
Opuscula Math. 44, no. 2 (2024), 249–265
https://doi.org/10.7494/OpMath.2024.44.2.249 Opuscula Mathematica

ANISOTROPIC p-LAPLACE EQUATIONS
ON LONG CYLINDRICAL DOMAIN

Purbita Jana

Communicated by J.I. Díaz

Abstract. The main aim of this article is to study the Poisson type problem
for anisotropic p-Laplace type equation on long cylindrical domains. The rate of
convergence is shown to be exponential, thereby improving earlier known results for
similar type of operators. The Poincaré inequality for a pseudo p-Laplace operator
on an infinite strip-like domain is also studied and the best constant, like in many
other situations in literature for other operators, is shown to be the same with the
best Poincaré constant of an analogous problem set on a lower dimension.
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1. INTRODUCTION

Let Ωℓ := ℓω1 × ω2 be a cylindrical domain of length ℓ > 0, where ω1 ⊂ Rn−m and
ω2 ⊂ Rm are open sets. It is also assumed that 0 ∈ ω1. Let us denote a generic point
in Rn by x = (X1, X2) with X1 ∈ Rn−m and X2 ∈ Rm, respectively. The set ω2 will
be referred to as a cross section of the cylindrical domains Ωℓ. For pi, p ∈ (1,∞),
i ∈ {1, 2, . . . , n}, consider the following generalisations of the Laplace equation:





− ∑n
i=1

∂

∂xi

(
|(uℓ)xi

|pi−2 ∂uℓ

∂xi

)
= f(X2) in Ωℓ,

uℓ = 0 on ∂Ωℓ,
(1.1)

where f : ω2 → R is in C(ω̄2). Let p+ = max{p1, . . . , pn} < n. A typical space for
considering a solution of (1.1) would be the anistropic Sobolev space

W (Ωℓ) :=
{
u ∈ Lp+

(Ωℓ) | uxi ∈ Lpi(Ωℓ)
}
.

For detail reading on anisotropic Sobolev spaces we refer to [25, 29]. The existence of
a solution for the above (and more general) type of a problem can be found in [30].
uℓ in (1.1) is also associated with an appropriate minimisation problem. The operator
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involved in (1.1) is called an anisotropic p-Laplacian. For the choice of pi = p for
all i, the operator is called a pseudo p-Laplacian. For p = 2, a pseudo p-Laplacian
is a Laplacian. Problems involving pseudo p-Laplace operators are widely studied
in literature as it is able to model several real life problems with a great deal of
accuracy. For example, problems in image processing and computer vision [33] are
modeled by pseudo p-Laplace operators. The pseudo p-Laplace operator is also known
as an “orthotropic p-Laplacian operator” as it is invariant with respect to the dihedral
group of N = 2 (see [4]). This operator also naturally appears from optimal transport
problems [6].

Consider an analogous equation on the cross section ω2 defined as follows:




− ∑n
i=n−m+1

∂

∂xi

(
|Wxi |pi−2 ∂W

∂xi

)
= f(X2) in ω2,

W = 0 on ∂ω2.
(1.2)

It will be helpful for our analysis. Define

D(u)(x) =
n∑

i=1
|uxi(x)|pi ,

DX2(u)(x) =
n∑

i=n−m+1
|uxi(x)|pi ,

DX1(u)(x) =
n−m∑

i=1
|uxi(x)|pi .

Assumption (H): Assume for each i ∈ {1, . . . , n−m} there exists j ∈ {n−m+1, . . . , n}
such that pi = pj .

Notice that whenever m = 1, Assumption (H) implies the operator to be a pseudo
p-Laplace operator. But whenever the cross section ω2 is more than one dimensional,
than the operator is a strictly variable exponent pseudo p-Laplacian operator. The
first aim of this article is to study the asymptotic behavior of uℓ as ℓ tends to infinity,
and in this regard we will prove the following theorem.

Theorem 1.1. Assume (H) holds, then for pi ≥ 2, α ∈ (0, 1) and for some constant
C > 0 independent of ℓ, ∫

Ωαℓ

D(uℓ −W )dx ≤ Ce−αℓ.

It is understood that W is extended as a function of X2 in the whole Ωαℓ.

For the case pi = 2 for all i, a variable exponent (anisotropic) pseudo p-Laplace
operator is a Laplace operator and the above theorem is studied in [12, 34]. The
polynomial rate of convergence was first obtained in [12], whereas sharp exponential
rate of convergence (on the right-hand side) was obtained in [34]. When pi = p the
asymptotic behavior of the corresponding uℓ was studied in [9]. In [17], a similar
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problem was studied for purely variational problems and it has to be noticed that uℓ

in (1.1) can also be obtained for the choice of

G(X) =
n∑

i=1

|xi|pi

pi

in [17]. Though it is not clear to us at this point if the above G satisfies uniform
“convexity of power-q type” assumption of [17], but nevertheless even if it satisfies, only
the polynomial rate of convergence can be obtained as an application of their main
theorem Theorem 1.1, whereas we prove the exponential rate of convergence. This can
be considered as the main novelty of this article. A similar problem for a fractional
Laplacian operator, hyperbolic operators, parabolic operators, large solutions, purely
variational problems and Allen–Cahn type equations are carried out in [2, 3, 7, 14, 17,
20] and [18], respectively.

The next goal of this article is to study (1.1) with pi = p > 1 and we will stay with
this assumption for the rest of the our results. The unique function uℓ in (1.1) has
also the following variational characterisation:

Jℓ(uℓ) = inf
u∈W 1,p

0 (Ωℓ)
Jℓ(u),

where Jℓ is the energy functional associated to the problem (1.1) and is defined as

Jℓ(u) =
n∑

i=1

1
p

∫

Ωℓ

|uxi |pdx−
∫

Ωℓ

fudx.

Also it is well known that

Jω2(W ) = inf
u∈W 1,p

0 (ω2)
Jω2(u)

where
Jω2(u) =

n∑

i=n−m+1

1
p

∫

ω2

|uxi
|pdX2 −

∫

ω2

fudX2

and where W is as in (1.2). Our next theorem in this direction is the following:
Theorem 1.2 (Convergence of the energy). If p ≥ 2, then for some constant C > 0
we have

Jω2(W ) + P (ω1)µn−m(ℓω1)
ℓp

∫

Ωℓ

|uℓ|pdx ≤ Jℓ(uℓ)
µn−m(Ωℓ)

≤ Jω2(W ) + C

ℓ
.

The above theorem can be thought as a generalisation of Theorem 4.2 of [17] again
for the choice of G made in there. The extra term

P (ω1)µn−m(ℓω1)
ℓp

∫

Ωℓ

|uℓ|pdx
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in the lower bound is the new contribution. Also our technique is new when compared
to those used in [17], though we present both the techniques in the proof.

Next aim of this article is to study the Poincaré type inequality, related to a pseudo
p-Laplace operator, on an infinite strip type domains Ω∞ := Rn−m × ω2 (such a name
is used because one gets Ω∞ by putting ℓ = ∞ in Ωℓ.) Though Ω∞ is not a bounded
domain, but it is well known (any standard proof of Poincaré inequality will show
this) that the Poincaré inequality holds for such domains. To be more precise, by the
Poincaré inequality we mean the following inequality: For u ∈ W 1,p

0 (Rn−m × ω2) and
a constant C(Ω∞) > 0 (independent of u)

0 < C(Ω∞) :=
∫

Ω∞
|∇u|pdx∫

Ω∞
|u|pdx .

C(Ω∞) is understood to be the best possible constant in the above inequality. In [26],
it was shown (after taking the matrix A = In×n) that C(Ω∞) = C(ω2), where

C(ω2) := inf
u∈W 1

0 (ω2)

∫
ω2

|∇X2u|pdX2∫
ω2

|u|pdX2
.

Similarly, the result for the case p = 2 but with a general matrix A, is done in [13]
by using an approximation argument on the matrix A. Such types of results are
also established on fractional Sobolev spaces and more generally on Orlicz fractional
Sobolev spaces in [22] and [1], respectively. A generalisation of the work [13] for
a generalised p-Laplace operator is carried out in [26].

Now using the fact that all norms in the Euclidean space are equivalent, it can be
easily shown that for ℓ ∈ (0,∞] we have

0 < P (Ωℓ) := inf
u∈W 1

0 (Ωℓ)

∑n
i=1

∫
Ωℓ

|uxi
|pdx∫

Ωℓ
|u|pdx

and
0 < P (ω2) := inf

u∈W 1
0 (ω2)

∑n
i=n−m+1

∫
ω2

|uxi |pdX2∫
ω2

|u|pdX2
.

The following theorem is our second main result in this direction.

Theorem 1.3. If p ∈ [1,∞), then P (Ω∞) = P (ω2). Moreover, for ℓ sufficiently large
enough and for some constant C,D > 0, one has

P (ω2) + D

ℓp
≤ P (Ωℓ) ≤ P (ω2) + C

ℓp
.

The above theorem says that the rate of convergence is ℓ−p, and it is sharp. To the
best of our knowledge, such a matching rate (an optimal rate) of convergence is not
obtained in any other work in literature, except for the linear case of p = 2.

There is now a lot of literature available for problems on long cylindrical domains.
In the paper [23] (see also [5]) it was proved, for a semilinear superlinear equation
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(i.e., with a homogeneous perturbation of exponent m > 1), that the decay to zero
of the solution, for a general unbounded domain Ω, when |x| → ∞, is of order of the
inverse of a polynomial in |x|, but when the domain Ω is a cylinder then the decay is
negatively exponential. So, the shape of the domain changes the type of decay to zero
at the infinity of the solution.

For other related work on semilinear equations, polynominal rate of convergence
is obtained in [23] and [5]. We refer to [3, 8, 10, 11, 16, 21, 24, 28, 31, 32] and the
references therein for more detailed survey in this direction and related areas.

Application from the numerical point of view: The following feature is common in
all the three theorems above: The solution (or parameter) on Ωℓ which is set on Rn

finds its limiting connection on the cross section ω2 of the cylinder which is a lower
dimensional set (in Rn−m). Clearly this has implications from a numerical point of
view, as it saves a lot of computational cost (that arises due to the curse of dimensions)
to work on a lower dimensional problem. For a direct application, the interested reader
may look into [19].

This article is organised in the following way. In the next section, we introduce
some function space, preliminaries and some estimates in the form of lemmas that are
required. In the last section we present the proofs of our main theorems.

2. PRELIMINARIES

Through out this article x = (x1, . . . , xn) ∈ Rn will denote a generic point.
|x| =

(∑n
i=1 x

2
i

) 1
2 will denote its Euclidean norm. |x|p = (

∑n
i=1 |xi|p)

1
p will denote the

ℓp norm of the point x. The following inequality (equivalence of all finite dimensional
norms) will be used in several place, with making any references: for some constants
c1, c2 > 0,

c1|x| ≤ |x|p ≤ c2|x|, x ∈ Rn.

For us W 1,p(Ω),W 1,p
0 (Ω) will denote usual Sobolev spaces (see [27]). The space

V (Ωℓ) := {ϕ ∈ W (Ωℓ) : ϕ = 0 on ℓω1 × ∂ω2}

equipped with the W norm. ∇,∇X1 ,∇X2 will denote gradients in Rn,Rn−m and Rm,
respectively. The Lebesgue measure of a measurable set E ⊂ Rk will be denoted by
µk(E). Throughout this article the value of the constants will be denoted by a generic
number C > 0 and may change from line to line. In this article we are not worried
about the existence of uℓ in (1.1), rather we assume existence, which we believe that it
follows from a usual variational technique, and continue in establishing their asypmtotic
behavior as ℓ tends to ∞. We say that uℓ is a weak solution of the problem (1.1),
that is, if uℓ ∈ W (Ωℓ),

n∑

i=1

∫

Ωℓ

|(uℓ)xi |pi−2(uℓ)xi(ϕℓ)xi =
∫

Ωℓ

fϕ, ∀ϕ ∈ W (Ωℓ).
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Lemma 2.1. There exists a constant C > 0 (independent of ℓ) and for some positive
integer δ, we have ∫

Ωℓ

|D(uℓ −W )|dx ≤ Cℓδ.

Proof. Using v = uℓ in (3.5) which if the equation that uℓ satisfies weakly, one obtains
∫

Ωℓ

|(uℓ)xi
|pidx ≤

n∑

i=1

∫

Ωℓ

|(uℓ)xi
|pidx =

∫

Ωℓ

fuℓdx, ∀i.

Using the Hölder’s inequality, we have

∫

Ωℓ

|(uℓ)xi
|pdx =

∫

Ωℓ

fuℓdx ≤




∫

Ωℓ

upi

ℓ dx




1/pi



∫

Ωℓ

fqidx




1/qi

,

where 1/pi + 1/qi = 1. Now using the Poincaré inequality and Lemma 2.2, we have
∫

Ωℓ

| (uℓ)xi
|pidx ≤ Cℓδ,

where the constant C depends on f, n,m,Ω1,Ω2, pi and δ is a positive integer that
depends on n and m only. Now finally,

∫

Ωℓ

D(uℓ −W )dx ≤ C

n∑

i=1

∫

Ωℓ

|(uℓ)xi |pi + |Wxi |pidx ≤ Cℓδ,

possibly for a different δ than before. This finishes the proof of the lemma.

Lemma 2.2. Let P (ℓω1), P (ω1) denote the best Poincaré constant of the domains
ℓω1 and ω1, respectively, then

P (ℓω1) = ℓ−pP (ω1).

Proof. The proof follows via a standard scaling argument.

We need the following version of the inequality for n = 1, but nevertheless we state
it more generally.

Lemma 2.3 (An inequality). If p ≥ 2, then there exist a constant Cp > 0 such that

n∑

i=1

(
|xi|p−2xi − |yi|p−2yi

)
(xi − yi) ≥ Cp|x− y|p,

for all x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ Rn.
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Proof. We use the one dimension version of the following well known inequality [15]:
〈
(|x|p−2x− |y|p−2y), (x− y)

〉
≥ Dp|x− y|p,

for all x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ Rn, where ⟨·, ·⟩ denotes the usual inner
product on Rn. Just for an idea, the above inequality can be proved using fundamental
theorem of calculus, after writing

|x|p−2x− |y|p−2y =
1∫

0

g′(ξ)dξ

where g(ξ) = |(1−ξ)x+yξ|p−2 ((1 − ξ)x+ ξy) and then making appropriate estimates
for p ≥ 2. Using this inequality for n = 1, we get that for each i = 1, . . . , n,

(
|xi|p−2xi − |yi|p−2yi

)
(xi − yi) ≥ Dp|xi − yi|p.

Therefore summing up over each i gives
n∑

i=1

(
|xi|p−2xi − |yi|p−2yi

)
(xi − yi) ≥ Dp

n∑

i=1
|xi − yi|p = Dp|x− y|pp ≥ D̃p|x− y|p.

This finishes the proof of the lemma.

Lemma 2.4 (Uniform Poincaré inequality). There exists a constant C > 0 (indepen-
dent of ℓ) such that for each i = {1, . . . , n} and ℓ′ + 1 ≤ ℓ,

∫

Ωℓ′+1\Ωℓ′

D(ϕ)dx ≥ C

∫

Ωℓ′+1\Ωℓ′

|ϕ|pidx, for all ϕ ∈ V (Ωℓ).

Proof. It is sufficient to prove the inequality for ϕ ∈ C∞
c (Ωℓ), as it is a dense subspace

of V (Ωℓ). First let us deal with the case when i = n−m+ 1, . . . , n. Notice that, since
ω2 is bounded subset of Rn−m, we can use the usual Poincaré inequality to obtain

∫

ω2

|ϕxi |pidX2 ≥ C

∫

ω2

ϕpidX2.

The required inequality then using the estimate |D(ϕ)| ≥ |ϕxi
|pi , and then integrating

both sides over the rest of the variables.
Now let us consider the case when i ∈ {1, . . . , n − m}. Fix an i. Let us consider

i = 1 without any loss of generality. Now using our assumption that there exists
j ∈ {n−m+ 1, . . . , n} such that pj = p1. We have apply the Poincaré inequality in
the xj direction to get

∫

ω2

|ϕ|p1dX2 ≤ C

∫

ω2

|ϕxj |p1dX2 =
∫

ω2

|ϕxj |pjdX2 ≤
∫

ω2

D(ϕ)dX2.

The result then again follows after integrating over rest of the variables.
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Lemma 2.5. The function V (X1, X2) := W (X2) ∈ W (Ωℓ), where W is as in (1.2)
satisfies the following equation weakly, for each ℓ > 0:





− ∑n
i=1

∂

∂xi

(
|(Vℓ)xi |pi−2 ∂Vℓ

∂xi

)
= f(X2) in Ωℓ,

Vℓ = 0 on ℓω1 × ∂ω2,

Vℓ = W on ∂ℓω1 × ω2.

Proof. By a weak solution above we mean that for any v ∈ W 1,p
0 (Ωℓ), the following

inequality is satisfied:

n∑

i=1

∫

Ωℓ

|(Vℓ)xi
|pi−2 ∂Vℓ

∂xi

∂v

∂xi
dx =

∫

Ωℓ

f(X2)vdx.

Using Fubini’s theorem we get

n∑

i=1

∫

Ωℓ

|(Vℓ)xi |pi−2 ∂Vℓ

∂xi

∂v

∂xi
dx

=
∫

ℓω1




n∑

i=n−m+1

∫

ω2

|(W )xi
(_, X2)|pi−2 ∂W

∂xi
(_, X2) ∂v

∂xi
(_, X2)dX2


 dX1.

Now using the weak formulation for the equation (1.2) and Fubini’s theorem again,
we get

n∑

i=1

∫

Ωℓ

|(Vℓ)xi
|pi−2 ∂Vℓ

∂xi

∂v

∂xi
dx

=
∫

ℓω1




∫

ω2

f(X2)v(_, X2)dX2


 dX1 =

∫

Ωℓ

f(X2)vdx.

This finishes the proof of the lemma.

3. PROOF OF THE MAIN RESULTS

Proof of Theorem 1.3. Let ϕ ∈ W 1
0 (Ωℓ), where ℓ ∈ (0,∞] (notice that the case ℓ = ∞

is also included). Clearly,

n∑

i=1

∫

Ωℓ

|ϕxi
|pdx =

n−m∑

i=1

∫

Ωℓ

|ϕxi
|pdx+

n∑

i=n−m+1

∫

Ωℓ

|ϕxi
|pdx.
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Using Fubini’s Theorem and Lemma 2.2 on the first part, we get

n−m∑

i=1

∫

Ωℓ

|ϕxi
|pdx =

n−m∑

i=1

∫

ω2




∫

ℓω1

|ϕxi
(X1, X2)|pdX1


 dX2

≥ ℓ−pP (ω1)
∫

Ωℓ

|ϕ|pdx.

Using Fubini’s Theorem and the definition of P (ω2), we get

n−m∑

i=1

∫

Ωℓ

|ϕxi |pdx =
n∑

i=n−m+1

∫

ℓω1




∫

ω2

|ϕxi(X1, X2)|pdX2


 dX1

≥ P (ω2)
n∑

i=n−m+1

∫

ℓω1




∫

ω2

|ϕ(X1, X2)|pdX2


 dX1

= P (ω2)
n∑

i=n−m+1

∫

Ωℓ

|ϕ|pdx.

Now since the space C∞
c (Ωℓ) is dense in W 1,p

0 (Ωℓ), it implies, after taking infimum
over the previous inequality, that P (ω2) ≤ P (Ωℓ).

For the other part of the inequality, first consider the following sequence of functions
ϕℓ : ℓω1 → R, with the property that ϕℓ ∈ W 1,p

0 (ℓω1), 0 ≤ ϕ ≤ 1, ϕℓ = 1 on ℓ
2ω1 and

|∇X1ϕℓ| ≤ C

ℓ
, ∀x ∈ ℓω1. (3.1)

Finally, consider the function W̃ϕℓ ∈ W 1,p
0 (Ωℓ), where W̃ ∈ W 1,p

0 (ω2) satisfies

P (ω2)
∫

ω2

|W̃ |pdX2 =
n∑

i=n−m+1




∫

ω2

|W̃xi
|pdX2


 . (3.2)

Since W 1,p
0 (Ωℓ) ⊂ W 1,p

0 (Ω∞) (trivially extending each function with the value 0
outside Ωℓ), using the definition of P (Ωℓ), we get

P (Ωℓ) ≤
∑n

i=1

(∫
Ωℓ

|(W̃ϕℓ)xi |pdx
)

∫
Ωℓ

|W̃ϕℓ|pdx
, ∀ℓ > 0. (3.3)
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Simplifying the right-hand side of the above expression, we get
∑n

i=1
∫

Ωℓ
|(W̃ϕℓ)xi

|pdx
∫

Ωℓ
|W̃ϕℓ|pdx

=

∑n−m
i=1

(∫
Ωℓ

|(W̃ϕℓ)xi |pdx
)

+
∑n

i=n−m+1

(∫
Ωℓ

|(W̃ϕℓ)xi |pdx
)

∫
Ωℓ

|W̃ϕℓ|pdx

=

∑n−m
i=1

(∫
Ωℓ

|W̃ |p|(ϕℓ)xi |pdx
)

∫
Ωℓ

|W̃ |p|ϕℓ|pdx
+

∑n
i=n−m+1

(∫
Ωℓ

|W̃xi |p|ϕℓ|pdx
)

∫
Ωℓ

|W̃ |p|ϕℓ|pdx
.

Using Fubini’s theorem and (3.2), we get
∑n

i=1

(∫
Ωℓ

|(W̃ϕℓ)xi
|pdx

)

∫
Ωℓ

|W̃ϕℓ|pdx

=

∑n−m
i=1

(∫
ℓω1

|(ϕℓ)xi
|pdX1

)

∫
ℓω1

|ϕℓ|pdX1
+

∑n
i=n−m+1

(∫
ω2

|W̃xi
|pdX2

)

∫
ω2

|W̃ |pdX2

= P (ω2) +

∑n−m
i=1

(∫
ℓω1

|(ϕℓ)xi
|pdX1

)

∫
ℓω1

|ϕℓ|pdX1
.

Now using the inequality
(∑k

i=1 |xi|p
) 1

p ≤ C
(∑k

i=1 |xi|2
) 1

p , where k ∈ N, we obtain
∑n

i=1

(∫
Ωℓ

|(W̃ϕℓ)xi
|pdx

)

∫
Ωℓ

|W̃ϕℓ|pdx
≤ P (ω2) + C

∫
ℓω1

|∇X1ϕℓ|pdX1∫
ℓω1

|ϕℓ|pdX1
.

Now we use (3.1), to get the following estimates:
∑n

i=1

(∫
Ωℓ

|(W̃ϕℓ)xi |pdx
)

∫
Ωℓ

|W̃ϕℓ|pdx
≤ P (ω2) + C

ℓ−pµn−m(ℓω1 \ ℓ
2ω1)

µn−m( ℓ
2ω1)

≤ P (ω2) + C̃

ℓp
, (3.4)

where µn−m denotes the n − m dimensional Lebesgue measure of a measurable set
in Rn−m. The upper bound follows after combining (3.3) and (3.4).

Now for the first part of the theorem, it is already proved that P (ω1) ≤ P (Ω∞)
in the beginning of the proof. The other part of the inequality follows after observing
that P (Ω∞) ≤ P (Ωℓ), for each ℓ > 0, and then letting ℓ tend to ∞ together with the
second part of the proof.

Now we turn to the proof of our first theorem.

Proof of Theorem 1.1. As uℓ satisfies (1.1) weakly, this means that for any v ∈
W 1,p

0 (Ωℓ) one has
n∑

i=1

∫

Ωℓ

|(uℓ)xi |pi−2 ∂uℓ

∂xi

∂v

∂xi
dx =

∫

Ωℓ

f(X2)vdx. (3.5)
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This together with Lemma 2.5 gives for all v ∈ W 1,p
0 (Ωℓ),

n∑

i=1

∫

Ωℓ

(
|(uℓ)xi |pi−2 ∂uℓ

∂xi
− |Wxi |pi−2 ∂W

∂xi

)
∂v

∂xi
dx = 0.

For ℓ′ ∈ (0, ℓ − 1), let ρℓ′ be a function, whose precise properties will be specified
later, such that v(= vℓ) := ρℓ(uℓ −W ) ∈ W 1,p

0 (Ωℓ). Substituting this v in the previous
equation yields

n∑

i=1

∫

Ωℓ

(
|(uℓ)xi

|pi−2 ∂uℓ

∂xi
− | Wxi

|pi−2 ∂W

∂xi

) {
(uℓ −W )∂ρℓ

∂xi
+ ρℓ

∂

∂xi
(uℓ −W )

}
= 0.

Hence we have
n∑

i=1

∫

Ωℓ

(
|(uℓ)xi

|pi−2 ∂uℓ

∂xi
− | Wxi

|pi−2 ∂W

∂xi

) {
ρℓ

∂

∂xi
(uℓ −W )

}
dx

= −
n∑

i=1

∫

Ωℓ

(
|(uℓ)xi |pi−2 ∂uℓ

∂xi
− | Wxi |pi−2 ∂W

∂xi

) {
(uℓ −W )∂ρℓ

∂xi

}
dx.

Next using the inequality in Lemma 2.3, we get

Cp

∫

Ωℓ

ρℓD(uℓ −W )dx

≤ −
n∑

i=1

∫

Ωℓ

(
|(uℓ)xi |pi−2 ∂uℓ

∂xi
− |Wxi |pi−2 ∂W

∂xi

) {
(uℓ −W )∂ρℓ

∂xi

}
dx

≤
n∑

i=1

∫

Ωℓ

∣∣∣∣|(uℓ)xi
|pi−2 ∂uℓ

∂xi
− |Wxi

|pi−2 ∂W

∂xi

∥∥∥∥uℓ −W |
∣∣∣∣
∂ρℓ

∂xi

∣∣∣∣ dx.

Now we make the choice of ρℓ′ in the following way:

ρℓ′ = ρℓ′(X1), 0 ≤ ρℓ′ ≤ 1, ρℓ′ = 1 on Ωℓ′ , ρℓ′ = 0 on Ωc
ℓ′+1 and |∇X1ρℓ′ | ≤ 1.

We get

Cp

∫

Ωℓ

ρℓD(uℓ −W )dx

≤
n∑

i=1

∫

Ωℓ′+1\Ωℓ′

∥∥(uℓ)xi |pi−2(uℓ)xi − |Wxi |pi−2Wxi

∥∥uℓ −W |
∣∣∣∣
∂ρℓ

∂xi

∣∣∣∣ dx.
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Now |(ρℓ)xi
| ≤ 1 and ρℓ = 1 over Ωℓ′ , so

Cp

∫

Ωℓ′

D(uℓ −W )dx ≤
n−m∑

i=1

∫

Ωℓ′+1\Ωℓ′

|(uℓ −W )xi
|pi−1|uℓ −W |dx.

Using the Hölder inequality and the Poincaré inequality, we have

Cp

∫

Ωℓ′

D(uℓ −W )dx

≤
n−m∑

i−1




∫

Ωℓ′+1\Ω
ℓ′

|(uℓ −W )xi
|pidx




pi−1
pi




∫

Ωℓ′+1\Ωℓ′

|uℓ −W |pidx




1
pi

.

Now using the uniform Poincaré inequality (Lemma 2.4), |(uℓ −W )xi |pi | ≤ D(uℓ −W )
on the right-hand side of the above expression we get for some constant C > 0,

∫

Ωℓ′

D(uℓ −W )dx ≤ C

∫

Ωℓ′+1\Ωℓ′

D(uℓ −W )dx.

This is nothing but
∫

Ωℓ′

D(uℓ −W )dx ≤ C

C + 1

∫

Ωℓ′+1

D(uℓ −W )dx.

Now iterating the above inequality after choosing ℓ′ = ℓ
2 ,

ℓ
2 + 1, ℓ

2 + 2, . . . , ℓ
2 + [ ℓ

2 ],
where [ ℓ

2 ] denotes the greatest integer less than or equal to ℓ
2 , we obtain

∫

Ωℓ/2

D(uℓ −W )dx ≤
(

C

C + 1

)[ℓ/2] ∫

Ωℓ/2+[ℓ/2]

D(uℓ −W )dx

≤
(

C

C + 1

)[ℓ/2] ∫

Ωℓ

D(uℓ −W )dx.

Rewriting the above equation in a different way we have
∫

Ωℓ/2

D(uℓ −W )dx ≤ elog( C
C+1 )ℓ/2

∫

Ωℓ

D(uℓ −W )dx.

The proof the theorem for α = 1/2 finally follows after using Lemma 2.1 and observing
that

log
(

C

C + 1

)
= β < 0.

For a general α ∈ (0, 1) one has to choose ℓ′ = αℓ, αℓ+ 1, . . . , αℓ+ [ℓ− αℓ] to get the
general result.
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Clearly, Theorem 1.1 implies that up to a subsequence uℓ converges to W in
Lp(Ωαℓ) and hence pointwise as well. One may ask if the above convergence also takes
place on the entire Ωℓ. We believe that the answer is negative, as W does not satisfy
zero boundary conditions on the lateral part of the boundary. In this aspect a more
relevant question that one can ask is as to whether the convergence happens in Ωℓ−1,
but this is also unclear from our approach.

Now we present the proof of Theorem 1.2

Proof of Theorem 1.2. A weaker estimate for the lower bound: Consider the sequences
of test functions ψℓ ∈ W 1,p

0 (Ωℓ) defined as

ψℓ(X2) := 1
µn−m(ℓω1)

∫

ℓω1

uℓ(_, X2)dX1.

Since we have
Jω2(W ) = inf

u∈W 1,p
0 (ω2)

Jω2(u),

this implies that for ℓ > 0,

Jω2(W ) ≤ Jω2(ψℓ) = 1
p




n∑

i=n−m+1

∫

ω2

|(ψℓ)xi
|pdX2


 −

∫

ω2

fψℓdX2

≤ 1
p




n∑

i=n−m+1

∫

ω2

∣∣∣∣∣∣
1

µn−m(ℓω1)

∫

ℓω1

(uℓ)xi(_, X2)dX1

∣∣∣∣∣∣

p

dX2




−
∫

ω2

f(X2)
µn−m(ℓω1)




∫

ℓω1

uℓ(_, X2)dX1


 dX2.

Now using Jensen’s inequality for the integrals, one has

µn−m(ℓω1)Jω2(W ) ≤ 1
p




n∑

i=n−m+1

∫

ω2

∫

ℓω1

|(uℓ)xi
(_, X2)|p dX1dX2




−
∫

ω2

∫

ℓω1

fuℓ(X1, X2)dX1dX2

≤ 1
p




n∑

i=1

∫

Ωℓ

|(uℓ)xi
(_, X2)|p dX1dX2




−
∫

Ωℓ

fuℓ(X1, X2)dX1dX2 = Jℓ(Ωℓ).
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A sharper estimate for the lower bound: By definition,

Jℓ(Ωℓ) = 1
p

n−m∑

i=1

∫

Ωℓ

|(uℓ)xi
|p +


1
p

n∑

i=n−m+1

∫

Ωℓ

|(uℓ)xi
|p −

∫

Ωℓ

fuℓ


 .

Using Lemma 2.2 on the first integrand, it is easy to obtain that
n−m∑

i=1

∫

Ωℓ

|(uℓ)xi
|p ≥ P (ω1)ℓ−p

∫

Ωℓ

up
ℓ ,

whereas using Fubini’s theorem and the definition of Jω2(W ) on the second term,
we have

1
p

n∑

i=n−m+1

∫

Ωℓ

|(uℓ)xi |p −
∫

Ωℓ

fuℓ ≥ µn−m(ℓω1)Jω2(W ).

Combining the above inequalities the stronger estimate follows.
For the second one, first we consider a Lipschitz continuous cutoff function

ρℓ = ρℓ(X1), 0 ≤ ρℓ ≤ 1, |∇X1ρℓ| ≤ C. We also further assume that ρℓ = 1 on (ℓ−1)ω1
and ρℓ = 0 on ∂(ℓω1). Since ρℓ(X1)W (X2) ∈ W 1,p

0 (Ωℓ), we have Jℓ(uℓ) ≤ Jℓ(ρℓW ).
Now estimating the right-hand side gives

Jℓ(ρℓW ) = Jℓ−1(W ) + 1
p




n∑

i=1

∫

Ωℓ\Ωℓ−1

|(ρℓW )xi|pdx


 −

∫

Ωℓ\Ωℓ−1

|ρℓW |pdx (3.6)

= Jℓ(W ) +





1
p




n∑

i=1

∫

Ωℓ\Ωℓ−1

|(ρℓW )xi|pdx


 −

∫

Ωℓ\Ωℓ−1

|ρℓW |pdx





−





1
p




n∑

i=1

∫

Ωℓ\Ωℓ−1

|(W )xi|pdx


 −

∫

Ωℓ\Ωℓ−1

|W |pdx





= µn−m(ℓω1)Jω2(W ) + Aℓ − Bℓ.

First notice that
Bℓ = µn−m(ℓω1 \ (ℓ− 1)ω1)J(W ). (3.7)

Then we estimate the term Aℓ.

Aℓ ≤ 1
p




n∑

i=1

∫

Ωℓ\Ωℓ−1

|(ρℓW )xi|pdx




≤ Cp

p




n∑

i=1

∫

Ωℓ\Ωℓ−1

|ρℓWxi
|p + |W (ρℓ)xi

|pdx


 .
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Using the properties of ρℓ, we can further estimate, and get for some other constant
DW,p > 0,

Aℓ ≤ Cp

p




n∑

i=1

∫

Ωℓ\Ωℓ−1

|Wxi
|p + |W |pdx




= DW,p

p
µn−m(ℓω1 \ (ℓ− 1)ω1) = Cℓn−m−1.

(3.8)

Finally combining, (3.6), (3.7) and (3.8), we get

Jℓ(uℓ)
µn−m(ℓω1) ≤ Jω2(W ) + C

ℓ
.

This finishes the proof of the theorem.
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