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Abstract. This paper deals with some impulsive fractional differential equations in Banach
spaces. Utilizing the Leray-Schauder fixed point theorem and the impulsive nonlinear singu-
lar version of the Gronwall inequality, the existence of PC-mild solutions for some fractional
differential equations with impulses are obtained under some easily checked conditions. At
last, an example is given for demonstration.
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1. INTRODUCTION

During the past decades, impulsive differential equations have attracted much interest
since it is much richer than the corresponding theory of differential equations (see for
instance [14, 25, 54] and references therein). Recently, impulsive evolution equations
and their optimal control problems in infinite dimensional spaces have been investi-
gated by many authors including Ahmed, Benchohra, Ntouyas, Liu, Nieto and us (see
for instance [1–5, 8, 9, 29], [38, 39, 50–53] and references therein). Specially, we also
studied the impulsive periodic system in infinite dimensional spaces (see [43–47]).

On the other hand, the fractional differential equations have recently been
proved to be valuable tools in the modeling of many phenomena in various fields
of engineering, physics, economics and science. We can find numerous applica-
tions in viscoelasticity, electrochemistry, control, porous media, electromagnetic, etc.
[16, 19–21, 33, 37]. In recent years, there has been a significant development in frac-
tional differential equations. One can see the monographs of Kilbas et al. [24],
Miller and Ross [31], Podlubny [41], Lakshmikantham et al. [28], and the papers
[6, 7, 10,15–19,22,24,26,27,34,35] and the references therein.
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However, to our knowledge, the theory for impulsive fractional differential equa-
tions in Banach spaces has not yet been sufficiently developed. Very recently, Ben-
chohra et al. [10, 12] applied the Banach contraction principle, Schaefer’s fixed point
theorem and the nonlinear alternative of the Leray-Schauder type or measure of
noncompactness to a class of impulsive fractional differential equations without un-
bounded operator. A class of initial value problem for impulsive fractional differential
equations with variable times is also considered in [13]. Balachandran et al. [13] using
fractional calculus and fixed point theorems for a class of impulsive fractional evolu-
tion equations with bounded time-varying linear operator. Mophou et al. [36], Wang
et al. [49], apply semigroup theory and fixed point theorems to study the impulsive
fractional differential equations with an unbounded operator in Banach spaces.

Motivated by the above work including [34–36, 48, 49], the main purpose of this
paper is to consider the following fractional differential equations with impulses

⎧⎪⎨
⎪⎩

Dα
t x(t) = Ax(t) + tnf (t, x(t)) , α ∈ (0, 1], n ∈ Z+, t ∈ J = [0, b], t �= tk,

x(0) = x0,

Δx(tk) = Ik(x(tk)) = x(t+k ) − x(t−k ), k = 1, 2, . . . , δ, 0 < t1 < t2 < . . . < tδ < b,

(1.1)

where A: D(A) ⊂ X → X is the generator of a C0-semigroup {T (t), t ≥ 0} on a
Banach space X, Dα

t is the Caputo fractional derivative, f : J × X → X is specified
later, x0 is an element of X, Ik: X → X is a nonlinear map which determines the size
of the jump at tk, 0 = t0 < t1 < t2 < . . . < tδ < tδ+1 = b, x(t+k ) = limh→0+ = x(tk+h)
and x(t−k ) = x(tk) represents respectively the right and left limits of x(t) at t = tk.

In order to obtain the existence of solutions for impulsive fractional differential
equations, some authors use Krasnoselskii’s fixed point theorem or contraction map-
ping principle. It is obvious that the conditions for Krasnoselskii’s fixed point theorem
are not easily verified sometimes and the conditions for the contraction mapping prin-
ciple are too strong. Some authors give the prior estimate of the solutions for impulsive
fractional differential equations, however, the condition on f is a little strong.

Here, we use the Leray-Schauder fixed point theorem to obtain the existence of
PC-mild solutions for system (1.1) under some easily checked conditions. First, we
construct an operator H for system (1.1), then use a generalized Ascoli-Arzela theorem
(see Theorem 2.5) and overcome some difficulties to show the compactness of H
which is very important. With the help of an impulsive nonlinear singular version
of the Gronwall inequality (see Theorem 2.7), the key estimate of the fixed point
set {x = σHx, σ ∈ [0, 1]} can be established successfully. Therefore, the existence of
PC-mild solutions for system (1.1) is shown. Our methods are different from previous
work and we give a new way to show the existence of solutions for impulsive fractional
differential equations.

The paper is organized as follows. In Section 2, we introduce the PC-mild solution
of system (1.1) and recall some basis results including the impulsive nonlinear singular
version of the Gronwall inequality. In Section 3, the existence of PC-mild solutions
for system (1.1) is proved under some easily checked conditions. Finally, an example
is given to demonstrate the applicability of our result.



On some impulsive fractional differential equations in Banach spaces 509

2. PRELIMINARIES

Let £b(X) be the Banach space of all linear and bounded operators on X. For a
C0-semigroup {T (t), t ≥ 0} on X, we set M ≡ supt∈J ‖T (t)‖£b(X). Let C(J, X)
be the Banach space of all X-valued continuous functions from J = [0, b] into X
endowed with the norm ‖x‖C = supt∈J ‖x(t)‖. We also introduce the set of functions
PC(J, X) ≡ {

x : J → X | x is continuous at t ∈ J\{t1, t2, . . . , tδ}, and x is continuous
from left and has right hand limits at t ∈ {t1, t2, . . . , tδ}

}
. Endowed with the norm

‖x‖PC = max
{

sup
t∈J

‖x(t + 0)‖, sup
t∈J

‖x(t − 0)‖
}

,

(PC(J, X), ‖ · ‖PC) is a Banach space.
Let us recall the following definitions. For more details see [41].

Definition 2.1. A real function f(t) is said to be in the space Cα, α ∈ R if there
exists a real number κ > α, such that f(t) = tκg(t), where g ∈ C[0,∞) and it is said
to be in the space Cm

α iff f (m) ∈ Cα, m ∈ N .

Definition 2.2. The Riemann-Liouville fractional integral operator of order α > 0
of a function f ∈ Cα, α ≥ −1 is defined as

Iα
t f(t) =

1
Γ(α)

t∫
0

(t − s)α−1f(s)ds,

where Γ(·) is the Euler gamma function.

Definition 2.3. If the function f ∈ Cζ
−1, ζ ∈ N , the fractional derivative of order

α > 0 of a function f(t) in the Caputo sense is given by

dαf(t)
dtα

=
1

Γ(ζ − α)

t∫
0

(t − s)ζ−α−1f (ζ)(s)ds, ζ − 1 < α ≤ ζ.

Based on [36] (Definition 3.2 and Lemma 3.3), we use the following definition of
a PC-mild solution for system (1.1).

Definition 2.4. By a PC-mild solution of the system (1.1) we mean the function
x ∈ PC(J, X) which satisfies

x(t) = T (t)x0 +
1

Γ(α)

∑
0<tk<t

tk∫
tk−1

(tk − s)α−1T (t − s)snf (s, x(s)) ds+

+
1

Γ(α)

t∫
tk

(t − s)α−1T (t − s)snf (s, x(s)) ds+

+
∑

0<tk<t

T (t − tk)Ik(x(tk)).

(2.1)

The following results will be used later.
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Lemma 2.5 (Generalized Ascoli-Arzela theorem, Theorem 2.1, [50]). Suppose W ⊂
PC(J, X) be a subset. If the following conditions are satisfied:

(1) W is a uniformly bounded subset of PC(J, X).
(2) W is equicontinuous in (tk, tk+1), k = 0, 1, 2, . . . , δ, where t0 = 0, tδ+1 = b.
(3) W(t) ≡ {x(t) | x ∈ W, t ∈ J\{t1, . . . , tδ}}, W(tk + 0) ≡ {x(tk + 0) | x ∈ W} and

W(tk − 0) ≡ {x(tk − 0) | x ∈ W} are relatively compact subsets of PC(J, X).

Then W is a relatively compact subset of PC(J, X).

Lemma 2.6 (Lemma 2.1, [42]). For all β > 0 and ϑ > −1,

t∫
0

(t − s)β−1sϑds = C(β, ϑ)tβ+ϑ,

where

C(β, ϑ) =
Γ(β)Γ(ϑ + 1)
Γ(β + ϑ + 1)

.

Lemma 2.7 (Impulsive nonlinear singular version of the Gronwall inequality, Theo-
rem 3.1, [42]). Let x ∈ PC([0,∞), X) and satisfy the following inequality

x(t) ≤ a(t) + b(t)

t∫
0

(t − s)α−1sγF1(s)xm(s)ds + d(t)
∑

0<tk<t

ηkx(tk), t ≥ 0, (2.2)

where a(t), b(t), d(t) and F1(t) are nonnegative continuous functions, ηk ≥ 0 are
constants.

(1) If 1
2 ≥ α > 0, − 1

2 ≥ γ > −1, then it holds that for t ∈ (tk, tk+1],

x(t)≤
[
(k + 3)q−1fp(t)

k∏
l=1

(1 + (k + 2)q−1)ηq
l f(tl)

] 1
q

×

×
[
1 − (m − 1)

k∑
i=1

ti∫
ti−1

(i + 2)q−1m
i−1∏
j=1

(1 + (j + 2)q−1)ηq
j f(tj))mF q

1 (s)fm
p (s)ds−

− (m − 1)(k + 3)(q−1)m×
k∏

j=1

(1 + (j + 2)q−1ηq
j f(tj))m

t∫
tk

F q
1 (s)fm

p (s)ds

] 1
q(1−m)

(2.3)
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as long as the expression between the second brackets is positive, that is, on (0, Tp),
Tp is the sup of all values of t for which

k∑
i=1

ti∫
ti−1

(i + 2)(q−1)m
i−1∏
j=1

(1 + (j + 2)q−1)ηq
j f(tj))mF q

1 (s)fm
p (s)ds−

− (m − 1)(k + 3)(q−1)m ×
k∏

j=1

(1 + (j + 2)q−1ηq
j f(tj))m

t∫
tk

F q
1 (s)fm

p (s)ds <

<
1

m − 1
;

(2) If 1
2 < α, − 1

2 < γ, then it holds that for t ∈ (tk, tk+1],

x(t) ≤
[
(k + 3)f(t)

k∏
l=1

(1 + (k + 2))η2
l f(tl)

] 1
2

×

×
[
1 − (m − 1)

k∑
i=1

ti∫
ti−1

(i + 2)m
i−1∏
j=1

(1 + (j + 2))η2
j f(tj))mF 2

1 (s)fm(s)ds−

− (m − 1)(k + 3)m ×
k∏

j=1

(1 + (j + 2)η2
j f(tj))m

t∫
tk

F 2
1 (s)fm(s)ds

] 1
2(1−m)

as long as the expression between the second brackets is positive, that is, on (0, T2),
T2 is the sup of all values of t for which

k∑
i=1

ti∫
ti−1

(i + 2)m
i−1∏
j=1

(1 + (j + 2))η2
j f(tj))mF 2

1 (s)fm(s)ds−

− (m − 1)(k + 3)m ×
k∏

j=1

(1 + (j + 2)η2
j f(tj))m

t∫
tk

F 2
1 (s)fm(s)ds <

<
1

m − 1
,
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where

fp(t) = sup
{

aq(t), C
q
p (pα − p + 1, pγ)bq(t)tq(α+γ)−1, dq(t)

}
,

p and q such that
1
p

+
1
q

= 1,

f(t) ≡ f2(t) = sup
{

a2(t), C(2α − 2 + 1, 2γ)b2(t)t2(α+γ)−1, d2(t)
}

,

if p = q = 2,

C(pα − p + 1, pγ) =
Γ(pα − p + 1)Γ(pγ + 1)
Γ(pα − p + 1 + pγ + 1)

.

3. EXISTENCE OF MILD SOLUTIONS

In this section, we will derive the existence result concerning the PC-mild solution
for the system (1.1) under some easily checked conditions.

We make the following assumptions.
[HA]: A is the infinitesimal generator of a compact C0-semigroup {T (t) , t ≥ 0}

on X with domain D(A).
[Hf]: (1) f : J ×X → X is strongly measurable with respect to t on J and for any

x, y ∈ X satisfying ‖x‖, ‖y‖ ≤ ρ there exists a positive constant Lf (ρ) > 0 such that

‖f(t, x) − f(t, y)‖ ≤ Lf (ρ)‖x − y‖.

(2) There exists a positive constant Mf > 0 such that

‖f(t, x)‖ ≤ Mf (1 + ‖x‖m) for all t ∈ J, x ∈ X, some m > 1.

[HI]: (1) The nonlinear map Ik: X → X, Ik(X) is a bounded subset of X, k =
1, 2, . . . , δ.

(2) There exist constants hk > 0, such that

‖Ik(x) − Ik(y)‖ ≤ hk‖x − y‖, for all x, y ∈ X, k = 1, 2, . . . , δ.

Theorem 3.1. Under the assumptions [HA], [Hf] and [HI], system (1.1) has at least
a PC-mild solution on J .
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Proof. Let x0 ∈ X be fixed. Define an operator H on PC(J, X) which is given by

(Hx)(t) = T (t)x0 +
1

Γ(α)

∑
0<tk<t

tk∫
tk−1

(tk − s)α−1T (t − s)snf (s, x(s)) ds+

+
1

Γ(α)

t∫
tk

(t − s)α−1T (t − s)snf (s, x(s)) ds+

+
∑

0<tk<t

T (t − tk)Ik(x(tk)).

(3.1)

Using [HA] and [Hf], one can verify that H is a continuous mapping from PC(J, X)
to PC(J, X) for x ∈ PC(J, X). In fact, for 0 ≤ τ < t ≤ t1, it comes from [HA] and
the following inequality

‖(Hx)(t) − (Hx)(τ)‖ ≤ ‖T (t)x0 − T (τ)x0‖+

+
1

Γ(α)

t∫
τ

‖(t − s)α−1T (t − s)snf (s, x(s)) ‖ds+

+
1

Γ(α)

τ∫
0

‖(t − s)α−1[T (t − s) − T (τ − s)]snf (s, x(s)) ‖ds≤

≤ M‖T (t − τ)x0 − x0‖+

+
tnM‖f‖PC

Γ(α)

t∫
τ

(t − s)α−1ds+

+
τnM‖T (t − τ) − I‖‖f‖PC

Γ(α)

τ∫
0

(t − s)α−1ds ≤

≤ M‖T (t − τ)x0 − x0‖+

+
tn1M‖f‖PC

Γ(α + 1)
(t − τ)α+

+
[
tn1M‖f‖PC

Γ(α + 1)
|tα − (t − τ)α|

]
‖T (t − τ) − I‖

(3.2)

that Hx ∈ C([0, t1], X).
With analogous arguments we can obtain Hx ∈ C([tk, tk+1], X), k = 0, 1, 2, . . . , δ.

That is Hx ∈ PC(J, X).
(1) H is a continuous operator on PC(J, X).
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Let x1, x2 ∈ PC(J, X) and ‖x1 − x2‖PC ≤ 1, then ‖x2‖PC ≤ 1 + ‖x1‖PC = ρ. By
assumptions [HA], [Hf] and [HI], we obtain

‖(Hx1)(t) − (Hx2)(t)‖ ≤

≤ 1
Γ(α)

∑
0<tk<t

tk∫
tk−1

‖(tk − s)α−1T (t − s)sn[f (s, x1(s)) − f (s, x2(s))]‖ds+

+
1

Γ(α)

t∫
tk

‖(t − s)α−1T (t − s)sn[f (s, x1(s)) − f (s, x2(s))]‖ds+

+
∑

0<tk<t

‖T (t − tk)[Ik(x1(tk)) − Ik(x2(tk))]‖ ≤

≤ MLf (ρ)
Γ(α)

∑
0<tk<t

tk∫
tk−1

(tk − s)α−1sn‖x1(s) − x2(s)‖ds+

+
MLf (ρ)

Γ(α)

t∫
tk

(t − s)α−1sn‖x1(s) − x2(s)‖ds + M
∑

0<tk<t

hk‖x1(tk) − x2(tk)‖ ≤

≤
( t∫

0

(t − s)α−1snds

)[
MLf (ρ)

Γ(α)
+ M

∑
0<tk<t

hk

]
‖x1 − x2‖PC .

(3.3)

Using Lemma 2.6, one can deduce that

‖Hx1 − Hx2‖PC ≤ Γ(α) · Γ(n + 1)
Γ(α + n + 1)

tα+n

[
MLf (ρ)

Γ(α)
+ M

δ∑
k=1

hk

]
‖x1 − x2‖PC ≤

≤ L‖x1 − x2‖PC ,

where

L = Mbα+n Γ(α) · Γ(n + 1)
Γ(α + n + 1)

[
Lf (ρ)
Γ(α)

+
δ∑

k=1

hk

]
.

(2) H is a compact operator on PC(J, X).
Let B be a bounded subset of PC(J, X), there exists a constant μ > 0 such

that ‖x‖PC ≤ μ for all x ∈ B. Using [HI], there exists a constant N such that
‖Ik(x(t))‖ ≤ N for all x ∈ B, t ∈ J , k = 1, 2, . . . , δ. Also using [Hf], there exists a
constant ω such that ‖f(t, x(t)‖ ≤ Mf (1 + ‖x‖m

PC) ≤ Mf (1 + μm) ≡ ω for all x ∈ B,
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t ∈ J . Further, HB is a bounded subset of PC(J, X). In fact, let x ∈ B, we have

‖(Hx)(t)‖ ≤ M‖x0‖ +
Mω

Γ(α)

∑
0<tk<t

tk∫
tk−1

(tk − s)α−1snds+

+
Mω

Γ(α)

t∫
tk

(t − s)α−1snds + M
∑

0<tk<t

N ≤

≤ M‖x0‖ + MNδ +
Mω

Γ(α)

t∫
0

(t − s)α−1snds ≤

≤ M‖x0‖ + MNδ +
ωMΓ(n + 1)
Γ(α + n + 1)

bα+n.

Hence HB is bounded.
Define

Π = HB and Π(t) = {(Hx)(t) | x ∈ B)} for t ∈ J.

Clearly, Π(0) = {x0} is compact, hence, it is only necessary to check that Π(t) =
{(Hx)(t) | x ∈ B} for t ∈ (0, b] is also compact. For 0 < ε < t ≤ b, define

Πε(t) ≡ (HεB)(t) = {(Hεx)(t) | x ∈ B} (3.4)

and the operator Hε is defined by

(Hεx)(t) = T (ε)T (t − ε)x0+

+ T (ε)
1

Γ(α)

∑
0<tk<t

tk∫
tk−1

(tk − s)α−1T (t − ε − s)snf (s, x(s)) ds+

+ T (ε)
1

Γ(α)

t−ε∫
tk

(t − s)α−1T (t − ε − s)snf (s, x(s)) ds+

+ T (ε)
∑

0<tk<t

T (t − ε − tk)Ik(x(tk)) =

= T (t)x0 +
1

Γ(α)

∑
0<tk<t

tk∫
tk−1

(tk − s)α−1T (t − s)snf (s, x(s)) ds+

+
1

Γ(α)

t−ε∫
tk

(t − s)α−1T (t − s)snf (s, x(s)) ds+

+
∑

0<tk<t

T (t − tk)Ik(x(tk)),

(3.5)
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from which implies that Πε(t) is relatively compact for t ∈ (ε, b] due to {T (t), t ≥ 0}
is a compact semigroup.

For interval (0, t1], (3.4) reduces to

Πε(t) ≡ (HεB)(t) = {(Hεx)(t) | x ∈ B}.

Combine with (3.1) and (3.5), we can deduce

sup
x∈B

‖(Hx)(t) − (Hεx)(t)‖ ≤ 1
Γ(α)

∥∥∥∥∥∥
t∫

t−ε

(t − s)α−1T (t − s)snf (s, x(s)) ds

∥∥∥∥∥∥ ≤

≤ tnωM

Γ(α)

t∫
t−ε

(t − s)α−1ds ≤

≤ bnωMεα

Γ(α + 1)
.

It shows that the set Π(t) can be approximated to an arbitrary degree of accuracy by
a relatively compact set for t ∈ (0, t1]. Hence, Π(t) itself is a relatively compact set
for t ∈ (0, t1].

For interval (t1, t2], define

Π(t1 + 0) ≡ Π(t1 − 0) + I1(Π(t1 − 0)) = Π(t1) + I1(Π(t1)) =
= {(Hx)(t1) + I1(x(t1)) | x ∈ B}.

By assumption [HI], one can verify that I1(Π(t1)) is relatively compact. Hence, Π(t1+
0) is relatively compact. Then (3.4) reduces to

Πε(t) ≡ (HεB)(t) =

=

{
(Hx)(t1 + 0) +

1
Γ(α)

t−ε∫
t1

(t − s)α−1T (t − s)snf (s, x(s)) ds | x ∈ B

}
.

By elementary computation again, we have

sup
x∈B

‖(Hx)(t) − (Hεx)(t)‖ ≤ ωM

Γ(α)

t∫
t−ε

(t − s)α−1snds ≤ bnωMεα

Γ(α + 1)
.

Hence, Π(t) itself is relatively compact set for t ∈ (t1, t2].
In general, for any given tk, k = 1, 2, . . . , δ, we define that x(ti + 0) = xi, and

Π(tk + 0) ≡ Π(tk − 0) + Ik(Π(tk − 0)) =
= Π(tk) + Ik(Π(tk)) =
= {(Hx)(tk) + Ik(x(tk)) | x ∈ B}, k = 1, 2, . . . , δ.
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By assumption [HI] again, Ik(Π(tk) is relatively compact and the associated Πε(t)
over the interval (tk, tk+1] is given by

Πε(t) ≡ (HεB)(t) =

=

{
(Hx)(tk + 0) +

1
Γ(α)

t−ε∫
tk

(t − s)α−1T (t − s)snf (s, x(s)) ds | x ∈ B

}
.

Thus, we have

sup
x∈B

‖(Hx)(t) − (Hεx)(t)‖ ≤ bnωMεα

Γ(α + 1)
.

Hence, Π(t) itself is a relatively compact set for t ∈ (tk, tk+1].
Now, we repeat the procedures till the time interval which is expanded. Thus, we

can obtain that the set Π(t) itself is relatively compact for t ∈ J \ {t1, t2, . . . , tδ} and
Π(tk + 0) is relatively compact for tk, k = 1, 2, . . . , δ.

(3) Π is equicontinuous on the interval (tk, tk+1), k = 1, 2, . . . , δ.
For interval (0, t1), we note that for t1 > h > 0,

‖(Hx)(h) − (Hx)(0)‖ ≤ ‖T (h) − I‖‖x0‖ + ωM
Γ(n + 1)

Γ(α + n + 1)
hα+n,

and for t1 ≥ t + h ≥ t ≥ γ ≥ 0, γ < h and x ∈ B,

(Hx)(t + h) − (Hx)(t) = (T (t + h) − T (t))x0+

+
1

Γ(α)

t+h∫
t

(t + h − s)α−1T (t + h − s)snf (s, x(s)) ds+

+
1

Γ(α)

t∫
t−γ

(t + h − s)α−1[T (t + h − s) − T (t − s)]snf (s, x(s)) ds+

+
1

Γ(α)

t∫
t−γ

[(t + h − s)α−1 − (t − s)α−1]T (t − s)snf (s, x(s)) ds+

+
1

Γ(α)

t−γ∫
0

(t + h − s)α−1[T (t + h − s) − T (t − s)]snf (s, x(s)) ds+

+
1

Γ(α)

t−γ∫
0

[(t + h − s)α−1 − (t − s)α−1]T (t − s)snf (s, x(s)) ds,
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hence,

‖(Hx)(t + h) − (Hx)(t)‖ ≤ M‖T (h) − I‖‖x0‖+
+

ωMtn1
Γ(α + 1)

hα+

+ ωMtn1
|hα − (h + γ)α|

Γ(α + 1)
‖T (h) − I‖+

+ ωMtn1
1

Γ(α)

t∫
t−γ

|(t + h − s)α−1 − (t − s)α−1|ds+

+ ωMtn1
|(t + h)α − (γ + h)α|

Γ(α + 1)
‖T (h) − I‖+

+ ωMtn1
1

Γ(α)

t−γ∫
0

|(t + h − s)α−1 − (t − s)α−1|ds.

(3.6)

Since ‖T (h) − I‖ → 0, |(t + h − s)α−1 − (t − s)α−1| → 0 as h → 0, thus the right
hand side of (3.6) can be made as small as desired by choosing h sufficiently small.
Hence, Π(t) is equicontinuous in interval (0, t1).

In general, for time interval (tk, tk+1), k = 1, 2, . . . , δ, we similarly obtain the
following inequalities

‖(Hx)(t + h) − (Hx)(t)‖ ≤ M‖T (h) − I‖‖xk‖+

+
ωMtnk+1

Γ(α + 1)
hα+

+ ωMtnk+1

|hα − (h + γ)α|
Γ(α + 1)

‖T (h) − I‖+

+ ωMtnk+1

1
Γ(α)

t∫
t−γ

|(t + h − s)α−1 − (t − s)α−1|ds+

+ ωMtnk+1

|(t + h)α − (γ + h)α|
Γ(α + 1)

‖T (h) − I‖+

+ ωMtnk+1

1
Γ(α)

t−γ∫
tk

|(t + h − s)α−1 − (t − s)α−1|ds.

With analogous arguments, one can verify that Π is also equicontinuous on the interval
(tk, tk+1), k = 1, 2, . . . , δ.

Now, we repeat the procedures till the time interval which is expanded. Thus we
obtain that the set Π(t) itself is relatively compact for t ∈ J\{t1, . . . , tδ} and Π(tk +0)
is relatively compact for tk ∈ {t1, . . . , tδ}.

(4) H has a fixed point in PC(J, X).
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According to Leray-Schauder fixed point theorem, it suffices to show the follow-
ing set

{
x ∈ PC(J, X) | x = σHx, σ ∈ [0, 1]

}

is a bounded subset of PC(J, X). In fact, let x ∈ {x ∈ PC(J, X) | x = H(σx), σ ∈
[0, 1]}, we have

‖x(t)‖ = ‖H(σx(t))‖ ≤
≤ ‖T (t)(σx0)‖+

+
1

Γ(α)

∑
0<tk<t

tk∫
tk−1

‖(tk − s)α−1T (t − s)snf (s, σx(s)) ‖ds+

+
1

Γ(α)

t∫
tk

‖(t − s)α−1T (t − s)snf (s, σx(s)) ‖ds+

+
∑

0<tk<t

‖T (t − tk)Ik(σx(ti))‖ ≤

≤ σM‖x0‖ + MMf
1

Γ(α)

t∫
0

(t − s)α−1sn(1 + σ‖x(s)‖m)ds+

+ M
∑

0<tk<t

(‖Ik(0)‖ + σhk‖x(tk)‖) ≤

≤ M

(
‖x0‖ + Mf

Γ(n + 1)
Γ(α + n + 1)

tα+n +
δ∑

k=1

‖Ii(0)‖
)

+

+
MMf

Γ(α)

t∫
0

(t − s)α−1sγsn−γ‖x(s)‖mds+

+ M
∑

0<tk<t

hk‖x(tk)‖ ≤

≤ M

(
‖x0‖ + Mf

Γ(n + 1)
Γ(α + n + 1)

tα+n +
δ∑

k=1

‖Ik(0)‖
)

+

+ tn−γ MMf

Γ(α)

t∫
0

(t − s)α−1sγ‖x(s)‖mds+

+ M
∑

0<tk<t

hk‖x(tk)‖.
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Denote

fp(t) = sup
{

Mq

(
‖x0‖ + Mf

Γ(n + 1)
Γ(α + n + 1)

tα+n +
δ∑

k=1

‖Ik(0)‖
)q

,

C
q
p (pα − p + 1, pγ)t(n−γ)q

(
MMf

Γ(α)

)q

tq(α+γ)−1, Mq

}
,

p and q such that
1
p

+
1
q

= 1,

f(t) ≡ f2(t) = sup
{

M2

(
‖x0‖ + Mf

Γ(n + 1)
Γ(α + n + 1)

tα+n +
δ∑

k=1

‖Ik(0)‖
)2

,

C(2α − 2 + 1, 2γ)t(n−γ)2

(
MMf

Γ(α)

)2

t2(α+γ)−1, M2

}
.

(i) If 1
2 ≥ α > 0, − 1

2 ≥ γ > −1, by (1) of Lemma 2.7, it holds that for each
(tk, tk+1],

‖x(t)‖ ≤ sup
t∈[0,Tp]

{[
(k + 3)q−1fp(t)

k∏
l=1

(1 + (k + 2)q−1)hq
l f(tl)

] 1
q
}

≡ M1∗
k ,

where Tp is the sup of all values of t for which

k∑
i=1

ti∫
ti−1

(i + 2)(q−1)m
i−1∏
j=1

(1 + (j + 2)q−1)hq
jf(tj))mfm

p (s)ds−

− (m − 1)(k + 3)(q−1)m ×
k∏

j=1

(1 + (j + 2)q−1hq
jf(tj))m

t∫
tk

fm
p (s)ds <

1
m − 1

.

(ii) If 1
2 < α < 1, − 1

2 < γ, by (2) of Lemma 2.7, it holds that for each (tk, tk+1],

‖x(t)‖ ≤ sup
t∈[0,T2]

{[
(k + 3)f(t)

k∏
l=1

(1 + (k + 2))h2
l f(tl)

] 1
2
}

≡ M2∗
k ,

where T2 is the sup of all values of t for which

k∑
i=1

ti∫
ti−1

((i + 2)m)
i−1∏
j=1

(1 + (j + 2))h2
jf(tj))mfm(s)ds−

− (m − 1)(k + 3)m ×
k∏

j=1

(1 + (j + 2)h2
jf(tj))m

t∫
tk

fm(s)ds <
1

m − 1
.
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Set M1∗ = max{M1∗
1 , M1∗

2 , . . . , M1∗
δ }, M2∗ = max{M2∗

1 , M2∗
2 , . . . , M2∗

δ }. We denote
M∗ = max{M1∗, M2∗}. Then we have

‖x‖PC ≤ M∗ for all x ∈ {x ∈ PC(J, X) | x = σHx, σ ∈ [0, 1]}.

Thus, {x ∈ PC(J, X) | x = σHx, σ ∈ [0, 1]} is a bounded subset of PC(J, X). By the
Leray-Schauder fixed point theorem, we obtain that H has a fixed point in PC(J, X).
This completes the system (1.1) has at least a PC-mild solution on J .

At last, an example is given to illustrate our theory. Consider the following im-
pulsive fractional differential equations

⎧⎪⎨
⎪⎩

D
1
3
t x(t, y) = ∂2

∂y2 x(t, y) + tx2(t, y) + t sin(t, y), t ∈ (0, 1] \ { 1
2},

Δx(t1, y) = −x(t1, y), t1 = 1
2 , y ∈ Ω = (0, π),

x(t, y) |y∈∂Ω= 0, t > 0, x(0, y) = 0, y ∈ Ω.

(3.7)

Let X = L2([0, π]). Define

D(A) =
{

x ∈ X | ∂x

∂y
,
∂2x

∂y2
and x(0) = x(π) = 0

}
and Ax = − ∂2

∂y2
x for x ∈ D(A)

which can determine a compact C0-semigroup {T (t), t ≥ 0} in L2([0, π]) such that
‖T (t)‖ ≤ 1.

Denote x(·)(y) = x(·, y), sin(·)(y) = sin(·, y), f(·, x(·))(y) = x2(·, y) + sin(·, y),
I1(x(t1))(y) = −x(t1, y). Thus, problem (3.7) can be rewritten as

⎧⎪⎨
⎪⎩

Dα
t x(t) = Ax(t) + tnf(t, x(t)), α = 1

3 ∈ (0, 1
2 ], n = 1, t ∈ (0, 1] \ {tk},

Δx(tk) = Ik(x(tk)), tk = 1
2 , k = 1,

x(0) = 0.

(3.8)

Obviously, all the assumptions in Theorem 3.1 are satisfied. Our results can be used
to solve problem (3.7).
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