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Abstract. We show that oscillatory properties of the half-linear second order differential

equation
`

r(t)Φ(x′)
´

′

+ c(t)Φ(x) = 0, Φ(x) = |x|p−2
x, p > 1,

can be investigated via oscillatory properties of a certain associated second order linear

differential equation. In contrast to paper [6], we do not need to distinguish between the

cases p ≥ 2 and p ∈ (1, 2]. Our results also improve the oscillation and nonoscillation

criteria given in [4].
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1. INTRODUCTION

In this paper we deal with oscillatory properties of the half-linear second order

differential equation

(r(t)Φ(x′))
′

+ c(t)Φ(x) = 0, Φ(x) = |x|p−2x, p > 1, (1)

where r, c are continuous functions and r(t) > 0. Even if the oscillation theory of

(1) is very similar to that of the second order linear differential equation

(r(t)x′)′ + c(t)x = 0 (2)
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(which is the special case p = 2 in (1)), the missing additivity of solution space of (1)

and some consequences of this fact (we mention some of them in the next section)

cause that some methods of the half-linear oscillation theory are more complicated

than in the linear case. For basic methods and results of the half-linear oscillation

theory we refer to [1, Chap. 3] or [7, Chap. 3].

A typical example of discrepancies between “linear” and “half-linear” is the so-

called perturbation principle in the oscillation theory of (1) (see, e.g. [3, Sec. 5.2]). We

explain this discrepancy as follows. In the classical linear oscillation theory, equation

(2) is viewed as a perturbation of the one-term differential equation

(r(t)x′)′ = 0 (3)

and (non)oscillation criteria impose conditions on the function c. Roughly speaking,

(2) is oscillatory (nonoscillatory) if the function c is “sufficiently positive” (“not too

positive”). A more refined criteria regard (2) not as a perturbation of one term-

equation (3), but as a perturbation of a general nonoscillatory equation

(r(t)x′)′ + c̃(t)x = 0, (4)

i.e., (2) is written in the form

(r(t)x′)′ + c̃(t)x + [c(t) − c̃(t)]x = 0. (5)

(Non)oscillation criteria are then formulated in terms of the behaviour of the function

c(t)− c̃(t). A typical example of this approach when r(t) ≡ 1 is to view the equation

x′′ + c(t)x = 0 as a perturbation of the Euler differential equation (with the so-called

critical coefficient) x′′ + 1
4t2

x = 0. We refer to [13] for the survey of (non)oscillation

criteria for (2) up to the 1970s.

However, in view of the linear transformation formula, the idea of “smuggling”

the term c̃(t)x into (2) actually brings no substantially new phenomena. To see

this, consider the transformation of the dependent variable x = h(t)y, where h is

a positive differentiable function such that rh′ is also differentiable. The following

identity, which can be verified by a short computation (suppressing the argument t)

holds true:

h[(rx′)′ + cx] = (rh2y′)′ + h[(rh′)′ + ch]y. (6)

Now, if h is a solution of (4) and we apply the previous formula to (5), we see that

x is a solution of (2) if and only if y is a solution of the equation

(r(t)h2(t)y′)′ + [c(t) − c̃(t)]h2(t)y = 0. (7)

The last equation can be again viewed as a perturbation of the one term equation

(rh2y′)′ = 0. Therefore, regarding (2) as a perturbation of nonoscillatory two-term

equation (4) is principially the same as regarding (2) as a perturbation of one-term

equation (3) (which is the classical approach of the linear oscillation theory).
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Concerning half-linear equations (1), there is no half-linear analogue of trans-

formation formula (6). In particular, the two-term nonoscillatory equation

(r(t)Φ(x′))′ + c̃(t)Φ(x) = 0 (8)

cannot be transformed into the one-term equation of the form

(r(t)Φ(x′))′ = 0, (9)

since the solution space of (8) is generally only homogeneous, while the solution

space of (9) is a two-dimensional linear space spanned over the functions x1(t) ≡ 1,

x2(t) =
∫ t

r1−q(s) ds, where q is the conjugate number of p, i.e., 1
p

+ 1
q

= 1.

Consequently, in contrast to the linear case, when equation (1) is rewritten in

the form

(r(t)Φ(x′))′ + c̃(t)Φ(x) + [c(t) − c̃(t)]Φ(x) = 0 (10)

and then regarded as a perturbation of (8), it requires a substantial modification of

oscillation techniques comparing with the classical approach, when (1) is viewed as

a perturbation of (9), see, e.g., [2, 5, 10, 11, 12].

The aim of this paper is to use the modified Riccati technique applied to (10),

and using this approach to compare oscillatory properties of (1) with oscillatory

properties of a certain associated linear equation of form (2). This enables us to

use the deeply developed linear oscillation theory in investigating (1). In contrast to

some previous papers, e.g., [6, 10, 11], we do not need to distinguish between the

cases p ≥ 2 and p ∈ (1, 2] in (1). We also improve (non)oscillation criteria given

in [4].

2. PRELIMINARIES

As we have mentioned before, the oscillation theory of half-linear equations is very

similar to the linear oscillation theory. In particular, Sturmian theorems extend

verbatim to (1), hence this equation can be classified as oscillatory or nonoscillatory

according to whether any nontrivial solution has/does not have infinitely many

zeros on any interval of the form [T,∞). On the other hand, in addition to the

above mentioned missing half-linear analogue of transformation formula (6) (and, of

course, the fact that the solution space of (1) is only homogeneous, but generally not

additive), the most flagrant difference between linear and half-linear equations is the

missing Wronskian-type identity in half-linear case. Recall that the linear Wronskian

identity says that

r(t)[x′

1(t)x2(t) − x1(t)x
′(t)] ≡ const

for any pair of linearly independent solutions x1, x2 of (2). For some other differences

between linear and half-linear equations, we refer to [3, Sec. 3].
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The results of our paper are based on the so-called Riccati technique, which

consists in the fact that if x is a solution of (1) such that x(t) 6= 0 in some interval

I, then the function w = rΦ(x′/x) solves in I the Riccati-type differential equation

w′ + c(t) + (p − 1)r1−q(t)|w|q = 0, q =
p

p − 1
. (11)

More precisely, in view of the Sturmian comparison theorem, we will use the

following refinement of the Riccati equivalence, which can be found, e.g., in [3,

Theorem 5.3].

Lemma 1. Equation (1) is nonoscillatory if and only if there exists a differentiable

function w such that

R[w](t) := w′(t) + c(t) + (p − 1)r1−q(t)|w(t)|q ≤ 0 (12)

for large t.

We will also need the following integral modification of the Riccati equivalen-

ce, which is usually referred to as the half-linear version of the Hartman–Wintner

theorem; the proof of this statement can be found e.g. in [3, Theorem 5.6].

Lemma 2. Suppose that (1) is nonoscillatory and

∞
∫

r1−q(t) dt = ∞. (13)

Then the following statements are equivalent:

(i) There exists a finite limit

lim
t→∞

1
∫ t

r1−q(s) ds

t
∫

r1−q(s)





s
∫

c(τ) dτ



 ds;

(ii) The integral
∞
∫

r1−q(t)|w(t)|q dt

is convergent for every solution w of (11).

In particular, if (13) holds and the integral
∫

∞

c(t) dt is convergent, then every

solution of (11) satisfies the Riccati integral equation

w(t) =

∞
∫

t

c(s) ds + (p − 1)

∞
∫

t

r1−q(s)|w(s)|q ds. (14)
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We finish this section with a technical result which we will need in the proof of

our main results. It concerns the function

P (u, v) :=
|u|p

p
− uv +

|v|q

q
(15)

and its proof can be found, e.g., in [8].

Lemma 3. The function P (u, v) defined in (15) satisfies the following inequalities

P (u, v) ≥
1

2
|u|2−p(v − Φ(u))2 for p ≤ 2,

P (u, v) ≤
1

2
|u|2−p(v − Φ(u))2 for p ≥ 2, u 6= 0.

Futhermore, let T > 0 be arbitrary. Then there exists a constant K = K(T ) > 0 such

that

P (u, v) ≥ K|u|2−p(v − Φ(u))2 for p ≥ 2

P (u, v) ≤ K|u|2−p(v − Φ(u))2 for p ≤ 2,

and every u, v ∈ R satisfying
∣

∣

∣

v
Φ(u)

∣

∣

∣ ≤ T .

3. OSCILLATION AND NONOSCILLATION CRITERIA

Our first main result reads as follows.

Theorem 1. Let
∫

∞

r1−q(t) dt = ∞,
∫

∞

c(t) dt be convergent, and
∫

∞

t
c(s) ds ≥ 0

for large t. Further suppose that equation (8) is nonoscillatory and possesses a positive

solution h such there exists a finite limit

lim
t→∞

r(t)h(t)Φ(h′(t)) =: L > 0 (16)

and
∞
∫

dt

r(t)h2(t)(h′(t))p−2
= ∞. (17)

Finally suppose that
∞
∫

[c(t) − c̃(t)]hp(t) dt converges. (18)

Denote

R(t) = r(t)h2(t)(h′(t))p−2, C(t) = [c(t) − c̃(t)]hp(t). (19)

If there exists ε > 0 such that the linear equation

(R(t)y′)′ +
(q

2
− ε

)

C(t) = 0 (20)

is oscillatory, then also (1) is oscillatory.
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Proof. Suppose, by contradiction, that (1) is nonoscillatory, i.e., by Lemma 1, there

exists a differentiable function w such that (12) holds for large t. Denote wh =

rΦ(h′/h) and put v = hp[w − wh]. Then (suppressing the argument t)

v′ = php−1h′[w − wh] + hp[−c − (p − 1)r1−q|w|q + c̃ + (p − 1)r1−q|wh|
q] =

= pr1−qhp

{

Φ−1(wh)w − |wh|
q −

1

q
|w|q +

1

q
|wh|

q

}

− C =

= −C − pr1−qhpP (Φ−1(wh), w),

where the function P is given by (15). Note that the last equation is called the

modified Riccati equation in [5], since when c̃ ≡ 0 and h ≡ 1, it reduces to (11). By

integrating, we get

v(s)|Tt =

t
∫

T

C(s) ds + p

t
∫

T

r1−q(s)hp(s)P (Φ−1(wh), w) ds. (21)

Since
∫

∞

r1−q(t)dt = ∞ and 0 ≤
∫

∞

t
c(s)ds < ∞, by Lemma 2 w also solves integral

Riccati equation (14) and, therefore, w(t) ≥ 0 for large t. Hence

hp(wh − w)|tT ≤ hpwh(t) + hp(w(T ) − wh(T ))

and letting t → ∞ in (21) we obtain (with L given by (16))

L+hp(w(T )−wh(T )) ≥

∞
∫

T

(c(s)− c̃(s))hp(s) ds+p

∞
∫

T

r1−q(s)hp(s)P (Φ−1(wh), w) ds.

Since P (u, v) ≥ 0 and (18) holds, this means that

∞
∫

r1−q(t)hp(t)P (Φ−1(wh(t)), w(t)) dt < ∞. (22)

Now, since (16), (18), and (22) hold, from (21) it follows that there exists a finite

limit

lim
t→∞

hp(t)(w(t) − wh(t)) =: β

and also the limit

lim
t→∞

w(t)

wh(t)
= lim

t→∞

hp(t)w(t)

hp(t)wh(t)
=

L + β

L
. (23)

Therefore, letting t → ∞ in (21) and then replacing T by t, we get the equation

hp(t)(w(t) − wh(t)) − β =

=

∞
∫

t

(c(s) − c̃(s))hp(s) ds + p

∞
∫

t

r1−q(s)hp(s)P (Φ−1(wh), w) ds.
(24)
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Since (23) holds, according to Lemma 3, there exists a positive constant K such

that

K|Φ−1(wh)|2−p(w − wh)2 ≤ P (Φ−1(wh), w)

for large t, and hence

Kr1−qhpwq−2
h (w − wh)2 ≤ r1−qhpP (Φ−1(wh), w).

Now, using the fact that wq−2
h = rq−2(h′)2−php−2, we get the inequality

K

r(t)h2(t)(h′(t))p−2
[(w(t) − wh(t))hp(t)]2 ≤ r1−q(t)hp(t)P (Φ−1(wh(t)), w(t)). (25)

Denote G(t) = r−1(t)h−2(t)(h′(t))2−p, then after integrating over [T,∞) the last

inequality reads

K

∞
∫

T

G(t)[(w(t) − wh(t))hp(t)]2 dt ≤

∞
∫

T

r1−q(t)hp(t)P (Φ−1(wh(t)), w(t)) dt.

By (17) it holds
∫ t

G(s) ds → ∞ as t → ∞. This implies that β = limt→∞ hp(t)(w(t)−

wh(t)) = 0. Indeed, if β 6= 0, then

∞
∫

G(t)[(w(t) − wh(t))hp(t)]2 dt = ∞,

which, in view of (25), implies that
∫

∞

r1−qhpP (Φ−1(wh), w) dt = ∞, and this

contradicts (22). Now, denote

Q(s) =
|s|q

q
− s +

1

p
= P (1, s).

Using the fact that w/wh → 1 as t → ∞, by the second degree Taylor formula, for

ε > 0 as in (20) there exists T ∈ R such that

Q(w/wh) ≥

(

q − 1

2
−

ε

p

) (

w

wh

− 1

)2

(26)

for t > T . This estimate implies that

0 = v′ + C + pr1−qhpP (Φ−1(wh), w) = v′ + C + pr1−qhp|wh|
qQ(w/wh) ≥

≥ v′ + C +
(q

2
− ε

)

r1−qhp|wh|
q

(

w

wh

− 1

)2

= v′ + C +
(q

2
− ε

)

r1−qh−p|wh|
q−2v2 =

= v′ + C +
(q

2
− ε

) v2

R
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which means that the linear second order equation

(

2

q − 2ε
R(t)y′

)

′

+ C(t)y = 0, (27)

is nonoscillatory by Lemma 1, but (27) is the same equation as (20) and we have

reached a contradiction with the assumption that this equation is oscillatory.

The next statement is a nonoscillatory counterpart of Theorem 1.

Theorem 2. With the notation of the previous theorem, suppose that its assump-

tions are satisfied, except for the requirements concerning the integral
∫

∞

t
c(s) ds and

assumption (13). If there exists ε > 0 such that the second order linear equation

(R(t)y′)′ +
(q

2
+ ε

)

C(t)y = 0 (28)

is nonoscillatory, then also (1) is nonoscillatory.

Proof. Nonoscillation of (28), which is the same equation as (27) with +ε instead of

−ε, implies the existence of a differentiable function v for which

v′ + C(t) +
(q

2
+ ε

) v2

R(t)
= 0 (29)

for large t and by Lemma 2 this function also verifies the Riccati integral equation

v(t) =

∞
∫

t

C(s) ds +
(q

2
+ ε

)

∞
∫

t

v2(s)

R(s)
ds,

in particular, limt→∞ v(t) = 0. Put w = h−pv + wh. Then the last limit relation

means that

lim
t→∞

hp(t)[w(t) − wh(t)] = 0,

and hence by (16), using the same argument as in the proof of Theorem 1

lim
t→∞

w(t)

wh(t)
= 1. (30)

Using (30), again similarly as in the proof of Theorem 1, for ε > 0 as in (28), there

exists T ∈ R such that

pr1−q(t)hp(t)P (Φ−1(wh(t), w(t)) ≤
(q

2
+ ε

) [hp(t)(w(t) − wh(t))]2

r(t)h2(t)(h′(t))p−2
(31)

for t ≥ T .

Substituting for the function P in the final part of the computation, for t ≥ T ,

we obtain

w′ = −ph′h−p−1v + h−p

[

−C −
(q

2
+ ε

) v2

R

]

− c̃ − (p − 1)r1−q|wh|
q =
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= −
ph′

h
(w − wh) − c + c̃ − h−p

(q

2
+ ε

) [hp(w − wh)]2

rh2(h′)p−2
− c̃ − (p − 1)|wh|

q ≤

≤ −pr1−qΦ−1(wh)w + p|wh|
q − c − pr1−qP (Φ−1(wh, w) − (p − 1)r1−q|wh|

q =

= −c − (p − 1)|w|q.

Therefore, (1) is nonoscillatory by Lemma 1.

Remark 1. In [4] we have proved that under the assumptions of Theorems 1, 2,

equation (1) is oscillatory, provided that

lim inf
t→∞

t
∫

ds

r(s)h2(s)(h′(s))p−2

∞
∫

t

[c(s) − c̃(s)]hp(s) ds >
1

2q
, (32)

while it is nonoscillatory, provided that

lim sup
t→∞

t
∫

ds

r(s)h2(s)(h′(s))p−2

∞
∫

t

[c(s) − c̃(s)]hp(s) ds <
1

2q
(33)

and

lim inf
t→∞

t
∫

ds

r(s)h2(s)(h′(s))p−2

∞
∫

t

[c(s) − c̃(s)]hp(s) ds > −
3

2q
. (34)

These statements can be obtained as corollaries of Theorems 1, 2. To show this, let

us recall that equation (2) is oscillatory, provided that

lim inf
t→∞

t
∫

r−1(s) ds

∞
∫

t

c(s) ds >
1

4
(35)

while it is nonoscillatory if

lim sup
t→∞

t
∫

r−1(s) ds

∞
∫

t

c(s) ds <
1

4
, (36)

and

lim inf
t→∞

t
∫

r−1(s) ds

∞
∫

t

c(s) ds > −
3

4
. (37)

These conditions, applied to (20) and (28), give (32) and (33), (34). Indeed, con-

cerning, e.g., the oscillation part of this remark, if (32) holds, this means that there

exists ε > 0 (sufficiently small) such that

lim inf
t→∞

t
∫

ds

r(s)h2(s)(h′(s))p−2

∞
∫

t

[c(s) − c̃(s)]hp(s) ds >
1

2q − 4ε
(38)
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stille holds, and this implies that (with notation (19))

lim inf
t→∞

t
∫

R−1(s) ds
(q

2
− ε

)

∞
∫

t

C(s) ds >
1

4
.

Hence (20) is oscillatory by (35). The proof that the assumption of nonoscillation of

(28) is weaker than (33), (34) is analogical.
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[2] Došlý O., Oscillation criteria for half-linear second order differential equations,

Hiroshima Math. J. 28 (1998), 507–521.
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[11] Elbert Á., A. Schneider, Perturbations of the half-linear Euler differential equ-

ation, Result. Math. 37 (2000), 56–83.

[12] Sugie J., Yamaoka N., Growth conditions for oscillation of nonlinear differential

equations with p-Laplacian, J. Math. Anal. Appl. 305 (2005), 18–34.

[13] Swanson C.A., Comparison and Oscillation Theory of Linear Differential Equ-

ations, Acad. Press, New York-London, 1968.

314 Ondřej Došlý
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