of the
weighted norm inequalities of the rough fractional integral operators.
Definition 2.2. Let 1 < p, q < ∞. For any nonnegative function u, we write
u ∈ A(p, q) if

sup
B∈B


 1

|B|

∫

B

u(x)qdx




1/q 
 1

|B|

∫

B

u(x)−p′
dx




1/p′

< ∞.

The following are two classes of weight functions introduced in [3] for the studies
of the two-weight norm inequalities of the rough fractional integral operators.
Definition 2.3. Let 1 < p < ∞. For any pair of nonnegative functions u, v, we write
(u, v) ∈ A∗(p) if

sup
B∈B


 1

|B|

∫

B

u(x)dx





 1

|B|

∫

B

v(x)− p′
p dx




p

p′

< ∞.

Definition 2.4. Let 1 < p, q < ∞. For any pair of nonnegative functions u, v, we write
(u, v) ∈ A∗(p, q) if

sup
B∈B


 1

|B|

∫

B

uq(x)dx




1/q 
 1

|B|

∫

B

v−p′
(x)dx




1/p′

< ∞.

Let 1 < p < ∞. For any nonnegative function u, the weighted Lebesgue space
consists of those Lebesgue measurable functions satisfying

∥f∥Lp(u) =




∫

Rn

|f(x)|pu(x)dx




1/p

< ∞.

When u ≡ 1, we write Lp(u) by Lp.
We now present the two-weight norm inequalities for the rough fractional integral

operator from [3, Theorem 1.1].
Theorem 2.5. Let s > 1, 0 < α < n, 1 < p < n, 1

q = 1
p − α

n . Suppose that Ω is
a homogeneous function on Rn with degree zero and Ω ∈ Ls(Sn−1). If
(1) 1 ≤ s′ < p, (us′

, vs′) ∈ A∗(p/s′, q/s′) and us′
, vs′ ∈ A(p/s′, q/s′) or

(2) s > q, (v−s′
, u−s′) ∈ A∗(q′/s′, p′/s′) and v−s′

, u−s′ ∈ A(q/s′, p/s′),
then there is a constant C > 0 such that

∥TΩ,αf∥Lq(uq) ≤ C∥f∥Lp(vp).

For the proof of the above result, the reader is referred to [3, Section 3].
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3. MAIN RESULT

In this section, we establish the two-weight norm inequalities of the rough fractional
integral operators on Morrey spaces. We present our result in terms of the mapping
properties of the rough fractional integral operators on two different weighted Morrey
spaces. Therefore, we begin with the definition of weighted Morrey spaces.

Let ω : B → (0, ∞). We say that ω is a Lebesgue measurable function if
ω(B(·, ·)) is Lebesgue measurable on Rn × (0, ∞).

Definition 3.1. Let 1 < p < ∞. For any Lebesgue measurable functions
u : Rn → (0, ∞) and ω : B → (0, ∞), the weighted Morrey space Mp

ω(u) consists of
those Lebesgue measurable functions f satisfying

∥f∥Mp
ω(u) = sup

B∈B

1
ω(B)∥χBf∥Lp(u) < ∞.

Notice that there are two sets of conditions that guarantees the validity of The-
orem 2.5. We first establish the mapping properties of the rough fractional integral
operators on Mp

ω(vp) and Mq
ω(uq) when u and v satisfy Item (1) of Theorem 2.5.

We start with the condition satisfied by the function ω.

Definition 3.2. Let 1 < p < ∞ and u be a non-negative locally integrable function.
For any ω : B → (0, ∞), we write ω ∈ Wp,u if there exists a constant C > 0 such that
for any x ∈ Rn and r > 0

ω(B(x, 2r)) ≤ Cω(B(x, r)), (3.1)
∞∑

j=0

∥χB(x,r)∥Lp(u)

∥χB(x,2j+1)∥Lp(u)
ω(B(x, 2j+1r)) ≤ Cω(B(x, r)).

We are now ready to present the first result on the two-weight norm inequalities of
the rough fractional integral operators on Morrey spaces.

Theorem 3.3. Let n ∈ N, s > n′, 0 < α < n, s′ < p < n, 1
q = 1

p − α
n . Suppose that Ω

is a homogeneous function on Rn with degree zero and Ω ∈ Ls(Sn−1). Suppose that
the Lebesgue measurable functions u, v : Rn → (0, ∞) satisfy Item (1) of Theorem 2.5.
If the Lebesgue measurable function ω : B → (0, ∞) belongs to Wq,uq , then there is
a constant C > 0 such that for any f ∈ Mp

ω(vp)

∥TΩ,αf∥Mq
ω(uq) ≤ C∥f∥Mp

ω(vp).

Proof. Let B = B(z, r) ∈ B and f ∈ Mp
ω(vp). For any z ∈ Rn and r > 0, define

f0 = χB(z,2r)f and fj = χB(z,2j+1r)\B(z,2jr)f, j ∈ N\{0}.

We have f(x) = f0(x) +
∑∞

j=1 fj(x).
Theorem 2.5 asserts that TΩ,α : Lp(vp) → Lq(uq). That is,

∥TΩ,αf0∥Lq(uq) ≤ C∥f0∥Lp(vp)
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and, hence, (3.1) gives

1
ω(B(z, r))∥χB(z,r)(TΩ,αf0)∥Lq(uq) ≤ C

1
ω(B(z, 2r))∥χB(z,2r)f∥Lp(vp). (3.2)

There is a constant C > 0 such that, for any j ≥ 1

χB(z,r)(x)|(TΩ,αfj)(x)|

≤ CχB(z,r)(x)
∫

B(z,2j+1r)\B(z,2jr)

|Ω(x − y)||x − y|−n+α|f(y)|dy. (3.3)

Since Ω is a homogeneous function on Rn with degree zero and Ω ∈ Ls(Sn−1), according
to [10, (5.9)], we have

χB(z,r)(x)|(TΩ,αfj)(x)| ≤ CχB(z,r)(x)
∥χB(z,2j+1r)f∥Ls′

|B(z, 2j+1r)| 1
s′ − α

n

. (3.4)

As p > s′, the Hölder inequality asserts that

∥χB(z,2j+1r)f∥Ls′ ≤ C∥χB(z,2j+1r)|f |s′∥1/s′

Lp/s′ (vp)∥χB(z,2j+1r)∥1/s′

L(p/s′)′ (v−(p/s′)′s′ )

= C∥χB(z,2j+1r)f∥Lp(vp)∥χB(z,2j+1r)∥1/s′

L(p/s′)′ (v−(p/s′)′s′ ).
(3.5)

In addition, since (us′
, vs′) ∈ A∗(p/s′, q/s′), we have a constant C > 0 such that for

any B(z, r) ∈ B,

 1

|B(z, r)|

∫

B(z,r)

u(x)qdx




s′/q 
 1

|B(z, r)|

∫

B(z,r)

v(x)−s′(p/s′)′
dx




1/(p/s′)′

< C.

Therefore,

∥χB(z,2j+1r)∥1/s′

L(p/s′)′ (v−(p/s′)′s′ ) =




∫

B(z,2j+1r)

v(x)−s′(p/s′)′
dx




1/s′(p/s′)′

≤ C|B(z, 2j+1r)|
1
q + 1

s′(p/s′)′ 1
∥χB(z,2j+1r)∥Lq(uq)

.

Notice that
1
q

+ 1
s′(p/s′)′ = 1

q
+ 1

s′ − 1
p

= 1
s′ − α

n
. (3.6)

Consequently, (3.4), (3.5) and (3.6) give

χB(z,r)(x)|(TΩ,αfj)(x)| ≤ CχB(z,r)(x)
∥χB(z,2j+1r)f∥Lp(vp)

∥χB(z,2j+1r)∥Lq(uq)
.
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Applying the norm ∥ · ∥Lq(uq) on both sides of the above inequality, we have

∥χB(z,r)TΩ,αfj∥Lq(uq) ≤ C∥χB(z,r)∥Lq(uq)
∥χB(z,2j+1r)f∥Lp(vp)

∥χB(z,2j+1r)∥Lq(uq)
. (3.7)

We find that

1
u(z, r)∥χB(z,r)TΩ,αf∥Lq(uq)

≤ 1
u(z, r)∥χB(z,r)Tf0∥Lq(uq) +

∞∑

j=1

1
u(z, r)∥χB(z,r)Tfj∥Lq(uq).

Therefore, (3.2) and (3.7) yield

1
u(z, r)∥χB(z,r)TΩ,αf∥Lq(uq)

≤ C∥f0∥Mp
ω(vp) + C

∞∑

j=1

u(z, 2j+1r)
u(z, r)

∥χB(z,r)∥Lq(uq)

∥χB(z,2j+1r)∥Lq(uq)

∥χB(z,2j+1r)f∥Lp(vp)

u(z, 2j+1r)

≤ C∥f0∥Mp
ω(vp) + C

∞∑

j=1

u(z, 2j+1r)
u(z, r)

∥χB(z,r)∥Lq(uq)

∥χB(z,2j+1r)∥Lq(uq)
∥f∥Mp

ω(vp).

Hence, (3.1) asserts that

1
u(z, r)∥χB(z,r)TΩ,αf∥Mq

ω(uq) ≤ C∥f∥Mp
ω(vp)

for some C > 0 independent of z ∈ Rn and r > 0. By taking supremum over B(z, r) ∈ B
on both sides of the above inequality, we obtain our desired result.

Next, we present and establish the mapping properties of the rough fractional
integral operators on Mp

ω(vp) and Mq
ω(uq) when u and v satisfy Item (2) of Theorem 2.5.

We begin with the following characterization for the weight ω.

Definition 3.4. Let 1 < p < ∞, β > 0, and v be a non-negative locally integrable
function. For any ω : B → (0, ∞), we write ω ∈ W̃p,v,β if there exists a constant C > 0
such that for any x ∈ Rn and r > 0

ω(B(x, 2r)) ≤ Cω(B(x, r)), (3.8)

∞∑

j=1

∥χB(z,2jr)∥Lp′ (v−p′ )

∥χB(z,r)∥Lp′ (v−p′ )

|B(z, r)|β
|B(z, 2jr)|β ω(B(z, 2jr)) ≤ Cω(B(z, r)) (3.9)

We now present the second result for the rough fractional integral operators on
Morrey spaces.
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Theorem 3.5. Let n ∈ N, 0 < α < n, max((n/α)′, q) < s, 1 < p < n,
1
q = 1

p − α
n . Suppose that Ω is a homogeneous function on Rn with degree

zero and Ω ∈ Ls(Sn−1). Suppose that the Lebesgue measurable functions
u, v : Rn → (0, ∞) satisfy Item (2) of Theorem 2.5. If the Lebesgue measurable
function ω : B → (0, ∞) belongs to W̃p,v, 1

s′ − α
n

, then there is a constant C > 0 such
that for any f ∈ Mp

ω(vp)

∥TΩ,αf∥Mq
ω(uq) ≤ C∥f∥Mp

ω(vp).

Roughly speaking, Item (2) of Theorem 2.5 the dual result of Item (1) of The-
orem 2.5. Therefore, to obtain Theorem 3.5, we need to use the notion of blocks
[8, Definition 2.7] and [10, Definition 4.2] because the block space is a pre-dual of the
Morrey space.
Definition 3.6. Let 1 < p < ∞, u : Rn → (0, ∞) and ω : B → (0, ∞) be a Lebesgue
measurable functions. A Lebesgue measurable function b is a (p, u, ω)-block if it is
supported in a ball B(z, r), r > 0, z ∈ Rn and

∥b∥Lp(u) ≤ 1
ω(B(z, r)) .

We write b ∈ bp,ω(u) if b is a (p, u, ω)-block.
We present some supporting results for the proof of Theorem 3.5.

Proposition 3.7. Let 1 < p < ∞, v : Rn → (0, ∞) and ω : B → (0, ∞) be a Lebesgue
measurable functions. There exist constants C, D > 0 such that for any f ∈ Mp

ω(vp)

C∥f∥Mp
ω(vp) ≤ sup

b∈bp′,ω(v−p′ )

∣∣∣∣∣∣

∫

Rn

f(x)b(x)dx

∣∣∣∣∣∣
≤ D∥f∥Mp

ω(vp).

Proposition 3.8. Let 1 < p < ∞, v : Rn → (0, ∞) and ω : B → (0, ∞) be a Lebesgue
measurable functions. Let f be a Lebesgue measurable function. If

sup
b∈bp′,ω(v−p′ )

∣∣∣∣∣∣

∫

Rn

f(x)b(x)dx

∣∣∣∣∣∣
< ∞,

then f ∈ Mp
ω(vp).

The corresponding results for the Morrey spaces with variable exponents and
block spaces with variable exponents are given in [10, Propositions 4.5 and 4.6].
Since (Lp(up))∗ = Lp′(u−p′) and (Lp(up))∗∗ = Lp(up), where the duality between
f ∈ (Lp(up))∗ and g ∈ Lp′(u−p′) is given by lg(f) =

∫
Rn f(x)g(x)dx, the proofs for

Propositions 3.7 and 3.8 follow from [10, Propositions 4.5 and 4.6] with some simple
modifications, for brevity, we leave it to the readers. By using the blocks, we can define
and study the block space [8], which is a pre-dual of the Morrey space. As we do not
need the block space in our study, we skip the details.
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Proof of Theorem 3.5. Define Ω̃(x) = Ω(−x). Obviously, Ω̃ is a homogeneous function
of degree zero and Ω̃ ∈ Ls(Sn−1). Furthermore, for any f ∈ Mp

ω(vp) and b ∈ bq′,ω(u−q′),
we have ∫

Rn

TΩ,αf(x)b(x)dx =
∫

Rn

f(x)TΩ̃,αb(x)dx (3.10)

whenever the integrals are well defined.
In view of the above equality, we consider TΩ̃,αb, where b ∈ bq′,ω(u−q′).
Let r > 0, z ∈ Rn and b ∈ bq′,ω(u−q′) be a block supported in B(z, r). We write

b0(x) = χB(z,2r)(x)TΩ̃,αb(x)

and
bj(x) = χB(z,2j+1r)\B(z,2jr)(x)TΩ̃,αb(x), j ∈ N.

Obviously, TΩ̃,αb(x) = b0(x) +
∑∞

j=1 bj(x).
Notice that 1

q′ = 1 − 1
q = 1 − 1

p + α
n . That is, 1

p′ = 1
q′ − α

n . Since q′ > s′,
((v−1)s′

, (u−1)s′) ∈ A∗(q′/s′, p′/s′) and (v−1)s′
, (u−1)s′ ∈ A(q/s′, p/s′), by applying

the result of Item (1) of Theorem 2.5 on TΩ̃,α, we find that

∥b0∥Lp′ (v−p′ ) = ∥χB(z,r)TΩ̃,αb∥Lp′ (v−p′ ) ≤ ∥TΩ̃,αb∥Lp′ (v−p′ )

≤ C∥b∥Lq′ (u−q′ ) ≤ C
1

ω(B(z, r))
(3.11)

for some C > 0.
Furthermore, in view of [10, (5.13)], we have

|bj(x)| ≤ CχB(z,2jr)(x) ∥b∥Ls′

|B(z, 2jr)| 1
s′ − α

n

. (3.12)

As q′ > s′, the Hölder inequality gives

∥b∥Ls′ ≤ |b|s′∥
1
s′
Lq′/s′ (u−q′ )∥χB(z,r)∥

1
s′
L(q′/s′)′ (u(q′/s′)′s′ )

= ∥b∥Lq′ (u−q′ )∥χB(z,r)∥
1
s′
L(q′/s′)′ (u(q′/s′)′s′ )

≤ C
∥χB(z,r)∥

1
s′
L(q′/s′)′ (u(q′/s′)′s′ )

ω(B(z, r)) .

By applying the norm ∥ · ∥Lp′ (v−p′ ) on both sides of (3.12), we find that

∥bj∥Lp′ (v−p′ ) ≤ C

ω(B(z, r))∥χB(z,2jr)∥Lp′ (v−p′ )

∥χB(z,r)∥
1
s′
L(q′/s′)′ (u(q′/s′)′s′ )

|B(z, 2jr)| 1
s′ − α

n

. (3.13)
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Since (v−s′
, u−s′) ∈ A∗(q′/s′, p′/s′), we have a constant C > 0 such that for any

z ∈ Rn and r > 0

 1

|B(z, r)|

∫

B(z,r)

v−p′
dx




s′/p′ 
 1

|B(z, r)|

∫

B(z,r)

us′(q′/s′)′
dx




1/(q′/s′)′

< C.

That is,

∥χB(z,r)∥
1
s′
L(q′/s′)′ (u(q′/s′)′s′ ) ≤ C

|B(z, r)|
1

p′ + 1
s′(q′/s′)′

∥χB(z,r)∥Lp′ (v−p′ )
. (3.14)

Moreover,
1
p′ + 1

s′(q′/s′)′ = 1
p′ + 1

s′ − 1
q′ = 1

s′ − α

n
.

Inequalities (3.13) and (3.14) give

∥bj∥Lp′ (v−p′ ) ≤ C

ω(B(z, r))
∥χB(z,2jr)∥Lp′ (v−p′ )

∥χB(z,r)∥Lp′ (v−p′ )

|B(z, r)| 1
s′ − α

n

|B(z, 2jr)| 1
s′ − α

n

. (3.15)

The Hölder inequality and (3.10) yield
∣∣∣∣∣∣

∫

Rn

TΩ,αf(x)b(x)dx

∣∣∣∣∣∣
≤

∫

Rn

|f(x)TΩ̃,αb(x)|dx

≤
∫

B(z,r)

|f(x)b0(x)|dx +
∞∑

j=1

∫

B(z,2jr)\B(z,2j−1r)

|f(x)bj(x)|dx

≤ ∥χB(z,r)f∥Lp(vp)∥b∥Lp′ (v−p′ ) +
∞∑

j=1
∥χB(z,2jr)f∥Lp(vp)∥bj∥Lp′ (v−p′ ).

Consequently, (3.8), (3.11) and (3.15) give
∣∣∣∣∣∣

∫

Rn

TΩ,αf(x)b(x)dx

∣∣∣∣∣∣

≤ ∥χB(z,r)f∥Lp(vp)

ω(B(z, r))

+ C

∞∑

j=1

∥χB(z,2jr)f∥Lp(vp)

ω(B(z, 2jr))
ω(B(z, 2jr))
ω(B(z, r))

∥χB(z,2jr)∥Lp′ (v−p′ )

∥χB(z,r)∥Lp′ (v−p′ )

|B(z, r)| 1
s′ − α

n

|B(z, 2jr)| 1
s′ − α

n

≤ C∥f∥Mp
ω(vp)




∞∑

j=1

ω(B(z, 2jr))
ω(B(z, r))

∥χB(z,2jr)∥Lp′ (v−p′ )

∥χB(z,r)∥Lp′ (v−p′ )

|B(z, r)| 1
s′ − α

n

|B(z, 2jr)| 1
s′ − α

n


 .
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By using (3.9), the integrals on (3.10) are well defined. By taking supremum over
b ∈ bq′,ω(u−q′) over both sides of the above inequalities, Proposition 3.8 and (3.9) give

∥TΩ,αf∥Mq
ω(uq) = sup

b∈bq′,ω(u−q′ )

∣∣∣∣∣∣

∫

Rn

TΩ,αf(x)b(x)dx

∣∣∣∣∣∣
≤ C∥f∥Mp

ω(vp).

Similarly, we also have the corresponding results for the rough fractional maximal
operator MΩ,α. As the results are similar to Theorems 3.3 and 3.5, for brevity, we omit
the details. In addition, for the study of the singular integral operator with rough
kernel on Morrey spaces, the reader is referred to [11].
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