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AND OPERATOR STRUCTURE WITH APPLICATIONS.

PART 2

Abstract. The Gelfand-Levitan integral equations for Delsarte-Lions type transformations
in multidimension are studied. The corresponding spectral and analytical properties of
Delsarte-Lions transformed operators are analyzed by means of the differential-geometric and
topological tools. An approach for constructing Delsarte-Lions type transmutation operators
for multidimensional differential expressions is devised.

Keywords: Delsarte transmutation operators, generalized de Rham-Hodge differential com-
plex, Delsarte-Lions type transformations, Gelfand-Levitan-Marchenko type integral equa-
tions, mulktidimensional differential operator pencils.

Mathematics Subject Classification: Primary 34A30, 34B05, Secondary 34B15.

1. INTRODUCTION: GENERALIZED DE RHAM-HODGE COMPLEXES
AND THEIR PROPERTIES

1.1. We begin with recalling some differential-geometric properties of Delsarte-Lions
type transformations that were discussed in Part 1 for differential operator expres-
sions acting in a multidimensional functional space H = L1(T;H), where T = R2

and H := L2(R2; C2). They appear to have a deep relationship with classical gen-
eralized de Rham-Hodge theory [3–6, 27] devised in the middle of the past century
for a set of commuting differential operators defined, in general, on a smooth com-
pact m -dimensional metric space M. Concerning our problem of describing the
differential-geometric and spectral structure of Delsarte-Lions type transmutations
acting in H, following [30] we preliminarily consider some backgrounds of a gener-
alized de Rham-Hodge differential complex theory devised for studying these trans-
formations of differential operators. Consider a smooth metric space M being a
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suitably compactified form of the space Rm, m ∈ Z+. Then on MT := T ×M one
can define the standard Grassmann algebra Λ(MT;H) of differential forms on T×M
and consider an I.V. Skrypnik’s [3–6] generalized external anti-differentiatial operator
dL : Λ(MT;H) → Λ(MT;H) acting as follows: for any β(k) ∈ Λk(MT;H), k = 0,m,

dLβ
(k) :=

2∑
j=1

dtj ∧ Lj(t;x|∂)β(k) +
m∑

i=1

dxi ∧Ai(t;x; ∂)β(k) ∈ Λk+1(MT;H), (1.1)

where Ai ∈ C2(T;L(H)), i = 1,m, are some differential operator mappings and

Lj(t;x|∂) := ∂/∂tj − Lj(t;x|∂), (1.2)

j = 1, 2, are suitably defined linear differential operators in H, commuting with each
other, that is

[L1,L2] = 0, [Ak,Ai] = 0 and [Lj ,Ai] = 0 (1.3)

for all j = 1, 2 and i, k = 1,m. We will put, in general, that differential expressions

Lj(t;x|∂) :=
nj(L)∑
|α|=0

a(j)
α (t;x)

∂|α|

∂xα
, (1.4)

with coefficients a(j)
α ∈ C1(T;C∞(M ;EndCN )), |α| = 0, nj(L) nα

j ∈ Z+, j = 0, 1,
define some closed normal operators in the Hilbert space H for ant t ∈ T. It is easy
to observe that the generalization of dL defined by (1.1) is a generalization of the
usual external anti-differentiation

d =
m∑

j=1

dxj ∧
∂

∂xj
+

2∑
s=1

dts ∧
∂

∂ts
(1.5)

for which, evidently, commutation conditions

[
∂

∂xj
,
∂

∂xk
] = 0, [

∂

∂ts
,
∂

∂tl
] = 0[

∂

∂xj
,
∂

∂ts
] = 0 (1.6)

hold for all j, k = 1,m and s, l = 1, 2. If now in (1.5) we substitute ∂/∂xj −→ Aj ,
∂/∂ts −→ Ls, j = 1,m, s = 1, 2, we get the anti-differentiation

dA :=
m∑

j=1

dxj ∧Aj(t;x|∂) +
2∑

j=1

dts ∧ Ls(t;x|∂), (1.7)

where the differential expressions Aj ,LS : H −→ H for all j, k = 1,m and s, l = 1, 2,
satisfy the commutation conditions [Aj ,Ak] = 0 , [Ls,Ls] = 0, [Aj ,Ls] = 0, then
operation (1.7) defines an external generalized anti-differential operator on Λ(MT;H),
with respect to which the co-chain sequence

H −→ Λ0(MT;H) dA−→ Λ1(MT;H) dA−→ . . .
dA−→ Λm+2(MT;H) dA−→ 0 (1.8)
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is evidently a cohomological complex, that is dAdA ≡ 0. As anti-differential (1.1) is a
particular case of (1.7), we conclude that the corresponding co-chain sequence (1.8)
is a cohomological complex too.
1.2. Below we will follow the ideas developed in [3, 4, 35]. A differential form β ∈
Λ(MT;H) will be called dA-closed if dAβ = 0 and a form γ ∈ Λ(MT;H) will be called
exact or dA-homological to zero if there exists on MT such a form ω ∈ Λ(MT;H) that
γ = dAω.

Consider now the standard [8, 34,35,48] algebraic Hodge star-operation

∗ : Λk(MT;H) −→ Λm+2−k(MT;H) (1.9)

k = 0,m+ 2, defined as follows: if β ∈ Λk(MT;H), then the form ∗β ∈
Λm+2−k(MT;H) is such that:

— 〈α, ∗β〉(m+2−k) := 〈〈α, ∗β〉CN 〉m+2−k = 〈〈α,∧β〉CN , dµg〉m+2 for any α ∈
Λm+2−k(MT;H), where dµg is an invariant measure on the metric space MT

with positive definite Riemannian metrics g : T (MT)× T(MT) →C, the scalar
product

〈σ(1)
1 ∧ σ(1)

2 ∧ . . . ∧ σ(1)
k , γ

(1)
1 ∧ γ(1)

2 ∧ . . . ∧ γ(1)
k 〉k := det{〈σ(1)

i , γ
(1)
j 〉1 : i, j = 1, k};

〈σ(1)
i , γ

(1)
j 〉1 := 〈ĝ−1σ

(1)
i , ĝ−1γ

(1)
i 〉g, 1-forms σ(1)

i , γ
(1)
j ∈ Λ1(MT), i, j = 1, k, and

ĝ : T(MT) → T∗(MT) is the canonical isomorphism, generated by the metrics
〈·, ·〉g on T(MT);

— (m− k+ 2)-dimensional volume | ∗ β| of form ∗β equals k-dimensional volume |β|
of the form β;

— the (m+2)-dimensional measure 〈β,∧∗β〉 ≥ 0 under the fixed orientation on MT.

Further, on the space Λ(MT;H) define the following natural scalar product: for
any β, γ ∈ Λk(MT;H), k = 0,m :

(β, γ) :=
∫

MT

〈β, ∗γ〉CN . (1.10)

Subject to scalar product (1.10), one can naturally construct the corresponding
Hilbert space

HΛ(MT) :=
m+2
⊕

k=0
Hk

Λ(MT) (1.11)

suitable for our further consideration. Notice that the Hodge star-operation satisfies
the following easily verified property: for any β, γ ∈ Hk

Λ(MT), k = 0,m,

(β, γ) = (∗β, ∗γ), (1.12)

that is the Hodge operation ∗ : HΛ(MT) → HΛ(MT) is unitary and its standard
adjoint with respect to scalar product (1.10) operation satisfies the condition (∗)′ =
(∗)−1.
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Denote by d
′

L the formally adjoint expression to weak differential operation (1.1).
By means of the operations d′L and dL in the HΛ(MT) one can naturally define
[3, 8, 34,35,37] a generalized Laplace-Hodge operator ∆L : H1(MT) −→ H1(MT) as

∆L = d′LdL + d′LdL. (1.13)

Take a form β ∈ HΛ(MT) satisfying the equality

∆Lβ = 0. (1.14)

Such a form is called [35] harmonic. One can also verify that a harmonic form β ∈
HΛ(MT) satisfies simultaneously the following two adjoint conditions:

d′Lβ = 0, dLβ = 0 (1.15)

easily stemming form (1.13) and (1.14).

Lemma 1.1. The following differential operators in HΛ(MT)

d∗L := ∗d′L(∗)−1 (1.16)

defines also a new external anti-differential operations in H1(MT), subject to which
the respectively dual to (1.8) co-chain sequence

H −→ Λ0(MT;H)
d∗L−→ Λ1(MT;H)

d∗L−→ . . .
d∗L−→ Λm+2(MT;H)

d∗L−→ 0 (1.17)

is a cohomological complex.

Proof. Really, the statement holds true owing to the property d∗Ld
∗
L = 0, following

from definition (1.16).

1.3. Denote further by Hk
Λ(L)(MT), k = 0,m+ 2, the cohomology groups of dL-closed

and by Hk
Λ(L∗)(MT), k = 0,m+ 2, k = 0,m+ 2, the cohomology groups of dL∗ -closed

differential forms, respectively, and byHk
Λ(L∗L)(MT), k = 0,m+ 2, the abelian groups

of harmonic differential forms from the Hilbert sub-spaces Hk
Λ(MT), k = 0,m+ 2.

Before formulating next results, define the standard Hilbert-Schmidt rigged chain
[12,13] of positive and negative Hilbert spaces of differential forms

Hk
Λ,+(MT) ⊂ Hk

Λ(MT) ⊂ Hk
Λ,−(MT), (1.18)

the corresponding hereditary rigged chains of harmonic forms:

Hk
Λ(L∗L),+(MT) ⊂ Hk

Λ(L∗L)(MT) ⊂ Hk
Λ(L∗L),−(MT) (1.19)

and cohomology groups:

Hk
Λ(L),+(MT) ⊂ Hk

Λ(L)(MT) ⊂ Hk
Λ(L),−(MT), (1.20)

Hk
Λ(L∗),+(MT) ⊂ Hk

Λ(L∗)(MT) ⊂ Hk
Λ(L∗),−(MT)
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for any k = 0,m+ 2. Assume also that generalized Laplace-Hodge operator (1.13) is
reduced upon the space H0

Λ(M). Now by reasoning similar to those in [8,35] one can
formulate a slightly generalized [3–5,35] de Rham-Hodge theorem.

The groups of harmonic forms Hk
Λ,−(MT), k = 0,m+ 2, are, respectively, iso-

morphic to the homology groups (Hk(MT; C))|Σ|, k = 0,m+ 2, where Hk(MT; C)
is the k-th cohomology group of the manifold MT with complex coefficients, the set
Σ ⊂ Cp, p ∈ Z+, is a set of suitable “spectral” parameters marking the linear space of
independent d∗L-closed 0-form from H0

Λ(L),−(MT) and, moreover, the following direct
sum decompositions

Hk
Λ,−(MT) = Hk

Λ(L∗L),−(MT)⊕∆LHk
Λ,−(MT) =

= Hk
Λ(L∗L),−(MT)⊕ dLHk−1

Λ,−(MT)⊕ d′LHk+1
Λ,−(MT)

hold for any k = 0,m+ 2.

Another result of this type was earlier formulated in [3–6] and reads as the follow-
ing generalized de Rham-Hodge theorem.

Theorem 1.2. The generalized cohomology groups Hk
Λ(L),+(MT), k = 0,m+ 2, are,

respectively, isomorphic to the cohomology groups (Hk(MT; C))|Σ|, k = 0,m+ 2.

Proof. A proof of this theorem is based on some special sequence [3–6] of differential
Lagrange type identities.

Define the following closed subspace

H∗
0 := {ϕ(0)(η) ∈ H0

Λ(L∗),−(MT) : d∗Lϕ
(0)(η) = 0, ϕ(0)(η)|Γ, η ∈ Σ} (1.21)

for some smooth (m+1)-dimensional hypersurface Γ ⊂MT and Σ ⊂ (σ(L)∩ σ̄(L))×
Σσ ⊂ Cp, where H0

Λ(L∗),−(MT) is, as above, a suitable Hilbert-Schmidt rigged [12,13]
zero-order cohomology group Hilbert space from the co-chain given by (1.20), σ(L)
and σ(L∗) are, respectively, mutual generalized spectra of the sets of differential
operators L and L∗ in H at t = 0 ∈ T. Thereby, the dimension dimH∗

0 = card
Σ := |Σ| is assumed to be known. The next lemma earlier stated by I.V. Skrypnik [3–6]
is utmost importance meaning for a proof of Theorem (1.2).

Lemma 1.3. There exists a set of differential (k+1)-forms Z(k+1)[ϕ(0)(η), dLψ(k)] ∈
Λk+1(MT; C), k = 0,m+ 2, and a set of k-forms Z(k)[ϕ(0)(η), ψ(k)] ∈ Λk(MT; C),
k = 0,m+ 2, parametrized by the set Σ 3 η, being semilinear in (ϕ(0)(η), ψ(k)) ∈
H∗

0 ×Hk
Λ,−(MT), such that

Z(k+1)[ϕ(0)(η), dLψ(k)] = dZk[φ(0)(η), ψ(k)] (1.22)

for all k = 0,m+ 2 and η ∈ Σ.
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Proof. A proof is based on the following Lagrange type identity generalizing identity
(3.3) of Part 1 and holding for any pair (ϕ0(η), ψ(k)) ∈ H∗

0 ×Hk
Λ,−(MT):

0 = 〈d∗Lφ(0)(η),∧ ∗ (ψ(k) ∧ γ)〉 = 〈∗d′L(∗)−1ϕ(0)(η), ∗(ψ(k) ∧ γ)〉 =

= 〈∗d′L(∗)−1φ(0)(x),∧ψ(k) ∧ γ)〉 =

= 〈(∗)−1ϕ(0)(η),∧dLψ(k) ∧ γ〉+ Z(k+1)[ψ(0)(η),∧dLψ(k)] ∧ γ =

= 〈(∗)−1ϕ
(0)(η),∧dLψ(k) ∧ γ〉+ dZ(k)[ϕ(0)(η), ψ(k)] ∧ γ,

where Z(k+1)[ϕ(0)(η), dLψ(k)] ∈ Λk+1(MT; C), k = 0,m+ 2, and Z(k)[ϕ(0)(η), ψ(k)] ∈
Λk(MT; C), k = 0,m+ 2, are some semilinear differential forms on MT parametrized
by a parameter λ ∈ Σ, and γ ∈ Λm+1−k(MT; C) is an arbitrary constant (m + 1 −
k)-form. Thereby, the semilinear differential (k + 1)-forms Z(k+1)[ϕ(0)(η), dLψ(k)] ∈
Λk+1(MT; C) and k-forms Z(k)[ϕ(0)(η), ψ(k)] ∈ Λk(MT; C), k = 0,m+ 2, λ ∈ Σ,
constructed above are exactly those searched for in the Lemma.

1.4. Now based on Lemma (1.3), one can construct the cohomology group isomor-
phism claimed in Theorem 1.2 formulated above. Namely, following [3–5], let us take
some singular simplicial [34,35] complex K(MT) of the metric space MT and introduce
a set of linear mappings B(k)

λ : Hk
Λ,−MT −→ Ck(MT; C), k = 0,m+ 2, λ ∈ Σ, where

Ck(MT; C), k = 0,m+ 2, are free abelian groups over the field C generated by all
k-chains of singular simplexes S(k) ⊂ MT, k = 0,m+ 2, respectiuvely, from the
simplicial complex K(MT), as follows:

B
(k)
λ (ψ(k)) :=

∑
S(k)∈Ck(MT;C))

S(k)

∫
S(k)

Z(k)[ϕ(0)(λ), ψ(k)] (1.23)

with ψ(k) ∈ Hk
Λ,−(MT), k = 0,m+ 2. The following theorem proved fearlier in [3–5]

with use of mappings (1.23) holds.

Theorem 1.4. The set of operators (1.23) parametrized by λ ∈ Σ realizes the coho-
mology group isomorphism referred to in Theorem 1.2.

Proof. One can get a proof of this theorem passing over, in (1.23), to the corresponding
cohomology Hk

Λ(L),−(MT) and homology Hk(MT; C) groups of MT for every k =
0,m+ 2. Taking an element ψ(k) := ψ(k)(µ) ∈ Hk

Λ(L),−(MT), k = 0,m+ 2, solving
the equation dLψ

(k)(µ) = 0 with µ ∈ Σk being some set of the related “spectral”
parameters marking elements of the subspace Hk

Λ(L),−(MT), from (1.23) and (1.22),
one can easily conclude that dZ(k)[ϕ(0)(λ), ψ(k)(µ)] = 0 for all (λ, µ) ∈ Σ × Σk, k =
0,m+ 2. Owing to the Poincare lemma [33–35], this, in particular, means that there
exist differential (k − 1)-forms Ω(k−1)[ϕ(0)(λ), ψ(k)(µ] ∈ Λk−1(M ; C), k = 0,m+ 2,
such that

Z(k)[ϕ(0)(λ), ψ(k)(µ)] = dΩ(k−1)[ϕ(0)(λ), ψ(k)(µ)] (1.24)
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for all pairs (ϕ(0)(λ), ψ(k)(µ)) ∈ H∗
0 ×Hk

Λ(L),−(MT) parametrized by (λ, µ) ∈ Σ×Σk,

k = 0,m+ 2. As a result of passing to the homology groups Hk(MT; C), k = 0,m+ 2,
on the right-hand side of (1.23), owing to the standard Stokes theorem [33–35] , it
can be shown that the mappings

B
(k)
λ : Hk

Λ(L),−(MT) −→ Hk(MT; C) (1.25)

are isomorphisms for every k = 0,m+ 2 and λ ∈ Σ. Making further use of the
Poincare duality [8, 34, 35] between the homology groups Hk(MT; C), k = 0,m+ 2,
and the cohomology groups Hk(M ; C), k = 0,m+ 2, respectively, one finally obtains
the statement claimed of Theorem 1.4.

2. THE STRUCTURE OF DELSARTE-LIONS TYPE OPERATORS
IN MULTIDIMENSION

2.1. Now take into account that our differential operators Lj : H −→ H, j = 1, 2,
are of special form (1.2). Also assume that differential expressions (1.4) are normal
closed operators defined on dense subspace D(L) ⊂ L2(M ; CN ).

Then due to Theorem 1.4 one can find such a pair (ϕ(0)(λ), ψ(k)(µ)) ∈ H∗
0 ×

Hk
Λ(L),−(MT) parametrized by elements (λ, µ) ∈ Σ × Σk, for which the equivalent

equality

B
(m)
λ (ψ(0)(µ)dx) = S

(m)
(t;x)

∫
∂S

(m)
(t;x)

Ω(m−1)[ϕ(0)(λ), ψ(0)(µ)dx] (2.1)

holds, where S(m)
(t;x) ∈ Cm(MT; C) is some arbitrary but fixed element parametrized

by a chosen point (t;x) ∈ ∂S(m)
(t;x). Consider the following integral expressions

Ω(t;x)(λ, µ) :=
∫

σ
(m−1)
(t;x)

Ω(m−1)[ϕ(0)(λ), ψ(0)(µ)dx], (2.2)

Ω(t0;x0)(λ, µ) :=
∫

σ
(m−1)
(t0;x0)

Ω(m−1)[φ(0)(λ), psi(0)(µ)dx],

with a point (t0;x0) ∈ MT ∩ ∂S(m)
(t0;x0)

being fixed, the boundaries σ(m−1)
(t;x) := ∂S

(m)
t;x ,

σ
(m−1)
(t0;x0)

:= ∂S
(m)
t0;x0

being assumed to be homological to each other as (t;x0) −→ (t;x) ∈
MT, (λ, µ) ∈ Σ× Σk, and interpret them as the kernels [12, 13] of the corresponding
invertible integral operators of Hilbert-Schmidt type Ω(t;x),Ω(t0;x0) : Lρ

2(Σ; C) −→
Lρ

2(Σ; C), where ρ is some finite Borel measure on the parameter set Σ. Now define
the invertible operators expressions

Ω± : ψ(0)(µ) −→ ψ̃(0)(µ) (2.3)
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for ψ(0)(µ)dx ∈ Hm
Λ(L),−(MT) and some ψ̃(0)(µ)dx ∈ Hm

Λ(L),−(MT), µ ∈ Σ, where, by
definition, for any η ∈ Σ

ψ̃(0)(η) := ψ(0)(η) · Ω−1
(t;x) · Ω(t0;x0) =

=
∫

Σ

dρ(µ)
∫

Σ

dρ(ξ)ψ(0)(µ)Ω−1
(t;x)(µ, ξ)Ω(t0;x0)(ξ, η),

(2.4)

being motivated by expression (2.1). Namely, consider the following diagram

Hm
Λ(L),−(MT)

Ω±→ Hm
Λ(L̃),−(MT),

B
(m)
λ ↓ ↙ B̃

(m)
λ

Hm(MT; C)

(2.5)

which is assumed to be commutative for some another co-chain complex

H −→ Λ0(MT;H)
dL̃−→ Λ1(MT;H)

dL̃−→ . . .
dL̃−→ Λm+2(MT;H)

dL̃−→ 0. (2.6)

Here, by definition, the generalized “anti-differentiation” is

dL̃: =
2∑

j=1

dtj ∧ L̃j(t;x|∂) (2.7)

and

L̃j = ∂/∂tj − L̃j(t;x|∂), (2.8)

L̃j(t;x|∂) :=
nj(L̃)∑
|α|=0

ã(j)
α (t;x)

∂|α|

∂xα
,

where coefficients ã(j)
α ∈ C1(T;C∞(M ; EndCN ), |α| = 0, nj(L̃), nj(L̃) := nj(L) ∈

Z+, j = 1, 2. The corresponding isomorphisms B̃(m)
λ : Hm

Λ(L̃),+
(MT) −→ Hm(MT; C),

λ ∈ Σ, act, by definition, as follows:

B̃
(m)
λ (ψ̃(0)(µ)dx) = S

(m)
(t;x)

∫
∂S

(m)
(t;x)

Ω̃(m−1)[ϕ̃(0)(λ), ψ̃(0)(µ)dx] (2.9)

where ϕ̃(0)(λ) ∈ H̃∗
0 ⊂ H0

Λ(L̃∗),−(MT), λ ∈ (σ(L̃) ∩ σ̄(L̃∗))× Σσ,

H̃∗
0 := {ϕ̃(0)(λ) ∈ Hm

Λ(L∗),−(MT) : d∗L̃ϕ̃
(0)(x) = 0, ϕ̃(0)(λ)|Γ̃ = 0, λ ∈ Σ} (2.10)

for a hypersurface Γ̃ ⊂ MT. Respectively, one defines the following closed subspace

H̃0 := {ψ̃(0)(µ) ∈ H0
Λ(L̃∗),−(MT) : d∗L̃ψ̃

(0)(λ) = 0, ψ̃(0)(µ)|Γ̃ = 0, µ ∈ Σ} (2.11)

for the hyperspace Γ̃ ⊂ MT, introduced above.
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Suppose now that elements (2.4) belong to closed subspace (2.11), that is

dL̃ψ̃
(0)(µ) = 0. (2.12)

Similarly to (2.11), define a closed subspace H∗
0 ⊂ Hm

Λ(L∗),−(MT) as follows:

H0 := {ψ(0)(λ) ∈ H0
Λ(L∗),−(MT) : dLψ(0)(λ) = 0, ψ(0)(λ)|Γ = 0, λ ∈ Σ} (2.13)

for all µ ∈ Σ. Then owing to the commutativity of diagram (2.5), there exist the
corresponding two invertible mappings

Ω± : H0 → H̃0, (2.14)

depending on the ways they were extended onto the entire Hilbert space Hm
Λ,−(MT).

Now extend operators (2.14) onto the entire Hilbert space Hm
Λ,−(MT) by means of

the standard method [26, 43] of variation of constants, taking into account that for
kernels Ω(t;x)(λ, µ),Ω(t0;x0)(λ, µ) ∈ L

(p)
2 (Σ; C) ⊗ L

(p)
2 (Σ; C), λ, µ ∈ Σ, one can write

down the following relationships:

Ω(t;x)(λ, µ)− Ω(t0;x0)(λ, µ) =
∫

∂S
(m)
(t;x)

Ω(m−1)[ϕ(0)(x), ψ(0)(µ)dx]−

−
∫

∂S
(m)
(t0;x0)

Ω(m−1)[ϕ(0)(λ), ψ(0)(µ)dx] =

=
∫

S
(m)
± (σ

(m−1)
(t;x) ,σ

(m−1)
(t0;x0))

dΩ(m−1)[ϕ(0)(λ), ψ(0)(µ)dx] =

=
∫

S
(m)
± (σ

(m−1)
(t;x) ,σ

(m−1)
(t0;x0))

Z(m)[ϕ(0)(λ), ψ(0)(µ)dx],

(2.15)

where, by definition, m-dimensional open surfaces S(m)
± (σ(m−1)

(t;x) , σ
(m−1)
(t0;x0)

) ⊂ MT are

spanned smoothly without self-intersection between two homological cycles σ(m−1)
(t;x) =

∂S
(m)
(t;x) and σ

(m−1)
(t0;x0)

= ∂S
(m)
(t0;x0)

∈ Cm−1(MT; C) in such a way that the boundary

∂(S(m)
+ (σ(m−1)

(t0;x0)
, σ

(m−1)
(t0;x0)

) ∪ S
(m)
− (σ(m−1)

(t;x) , σ
(m−1)
(t0;x0)

)) = ∅. Making use of relationship
(2.15), one can thereby easily find the following integral operator expressions in H−:

Ω± = 1−
∫

Σ

dρ(η)ψ̃(0)(ξ)Ω−1
(t0;x0)

(ξ, η)
∫

S
(m)
± (σ

(m−1)
(t;x) ,σ

(m−1)
(t0;x0))

Z(m)[ϕ(0)(η), (·)dx] (2.16)

defined for fixed pairs (ϕ(0)(ξ), ψ0(η)) ∈ H∗
0 × H0 and (ϕ̃(0)(ξ), ψ̃0(µ)) ∈ H̃∗

0 × H̃0,
λ, µ ∈ Σ, being bounded invertible operators of Volterra type [23] on the whole Hilbert
space H. Thereby, we have proved the following theorem.

Theorem 2.1. Let mappings (2.14) be given by Volterrian operator expressions
(2.16), where the semi-linear forms Z(m)[·, ·] are defined by means of relationships
(1). Then diagram (2.5) commutes.



122 Yarema A. Prykarpatsky, Anatoliy M. Samoilenko

Moreover, for the differential operators L̃j : H −→ H, j = 1, 2, one can easily get
the following expressions

L̃j = Ω±LjΩ−1
± (2.17)

for j = 1, 2, where the left-hand sides of (2.17) do nott depend on the sings “±” of the
right-hand sides. Thereby, Volterrian integral operators (2.16) are the Delsarte-Lions
transmutation operators, mapping a given set L of differential operators into a new
set L̃ of differential operators transformed via Delsarte expressions (2.17).
2.2. Suppose now that none of the differential operators Lj(t;x|∂), j = 1, 2, consid-
ered above depends on the variable t ∈ T ⊂ R2

+. Then, evidently, one can take

H0 := {ψ(0)
µ (ξ) ∈ L2.−(M ; CN ) : Ljψ

(0)
µ (ξ) = µjψ

(0)
µ (ξ),

j = 1, 2, ψ(0)
µ (ξ)|Γ̃ = 0, µ = (µ1, µ2) ∈ σ(L̃) ∩ σ(L∗), ξ ∈ Σσ},

H̃0 := {ψ̃(0)
µ (ξ) ∈ L2.−(M ; CN ) : L̃jψ̃

(0)
µ (ξ) = µjψ̃

(0)
µ (ξ),

j = 1, 2, ψ̃(0)
µ (ξ)|Γ̃ = 0, µ = (µ1, µ2) ∈ σ(L̃) ∩ σ(L∗), ξ ∈ Σσ},

H∗
0 := {ϕ(0)

λ (η) ∈ L2.−(M ; CN ) : L∗jϕ
(0)
λ (η) = λ̄jϕ

(0)
λ (η), j = 1, 2,

ϕ
(0)
λ (η)|Γ̃ = 0, λ = (λ1, λ2) ∈ σ(L̃) ∩ σ(L∗), η ∈ Σσ},

H̃∗
0 := {ϕ̃(0)

λ (η) ∈ L2.−(M ; CN ) : L̃∗j ϕ̃
(0)
λ (η) = λ̄jϕ

(0)
λ (η),

j = 1, 2, ϕ̃(0)
λ (η)|Γ̃ = 0, λ = (λ1, λ2) ∈ σ(L̃) ∩ σ(L∗), η ∈ Σσ},

(2.18)

and construct the corresponding Delsarte-Lions transmutation operators

Ω± = 1−
∫

σ(L̃)∩σ(L∗)

dρσ(λ)
∫

Σσ×Σσ

dρΣσ
(ξ)dρΣσ

(η)×

×
∫

S
(m)
± σ

(m−1)
(t0;x0),σ

(m−1)
(t0;x0)

dxψ̃
(0)
λ (ξ)Ω−1

x0
(λ; ξ; η)ϕ̄(0),ᵀ

λ (η)(·)
(2.19)

acting already in the Hilbert space L2,+(M ; CN ), where for any (λ; ξ, η) ∈ (σ(L̃) ∩
σ(L∗)× Σ2

σ, kernels

Ω(x0)(λ; ξ, η) :=
∫

σ
(m−1)
x0

Ω(m−1)[ϕ(0)
λ (ξ), ψ(0)

λ (η)dx] (2.20)

for (ξ, η) ∈ Σ2
σ and every λ ∈ σ(L̃) ∩ σ(L∗), belong to L

(ρ)
2 (Σσ; C) ⊗ L

(ρ)
2 (Σσ; C).

Moreover, as ∂Ω±/∂tj = 0, j = 1, 2, one gets easily the set of differential expressions

L̃j(x|∂) := Ω±Lj(x|∂)Ω−1
± (2.21)

j = 1, 2, also commuting with each other.
Volterrian operators (2.19) possess some additional properties Namely, define the

following Fredholm type integral operator in H

Ω := Ω−1
+ Ω−, (2.22)
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which can be written in the form

Ω=1+Φ(Ω), (2.23)

where the operator Φ(Ω) ∈ B∞(H). Moreover, owing to relationships (2.20) one
easily concluds that the following commutator conditions

[Ω, Lj ] = 0 (2.24)

hold for j = 1, 2.
Denote now by Φ̂(Ω) ∈ H− ⊗ H− and K̂+(Ω), K̂−(Ω) ∈ H− ⊗ H− the kernels

corresponding [12, 13] to operators Φ ∈ B∞(H) and Ω± ∈ B∞(H). Then, owing to
the fact that supK+(Ω) ∩ supK−(Ω) = �, from (2.22) and (2.23), one gets the well
known Gelfand-Levitan-Marchenko linear integral equation

K̂+(Ω) + ˆΦ(Ω) + K̂+(Ω)+ · Φ̂(Ω) = K̂−(Ω), (2.25)

allowing to find the kernel K̂+(Ω) ∈ H− ⊗ H− for (t;x) ∈ supK+(Ω+) factorizing
Fredholmian operator (2.22). Conditions (2.24) can be rewritten suitably as follows:

(Lj,ext ⊗ 1)Φ̂(Ω) = (1⊗ L∗j,ext)Φ̂(Ω), (2.26)

where Lj,ext ∈ L(H−), j = 1, 2, and their adjoint L∗j,ext ∈ L(H−), j = 1, 2, are the
respective extensions [12,26] of the differential operators Lj and L∗j ∈ L(H), j = 1, 2.

Concerning relationships (2.21), one can write down [12, 26] kernel conditions
similar to (2.26):

(L̃j,ext ⊗ 1)K̂±(Ω) = (1⊗ L∗j,ext)K̂±(Ω), (2.27)

where, as above, L̃j,ext ∈ L(H−), j = 1, 2, are the respective rigging extensions of the
differential operators L̃j ∈ L(H), j = 1, 2.

2.3. Proceed now to analyzing the question of the general differential expression
structure of transformed operator expression (2.17). It is evident that conditions
(2.25) and (2.26) on the kernels K̂±(Ω) ∈ H− ⊗H− of Delsarte-Lions transmutation
operators are necessary for operator expression (2.17) to exist and be differential.
Consider the question whether these conditions are sufficient.

For studying this question, let us consider Volterrian operators (2.19) with kernels
satisfying the conditions (2.25) and (2.26), assuming that suitable oriented surfaces
S

(m)
± (σ(t;x)(m−1) , σ(t0;x0)(m−1)) ∈ Cm(MT; C) can be given as follows:

S
(m)
+ (σ(t;x)(m−1) , σ(t0;x0)(m−1)) = {(t′;x′) ∈MT : t′ = P (t;x|x′) ∈ T}

S
(m)
− (σ(t;x)(m−1) , σ(t0;x0)(m−1)) = {(t′;x′) ∈MT : t′ = P (t;x|x′) ∈ T\[t0, t]},

(2.28)

where a mapping P ∈ C∞(MT × M ; T) is piecewise smooth and such that the
boundaries ∂S(m)

± (σ(m−1)
(t;x) , σ

(m−1)
(t0;x0)

) = ±(σ(m−1)
(t;x) − σ

(m−1)
(t0;x0)

) with cycles σ(m−1)
(t;x) and

σ
(m−1)
(t0;x0)

∈ K(MT) are homological to each other for any choice of points (t0;x0) and
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(t;x) ∈MT. Then by means of some simple but cumbersome calculations, based on
considerations from [41] and [9], one can seeb that the resulting expressions on the
left-hand side of

L̃ = L + [K±(Ω),L] ·Ω−1
± (2.29)

are differential ones exactly equal to each other, if the expression for an operator
L ∈ L(H) was differential too.

Concerning the inverse operators Ω−1
± ∈ B(H) appearing in (2.29), one can notice

here that, owing to the functional symmetry between closed subspaces H0 and H̃0 ⊂
H̃−, defining relationships (2.14) and (2.4) are reversible, that is, there exist inverse
operator mappings Ω−1

± : H̃0 → H0, such that

Ω−1
± : ψ̃(0)(λ) −→ ψ(0)(λ) := ψ̃(0)(λ) · Ω̃−1

(t;x)Ω̃(t;x) (2.30)

for some suitable kernels Ω̃(t;x)(λ, µ) and Ω̃(t0;x0)(λ, µ) ∈ L
(ρ)
2 (Σ; C) ⊗ L

(ρ)
2 (Σ; C),

related naturally to the transformed differential expression L̃ ∈ L(H). Thereby, owing
to expressions (2.30), one can write down the following integral operator expressions
similar to (2.19):

Ω−1
± = 1−

∫
Σ

dρ(ξ)
∫

Σ

dρ(η)ψ(0)(ξ)Ω̃−1
t0;x0

(ξ, η)×

×
∫

S
(m)
± (σ

(m−1)
(t;x) ,σ

(m−1)
(t0;x0))

Z̃(m)[ϕ̃(0)(η), (·)dx],
(2.31)

defined for fixed pairs (ϕ̃(0)(ξ), ψ̃(0)(η)) ∈ H̃∗
0 × H̃0 and (ϕ(0)(ξ), ψ(0)(η)) ∈ H∗

0 ×H0,
ξ, η ∈ Σ, and being bounded invertible operators of Volterra type on the entire Hilbert
space H. In particular, the compatibility conditions Ω±Ω−1

± = 1 = Ω−1
± Ω± must be

fulfilled identically on H, involving some restrictions identifying both measures ρ and
Σ and suitable asymptotic conditions on the coefficient functions of the differential
expression L ∈ L. Restrictions of this type were already mentioned before in [42,44,45],
where in particular the relationships with the local and nonlocal Riemann problems
were discussed. identically measures ρ and Σ and possible asymptotic conditions of
coefficient functions of the differential expression L ∈ L. Such kinds of restrictions
were already mentioned before in [42, 44, 45, 48], where the relationships with the
local and nonlocal Riemann problems were discussed.
2.4. Within the framework of the general construction presented above one can
give a natural interpretation of so called Backlund transformations for coefficient
function of a given differential operator expression L ∈ L(H). Namely, following
the symbolic considerations in [47], we reinterpret the approach devised there for
constructing the Backlund transformations making use of the techniques based on
the theory of Delsarte transmutation operators. Let us define two Delsarte-Lions
transformed differential operator expressions

L1 = Ω1,±LΩ−1
1,±, L2 = Ω2,±LΩ−1

2,±, (2.32)
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where Ω1,+,Ω2,− ∈ B(H) are some Delsarte transmutation Volterrian operators in
H with non-intersecting Borel spectral measures ρ1 and ρ2 on Σ, but such that the
following conditions

Ω−1
1,+Ω1,− = Ω = Ω−1

2,+Ω2,−. (2.33)

Making now use of conditions (2.32) and relationships (2.33), one easily finds that
the operator B := Ω2,−Ω−1

1,+ ∈ B(H) satisfies the following operator equations:

L2B = BL1, Ω2,±B = BΩ1,±, (2.34)

which motivate the next definition.

Definition 2.2. An invertible symbolic mapping B : L(H) → L (H) will be called
a Delsarte-Backlund transformation of an operator L1 ∈ L(H) if there holds the
condition

[QB,L1] = 0 (2.35)

for some linear differential expression Q ∈ L(H).

Condition (2.35) can be realized as follows. Take any differential expression
q ∈ L(H) satisfying the symbolic equation

[qB,L] = 0 (2.36)

Then, making use of the transformations like those in (2.32), from (2.33) one finds
that

[QB,L1] = 0, (2.37)

where, owing to (2.34),

QB := Ω1,+qBΩ−1
1,+ = Ω1,+qΩ−1

2,+B. (2.38)

Therefore, the expression Q = Ω1,+qΩ−1
2,+ appears to be differential too, owing to

condition (2.34).
The above consideration related to the symbolic mapping B : L(H) → L(H) gives

rise to an effective tool for constructing self-Backlund transformations for coefficients
of given differential operator expressions L1,L2 ∈ L(H) having many applications in
soliton theory.
2.5. Return now to studying the structure of Delsarte-Lions transformations for a
polynomial differential operator pencil

L(λ;x|∂) :=
n(L)∑
j=0

Lj(x|∂)λj , (2.39)

where r(L) ∈ Z+ and λ ∈ C is a complex-valued parameter.We need to find the
Delsarte-Lions transformations Ωλ,± ∈ B(H), λ ∈ C, corresponding to (2.39)such
that, for some polynomial differential operators pencil L̃(λ;x|∂) ∈ L(H), the following
Delsarte-Lions [2] condition
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L̃Ωλ,± = Ωλ,±L (2.40)

holds for almost all λ ∈ C. In order to find such transformations Ωλ± ∈ B(H), let us
consider a differential operator Lτ (x|∂) ∈ L(Hτ ), depending on τ ∈ R, where

Lτ (x|∂) :=
n(L)∑
j=0

Lj(x|∂)∂j/∂τ j , (2.41)

acting in the functional space Hτ = Cq(L)(R;H) for some q(L) ∈ Z+. Then one can
easily construct the corresponding Delsarte-Lions transformations Ωτ,± ∈ B(Hτ ) of
Volterra type for some differential operator expression

L̃τ (x|∂) :=
n(L)∑
j=0

L̃j(x|∂)∂j/∂τ j , (2.42)

for which the following Delsarte-Lions [2] transmutation conditions

L̃τΩτ,± = Ωτ,±Lτ (2.43)

hold in Hτ . Thus, making use of the results obtained above, one can write down:

Ωτ,± = 1−
∫

Σ

dρΣ(ξ)
∫

Σ

dρΣ(η)ψ̃(0)
τ (λ; ξ)Ω−1

(τ0;x0)
(λ; ξ, η)×

×
∫

S
(m)
± (σ

(m−1)
(τ;x) ,σ

(m−1)
(τ0;x0))

Z(m)[ϕ(0)̃
τ (λ; η), (·)dx],

(2.44)

defined by means of the following closed subspaces Hτ,0 ⊂ Hτ,− and H∗
τ,0 ⊂ H∗

τ,− :

Hτ,0 : = {ψ(0)
τ (λ; ξ) ∈ Hτ,− : Lτψ

(0)
τ (λ; ξ) = 0, ψ(0)

τ (λ; ξ)|τ=0 =

= ψ(0)(λ; ξ) ∈ H,Lψ(0)(λ; ξ) = 0, ψ(0)(λ; ξ)|Γ = 0, λ ∈ C, ξ ∈ Σ},
H∗

τ,0 : = {ϕ(0)
τ (λ; η) ∈ H∗

τ,− : Lτϕ
(0)
τ (λ; η) = 0, ϕ(0)

τ (λ; η)|τ=0 =

= ϕ(0)(λ; η) ∈ H∗,Lϕ(0)(λ; η) = 0, ϕ(0)(λ; η)|Γ = 0, λ ∈ C, η ∈ Σ}.

(2.45)

Based on representations (2.28) and related results obtained in [21, 48] one can
formulate the following important lemma.

Lemma 2.3. Let differential expression (2.42) be Delsarte-Lions transformed by
means of Volterrian transmutation operators (2.44), satisfying conditions (2.43).
Then it will remain to be differential iff the surfaces S(m)

± (σ(m−1)
(τ ;x) , σ

(m−1)
(τ0;x0)

) are gener-

ated by suitably chosen standard simplicial polyhedra σ
(m−1)
(τ ;x) and σ

(m−1)
(τ0;x0)

∈ Rm×R.
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Recalling now that our operators Lj ∈ L(H), j = 0, r(L), do not depend on the
parameter τ ∈ R, from (2.44) one can easily derive:

Ω± = 1−
∫

Σ

dρΣ(ξ)
∫

Σ

dρΣ(η)ψ̃(0)(λ; ξ)Ω−1
(x0)

(λ; ξ, η)×

×
∫

S
(m)
± (σ

(m−1)
(x) ,σ

(m−1)
(x0) )

Z
(m)
0 [ϕ(0)(λ; η), (·)dx],

where we have put σ(m−1)
x := σ

(m−1)
(τ0;x) , σ

(m−1)
x0 := σ

(m−1)
(τ0;x0)

∈ Cm−1(Rm; C) and

Z
(m)
0 [ϕ(0)(λ; η), ψ(0)dx] := Z(m)[ϕ(0)

τ (λ; η), ψ(0)
τ dx]|dτ=0. (2.46)

The closed subspaces H0 ∈ H− and H∗
0 ∈ H∗

− corresponding to (2) are given as

follows:

H0 := {ψ(0)(λ; ξ) ∈ H− : Lψ(0)(λ; ξ) = 0, ψ(0)(λ; ξ)|Γ = 0, λ ∈ C, ξ ∈ Σ}, (2.47)

H∗
τ,0 := {ϕ(0)(λ; η) ∈ H∗

− : Lϕ(0)(λ; η) = 0, ϕ(0)(λ; η)|Γ = 0, λ ∈ C, η ∈ Σ}.

As a consequence, the following theorem is true.

Theorem 2.4. Let Volterrian operator expressions (2) be properly defined for al-
most all λ ∈ C, meromorphic functions with respect to the parameter λ ∈ C. Then
Delsarte-Lions transformed differenrial expresions (2.39) remain differential and
polynomial with respect to the parameter λ ∈ C too.

Thereby, making use of expressions (2) one can construct the Delsarte-Lions trans-
formed linear differential pencil L̃ ∈ L(H), whose coefficients are related to those of
the pencil L ∈ L(H) via some Backlund type relationships useful for applications
(see [26,28,43,48]) in soliton theory.
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