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Abstract. Let A be a bounded linear operator in a complex separable Hilbert
space, A∗ be its adjoint one and AI := (A − A∗)/(2i). Assuming that AI

is a Hilbert–Schmidt operator, we investigate perturbations of the imaginary
parts of the eigenvalues of A. Our results are formulated in terms of the “ex-
tended” eigenvalue sets in the sense introduced by T. Kato. Besides, we re-
fine the classical Weyl inequality

∑∞
k=1(Im λk(A))2 ≤ N2

2 (AI), where λk(A)
(k = 1, 2, . . .) are the eigenvalues of A and N2(·) is the Hilbert–Schmidt norm.
In addition, we discuss applications of our results to the Jacobi operators.
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1. INTRODUCTION AND STATEMENT OF THE MAIN RESULT

Let H be a complex separable Hilbert space with a scalar product (·, ·) and the unit
operator I, B(H) be the set of linear bounded operators in H. For an A ∈ B(H), A∗ is
the adjoint one, ∥A∥ is the operator norm, σ(A) is the spectrum, AI = (A−A∗)/(2i) and
λk(A) (k = 1, 2, . . .) denote the nonreal eigenvalues of A taken with their multiplicities
and enumerated in the order pointed below. By S2 we denote the Hilbert–Schmidt ideal
of linear compact operators C in H with the finite norm N2(C) := [trace (C∗C)]1/2.

If
A ∈ B(H) and AI ∈ S2, (1.1)

then due to the well known Lemma I.4.1 from [15] the non-real spectrum of A consists
of the isolated eigenvalues, which satisfy the classical Weyl inequality

∞∑

j=1
(Im λj(A))2 ≤ N2

2 (AI), (1.2)

cf. [15, Section II.6]. The literature devoted to estimates on imaginary or real parts
of eigenvalues is rather rich, but mainly finite dimensional and compact operators
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were investigated, cf. [6–10, 13, 16, 18, 20, 23, 24]. Below we do not assume that the
considered operators are compact and refine inequality (1.2).

Furthermore, let C be a compact operator, then following [19] (see also [2]), by
an enumeration of the eigenvalues of C we shall mean a sequence λ1(C), λ2(C), . . .
whose terms consist of all the eigenvalues of C each counted as often as its multiplic-
ity. By an extended enumeration of the eigenvalues of C we shall mean a sequence
λ′

1(C), λ′
2(C), . . . whose terms consist of all the nonzero eigenvalues of C each counted

as often as its multiplicity and the term 0 repeated infinitely often.
Besides, if C ∈ B(H) has a compact hermitian component CI by an enumer-

ation of the imaginary parts of the eigenvalues of C we shall mean a sequence
Im λ1(C), Re Im λ2(C), . . . whose terms consist of all the imaginary parts of the eigen-
values of C each counted as often as its multiplicity. By an extended enumeration of the
imaginary parts of eigenvalues of C we shall mean a sequence Im λ′

1(C), Im λ′
2(C), . . .

whose terms consist of all imaginary parts of the eigenvalues of A each counted as
often as its multiplicity and the term 0 repeated infinitely often.

Now we are in a position to formulate the main result of the paper.
Theorem 1.1. Let condition (1.1) hold and S ∈ S2 be selfadjoint. Let Im λ′

1(A),
Im λ′

2(A), . . . be the extended enumeration of the imaginary parts of eigenvalues of A
and λ′

1(S), λ′
2(S), . . . be the extended enumeration of the eigenvalues of S. Then there

exists a permutation π of the natural numbers, such that
[ ∞∑

k=1
(Im λ′

k(A) − λ′
π(k)(S))2

]1/2

≤ N2(AI − S) +
[

N2
2 (AI) −

∞∑

k=1
(Im λk(A))2

]1/2

.

(1.3)
The proof of this theorem is presented in the next section. Theorem 1.1 is sharp

in the following sense: if A = iAI , i.e. the real Hermitian component of A is equal
to zero, then (1.3) coincides (in the case of selfadjoint operators) with the following
well-known result, proved in [2, Theorem 2].
Theorem 1.2. Let Z and Z̃ be normal Hilbert–Schmidt operators and let
{λ′

1(Z), λ′
2(Z), . . .} and {λ′

1(Z̃), λ̃2
′(Z̃), . . .} be extended enumerations of their eigen-

values. Then there exists a permutation π of the natural numbers, such that
[ ∞∑

k=1
(λ′

k(Z) − λ′
π(k)(Z̃))2

]1/2

≤ N2(Z − Z̃).

This theorem is an infinite-dimensional analogues of the Hoffman–Wielandt Theo-
rem on perturbations of finite normal matrices. So Theorem 1.1 extends Theorem 1.2
to the class of non-normal ones satisfying (1.1).

The perturbation theory of operators is very rich (see [1, 4, 12, 14, 17, 25] and
the references therein), but to the best of our knowledge the perturbation bounds are
derived mainly for the absolute values of eigenvalues. At the same time the variations
of imaginary and real parts of eigenvalues are investigated considerably less than the
absolute values.
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Furthermore, take S = AI . Then Theorem 1.1 gives us the following result.

Corollary 1.3. Let condition (1.1) hold. Then there exists a permutation π of the
natural numbers, such that

∞∑

k=1
(Im λk(A))2 +

∞∑

k=1
(Im λ′

k(A) − λ′
π(k)(AI))2 ≤ N2

2 (AI). (1.4)

Clearly, (1.4) refines (1.2). Corollary 1.3 is sharp: 1.4 is attained, when A is normal,
since in this case Im λk(A) = λk(AI) (k = 1, 2, . . .).

In the next section we also prove the following corollary of Theorem 1.1

Corollary 1.4. Under the hypothesis of Theorem 1.1 one has
[ ∞∑

k=1
(Im λ′

k(A) − λ′
π(k)(S))2

]1/2

≤ 1
3

[
2N2(S) + (6N2

2 (AI) + 6N2
2 (AI − S) − 2N2(S))1/2

]
.

This corollary is less sharp but more convenient than Theorem 1.1.
Below we also discuss application of Theorem 1.1 to non-selfadjoint Jacobi operators.

The spectral theory of Jacobi operators is a classical subject with many beautiful
results, though the majority of results are related to selfadjoint and compact Jacobi
operators, cf. [3, 5, 21, 22, 26]. Using Theorem 1.1, we are able to obtain new results
on the eigenvalues of Jacobi operators.

2. PROOFS

Recall that a bounded linear operator V , satisfying the condition rs(V ) = 0 is called
a quasi-nilpotent operator, cf. [15]. Here rs(·) denotes the spectral radius. So any
quasi-nilpotent operator V has the property σ(V ) = {0}.

For two orthogonal projections P1, P2 in H we write P1 < P2 if P1H ⊂ P2H. A set
P of orthogonal projections in H containing at least two orthogonal projections is
called a chain, if from P1, P2 ∈ P with P1 ̸= P2 it follows that either P1 < P2 or
P1 > P2. For two chains P1, P2 we write P1 < P2 if from P ∈ P1 it follows that
P ∈ P2. In this case we say that P1 precedes P2. The chain that precedes only itself
is called a maximal chain. For more details about maximal chains see [11, Section 8.1]
and the references given therein.

Let A = D + V , where D ∈ B(H) is a normal operator and V is a compact
quasi-nilpotent operator in H. Let V have a maximal invariant chain P and PD = DP
for all P ∈ P. In addition, let the essential spectrum of A lie on an unclosed Jordan
curve. Then following Definition 8.1 from [11] we will say that A is a P-triangular
operator, equality A = D+V is its triangular representation, D and V are the diagonal
and nilpotent parts of A, respectively.
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Due to Corollary 8.2 from [11] for any P-triangular operator, we have σ(A) = σ(D),
where D is the diagonal part of A. Due to [11, Theorem 8.8], under condition (1.1)
A is a P-triangular operator, and therefore

A = D + V (σ(A) = σ(D)). (2.1)

Since D is normal, Im λk(A) = Im λk(D) = λk(DI) (DI = (D − D∗))/(2i)). So due to
(1.1) and (1.2) DI ∈ S2, and therefore VI = (V −V ∗))/(2i) = AI −DI ∈ S2. Moreover,
Lemma 9.3 from [11, p. 149] yields

N2(VI) = gI(A), (2.2)

where

gI(A) =
[

N2
2 (AI) −

∞∑

k=1
(Im λk(A))2

]1/2

.

Since DI and S are selfadjoint Hilbert–Schmidt operators, due to Theorem 1.2, there
exists a permutation π of natural numbers, such that

∞∑

k=1
(λ′

k(DI) − λ′
π(k)(S))2 ≤ N2

2 (DI − S).

Furthermore, take into account that (2.1) implies

N2(DI − S) = N2(AI − VI − S) ≤ N2(AI − S) + N2(VI).

We thus have proved the following lemma.

Lemma 2.1. Let condition (1.1) hold and S be a selfadjoint Hilbert–Schmidt operator.
Then there exists a permutation π of natural numbers, such that

[ ∞∑

k=1
(Im λ′

k(A) − λ′
π(k)(S))2

]1/2

≤ N2(AI − S) + N2(VI),

where V is the nilpotent part of A.

The assertion of Theorem 1.1 follows from Lemma 2.1 and (2.2).

Proof of Corollary 1.4. Since

(a + b)2 ≤ 2a2 + 2b2 (a, b > 0),

Theorem 1.1 yields

∞∑

k=1
(Im λ′

k(A) − λ′
π(k)(S))2 + 2

∞∑

k=1
(Im λk(A))2 ≤ 2N2

2 (AI − S) + 2N2
2 (AI). (2.3)
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With xk = Im λ′
k(A) − λ′

π(k)(S), ck = λ′
π(k)(S), we have

∞∑

k=1
(Im λk(A))2 =

∞∑

k=1
(Im λ′

k(A))2 =
∞∑

k=1
(xk + ck)2 =

∞∑

k=1
(x2

k + 2xkck + c2
k).

Applying to the Schwarz inequality, we have
∞∑

k=1
|xkck| ≤ x̂ĉ,

where

x̂ =
( ∞∑

k=1
x2

k

)1/2

=
( ∞∑

k=1
Im λ′

k(A) − λ′
π(k)(S)

)1/2

and

ĉ =
( ∞∑

k=1
c2

k

)1/2

=
( ∞∑

k=1

(
λ′

π(k)(S)2
))1/2

=
( ∞∑

k=1

(
λk(S)2)

)
)1/2

= N2(S).

Now (2.3) implies
x̂2 − 4

3N2(S)x̂ ≤ γ,

where
γ = 2

3(N2
2 (AI) + N2

2 (AI − S) − N2(S)).

Solving this inequality, we get

x̂ ≤ 2
3N2(S) +

[
4
9N2

2 (S) + γ

]1/2

= 2
3N2(S) +

[
4
9N2

2 (S) + 2
3N2

2 (AI) + 2
3N2

2 (AI − S) − 2
3N2(S))1/2

]

= 1
3

[
2N2(S) + (6N2

2 (AI) + 6N2
2 (AI − S) − 2N2(S))1/2

]
,

as claimed.

3. JACOBI OPERATORS

Let l2 be the Hilbert space of complex number sequences x = {xk}∞
k=1, y = {yk}∞

k=1
with the scalar product

(x, y) =
∞∑

k=1
xkyk.
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Given bounded sequences {ak}, {bk}, {ck} (k = 1, 2, . . .), we define the associated
Jacobi operator J : l2 → l2 as follows:

(Jx)1 = a1x1 + c1x2, (Jx)k = bk−1xk−1 + akxk + ckxk+1

(k = 2, 3, . . . ; x = (xj) ∈ l2). In the matrix form we have

J =




a1 c1 0 0 0 . . .
b1 a2 c2 0 0 . . .
0 b2 a3 c3 0 . . .
0 0 b3 a4 c4 . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .




.

Put wk = (ck − bk)/(2i). Then

JI := 1
2i

(J − J∗) =




Im a1 w1 0 0 0 . . .
w1 Im a2 w2 0 0 . . .
0 w2 Im a3 w3 0 . . .
0 0 w3 Im a4 w4 . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .




.

It is assumed that
N2

2 (JI) :=
∞∑

k=1
2|wk|2 + (Im ak)2 < ∞. (3.1)

Taking S = diag (Im ak)∞
k=1, we have λk(S) = Im ak, and due to Corollary 1.4 we get

the following result

Corollary 3.1. Let condition (3.1) hold. Then there exists a permutation π of natural
numbers, such that

( ∞∑

k=1
Im λ′

k(J) − a′
π(k)

)1/2

≤ 1
3 [2N2(S) + (6N2

2 (JI) + 12
∞∑

k=1
|wk|2 − 2N2(S))1/2],

where
N2

2 (S) =
∞∑

k=1
|Im ak|2, N2

2 (JI − S) = 2
∞∑

k=1
|wk|2,

and {Im a′
π(k)} and {Im λ′

k(J)} are the extended enumerations of the sets {λk(S) =
Im ak} and {Im λk(J)}, respectively.
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