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1. PRELIMINARY NOTIONS AND DEFINITIONS

Consider an infinite-dimensional discrete manifold M ⊂ l2(Z;Cm) for some integer
m ∈ Z+ and a nonlinear dynamical system of the form

du/dt = K[u], (1.1)

where u ∈M and K : M → T (M) is a Fréchet smooth nonlinear local mapping of M
into its tangent space T (M) and t ∈ R is the evolution parameter. As examples of
the dynamical system (1.1) on a discrete manifold M ⊂ l2(Z;C2), one can consider
the following well-known [5, 11] discrete nonlinear Schrödinger equation (also known
as the Ablowitz–Ladik equation)
(
dun/dt
dūn/dt

)
= Kn[u, u

∗] :=
(
i(un+1 − 2un + un−1)− iūnun(un+1 + un−1)
−i(2ūn − un+1 − un−1) + iūnun(ūn+1 + ūn−1)

)
, (1.2)

41



42 Denis Blackmore, Anatoliy K. Prykarpatsky, and Yarema A. Prykarpatsky

where the overbar denotes the complex conjugate, and the so-called Ragnisco–Tu [24]
equation (

dun/dt
dvn/dt

)
= K̃n[u, v] :=

(
un+1 − u2nvn
−vn−1 + unv

2
n

)
, (1.3)

which has many interesting applications [9] in a wide range of plasma physics prob-
lems.

To analyze the integrability properties of the differential-difference dynamical sys-
tem (1.1), we shall develop a gradient-holonomic scheme related to those devised
in [6, 7, 13, 15] for nonlinear dynamical systems defined on spatially one-dimensional
functional manifolds and extended in [12] to include discrete manifolds.

Denote by (·, ·) the standard bilinear form (or pairing) on the space T (M)×T ∗(M)
naturally induced by the inner product in the Hilbert space l2(Z;Cm). We define
D(M) to be the space of smooth functionals on M , so for any γ ∈ D(M) one can
define the gradient grad γ[u] ∈ T ∗(M) as

grad γ[u] := γ′,∗[u] · 1, (1.4)

where the prime denotes the Fréchet derivative and “∗” represents the conjugation
with respect to the standard bracket on T (M)× T ∗(M).

Definition 1.1. A linear smooth operator ϑ : T ∗(M) → T (M) is called Poissonian
on the manifold M , if the bilinear bracket

{·, ·}
ϑ
:= (grad (·), ϑgrad (·)) (1.5)

satisfies [1,2,6,8,18] the Jacobi identity on the space D(M) of all smooth functionals
on M .

This means, in particular, that the bracket (1.4) satisfies the standard Jacobi
identity on D(M).

Definition 1.2. A linear smooth operator ϑ : T ∗(M) → T (M) is called Nötherian
[6, 8, 18] with respect to the nonlinear dynamical system (1.1) if

LKϑ = ϑ′K − ϑK ′,∗ −K ′ϑ = 0 (1.6)

holds identically on the manifold M , where LK is the Lie-derivative along the vector
field K :M → T (M).

If the mapping ϑ : T ∗(M)→ T (M) is invertible with inverse mapping ϑ−1 := Ω :
T (M)→ T ∗(M), it is called symplectic. It then follows easily from (1.6) that

LKΩ = Ω′K +ΩK ′ +K ′,∗Ω = 0 (1.7)

holds identically on M . Having now assumed that the manifold M ⊂ l2(Z;C2) is
endowed with a smooth Poissonian structure ϑ : T ∗(M)→ T (M), one can define the
Hamiltonian system

du/dt := −ϑ grad H[u], (1.8)



Isospectral integrability analysis of dynamical systems on discrete manifolds 43

corresponding to a Hamiltonian function H ∈ D(M). It follows directly from the
definition (1.8) that the dynamical system

du/dt = K[u] := −ϑ grad H[u] (1.9)

satisfies the Nötherian conditions (1.6). We are studying the integrability [2, 4, 8, 13]
of the discrete dynamical system (1.1). Accordingly we need to construct invariants
with respect to its functions, called conservation laws, which are mutually commuting
with respect to the Poisson bracket (1.4). The following Lax’s criterion [3,6,13] proves
to be very useful.

Lemma 1.3. Any smooth solution ϕ ∈ T ∗(M) to the Lax equation

LK ϕ = dϕ/dt+K ′,∗ϕ = 0, (1.10)

satisfying the symmetry condition

ϕ′ = ϕ′.∗,

with respect to bracket (·, ·), is related to the conservation law

γ :=

1∫
0

dλ(ϕ[uλ], u). (1.11)

Proof. The expression (1.11) follows easily from the well-known Volterra homology

equalities

γ =

1∫
0

dγ[uλ]

dλ
dλ =

1∫
0

dλ(1, γ′[uλ] · u, ) =
1∫

0

dλ(γ′,∗[uλ] · 1, u) =
1∫

0

dλ(grad γ[uλ], u)

(1.12)
and

(grad γ[u])′ = (grad γ[u])′,∗, (1.13)

holding identically on M . Whence, one finds that there exists a function γ ∈ D(M)
such that

LKγ = 0, grad γ[u] = ϕ[u] (1.14)

for any u ∈M .

This result of Lax’s lemma is a direct consequence of the following generalized
Nöther type result.

Lemma 1.4. Let a smooth element ψ ∈ T ∗(M) satisfy the Nöther condition

LKψ = dψ/dt+K ′,∗ψ = grad Lψ (1.15)
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for some smooth functional Lψ ∈ D(M). Then the following Hamiltonian representa-
tion

K = −ϑ grad Hϑ (1.16)

holds, where
ϑ := ψ′ − ψ′,∗ (1.17)

and the Hamiltonian function is

Hϑ = (ψ,K)− Lψ. (1.18)

It is easy to see that Lemma 1.3 follows from Lemma 1.4, if the conditions ψ′ = ψ′,∗

and Lψ = 0 are imposed on (1.15).
Assume now that equation (1.15) allows an additional (non-symmetric) smooth

solution φ ∈ T ∗(M):
LKφ = dφ/dt+K ′,∗φ = grad Lφ. (1.19)

This means that our system (1.1) is bi-Hamiltonian:

−ϑ gradHϑ = K = −η grad Hη, (1.20)

where, by definition,
η := φ

′ − φ′∗, Hη = (φ,K)− Lφ. (1.21)

Definition 1.5. One says that two Poissonian structures ϑ, η : T ∗(M) → T (M) on
M are compatible [6, 8, 10, 18], if for any λ, μ ∈ R the linear combination λϑ + μη :
T ∗(M)→ T (M) is also Poissonian on M .

It is easy to see that this condition is satisfied if, for instance, there exist an
inverse ϑ−1 : T (M) → T ∗(M) and the composite map η(ϑ−1η) : T ∗(M) → T (M) is
also Poissonian on M .

Concerning the integrability of the infinite-dimensional dynamical system (1.1) on
the discrete manifoldM it is, in general, necessary, but not sufficient [4,6,13], to prove
the existence of an infinite hierarchy of mutually commuting conservation laws with
respect to the Poissonian structure (1.4).

Since in the case of Lax integrability of (1.1) there exist compatible Poissonian
structures and related hierarchies of conservation laws, we shall focus our analysis by
devising an integrability algorithm under the a priori assumption that the nonlinear
dynamical system (1.1) on the manifold M is Lax integrable. This means that it
possesses a Lax representation in the following general form:

Δfn := fn+1 = ln[u;λ]fn, (1.22)

where f := {fn ∈ C
r : n ∈ Z} ⊂ l2(Z;Cr) for some integer r ∈ Z+ and the matrices

ln[u;λ] ∈ EndCr, n ∈ Z, in (1.22) are local matrix-valued functionals on M , depend-
ing on the “spectral” parameter λ ∈ C, invariant with respect to our dynamical system
(1.1).

As the Lax representation (1.22) is ‘local’ with respect to the discrete variable
n ∈ Z, we shall assume for convenience that our manifold M :=M(N) ⊂ l∞(Z;Cm) is
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periodic with respect to the discrete index n ∈ ZN , that is for any n ∈ ZN := Z/NZ

and λ ∈ C

ln[u;λ] = ln+N [u;λ] (1.23)

for some integer N ∈ Z+. In this case the smooth functionals on M(N) can be repre-
sented as

γ :=
∑
n∈ZN

γn[u] (1.24)

for some local Fréchet smooth densities γn :M(N) → C, n ∈ ZN .

2. INTEGRABILITY ANALYSIS: THE GRADIENT-HOLONOMIC SCHEME

Consider the representation (1.22) and define its fundamental solution Fm,n(λ) ∈
Aut(Cr), m,n ∈ ZN , satisfying the equation

Fm+1,n(λ) = lm[u;λ]Fm,n(λ) (2.1)

and the condition
Fm,n(λ)|m=n = 1 (2.2)

for all λ ∈ C and n ∈ ZN . Then the matrix function

Sn(λ) := Fn+N,n(λ) (2.3)

is called the monodromy matrix for the linear equation (1.23) and satisfies for all
n ∈ ZN the Novikov–Lax relationship

Sn+1(λ)ln = lnSn(λ). (2.4)

It is easy to compute that Sn(λ) :=
∏N−1
k=0 ln+k[u;λ] owing to the periodicity condition

(1.23). Construct now the generating functional

γ̄(λ) := trSn(λ), (2.5)

where tr is the standard trace map, having the asymptotic expansion

γ̄(λ) ∼
∑
j∈Z+

γ̄jλ
j0−j (2.6)

as λ→∞ for some fixed j0 ∈ Z+. Then, owing to the obvious condition

Dnγ(λ) = 0 (2.7)

for all n ∈ ZN , where we have introduced the ‘discrete’ derivative

Dn := Δ− 1, (2.8)
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we find that all functionals γ̄j ∈ D(M(N)), j ∈ Z+, are independent of the discrete
index n ∈ ZN and are simultaneously conservation laws for the dynamical system
(1.1).

We now make an additional natural assumption, namely that the gradient vector

ϕ̄(λ) := grad γ̄(λ)[u] = trl′,∗n (Sn(λ)l
−1
n ), (2.9)

solving the Lax determining equation (1.10), satisfies, owing to (2.4), for all λ ∈ C,

z(λ)ϑϕ̄(λ) = ηϕ̄(λ), (2.10)

where z : C → C is a meromorphic function, and ϑ and η : T ∗(M(N)) → T (M(N))
are compatible Poissonian operators on the manifold M(N) that are Nötherian with
respect to the dynamical system (1.1). Then it follows at once that the generating
functional γ(λ) ∈ D(M(N)) satisfies the commutation relationships

{γ̄(λ), γ̄(μ)}ϑ = 0 = {γ̄(λ), γ̄(μ)}η (2.11)

for all λ, μ ∈ C. Consequently, if we define on M(N) a generating dynamical system

du/dτ := −ϑ grad γ̄(λ)[u] (2.12)

as λ → ∞, it follows from (2.11) that the hierarchy of functionals defined by the
coefficients in (2.6) comprise its conservation laws.

With the importance of invariants and Poissonian structures related to the linear
spectral problem (1.22) firmly in mind, we now describe its main Lie-algebraic prop-
erties and connections with the whole hierarchy of integrable differential-difference
dynamical systems on the manifold M . More precisely, we sketch the Lie-algebraic
aspects [25–28] of the differential-difference dynamical systems associated with the
Lax linear difference spectral problem (1.22). In this process we shall assume that
ln := ln[u, v;λ] ∈ Gn := GL2(C)⊗ C(λ, λ−1) for n ∈ ZN := Z/NZ as λ → ∞. To
describe the related Lax integrable dynamical systems, we first define first the matrix
product-group GN :=

⊗N
j=1Gj and its action GN × M

(N)
G → M

(N)
G on the phase

space M (N)
G := {ln ∈ Gn : n ∈ ZN}, given as

{gn ∈ Gn : n ∈ ZN} × {ln ∈ Gn : n ∈ ZN} = {gnlng−1
n+1 ∈ Gn : n ∈ ZN}. (2.13)

A functional γ ∈ D(M (N)
G ) is invariant for this action iff the following discrete rela-

tionship
gradγ(ln)ln = ln+1gradγ(ln+1) (2.14)

holds for all n ∈ ZN .
We assume further that the matrix group GN is identified with its tangent spaces

Tl(G
N ), l ∈ GN , which is locally isomorphic to the Lie algebra G(N), where G(N)

is the corresponding Lie algebra of the Lie group GN , which is isomorphic to the
tangent space Te(GN ) at the group unity e ∈ GN . With any element l ∈ GN there are



Isospectral integrability analysis of dynamical systems on discrete manifolds 47

associated, respectively, the left ηl : G(N) → Tl(G
N ) and right ρl : G(N) → Tl(G

N )
differentials of the left and right translations on the Lie group GN , and their adjoint
mappings ρ∗l : T

∗
l (G

N )→ G(N),∗ and η∗l : T ∗l (G
N )→ G(N),∗, where

(ρ∗l gradγ(l), X) = (gradγ(l), Xl) = (l gradγ(l), X) := Tr(l gradγ(l)X),

(η∗l gradγ(l), X) = (gradγ(l), lX) = (gradγ(l)l,X) := Tr(gradγ(l)lX)
(2.15)

for any X ∈ G(N) and smooth functional γ ∈ D(GN ). Here Tr : GN → C is the trace
operation on the group GN defined as

TrA := resλ=∞
∑
j∈ZN

SpAj [u, v;λ]

for any A ∈ GN . By virtue of (2.14) and (2.15), we can define the set

{Φn = gradγ(ln)ln ∈ G∗n := T ∗e (G), n ∈ ZN} (2.16)

belonging to the space G(N),∗ 	 T ∗e (G
N ) and satisfying the following invariance pro-

perty:
Φn+1 = Ad∗lnΦn(λ) = l−1

n Φn(λ)ln (2.17)

for any n ∈ ZN . The relationship (2.17) allows to define a function ϕ : GN → C

invariant with respect to the adjoint action

Gn ×Gn 
 (g, Sn(λ))→ adgSn(λ) = gSn(λ)g
−1 ∈ Gn (2.18)

for any n ∈ ZN and such that

γ(l) = ϕ[SN (λ)], ΦN = gradϕ[SN (λ)]SN (λ), (2.19)

where, by definition, the expression

SN (λ) =

N∏
j=1

lj [u, v;λ] (2.20)

coincides exactly with the proper monodromy matrix for the linear spectral problem
(1.22). Owing to (2.17), the matrices Φn = gradϕ[Sn(λ)]Sn(λ) ∈ G∗n, n ∈ ZN , can be
reconstructed from (2.20). Therefore, we have [26, 28] the following Poissonian flow
on the matrices Sn(λ) ∈ Gn, n ∈ ZN :

dSn(λ)/dt = [R(gradϕ[Sn(λ)]Sn(λ)), Sn(λ)] (2.21)

with respect to the invariant Casimir function ϕ ∈ I(G∗n) and the quadratic Poissonian
structure

{γ1, γ2} := (l, [gradγ1(l),R(l gradγ2(l))] + [R(l gradγ1(l)), gradγ2(l)]) (2.22)
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for any functionals γ1, γ2 ∈ D(GN ), which is constructed by means of a
skew-symmetric R-structure R : G(N),∗ → G(N). In particular, the equality

[gradϕ(Sn), Sn] = 0 (2.23)

holds for all n ∈ ZN .
Taking into account (2.19), one can rewrite (2.21) as

dSn/dt = [R(gradγ(ln)ln), Sn], (2.24)

for all n ∈ ZN . This together with (2.17) makes it possible to retrieve [27, 29] the
related evolution of elements ln ∈ Gn, n ∈ ZN :

dln/dt = pn+1(l)ln − lnpn(l),
pn(l) := R(gradγ(ln)ln)

(2.25)

from the relationships
Sn(λ) = ψn(l)SN (λ)ψ−1

n (l),

ψn(l) =

n∏
j=1

lj [u, v;λ].
(2.26)

The solution f ∈ l∞(Z,C2) to the linear spectral problem (1.22) satisfies the associ-
ated temporal evolution equation

dfn/dt = pn(l)fn (2.27)

for any n ∈ Z. It is easy to check that the compatibility condition for the linear
equations (1.22) and (2.27) is equivalent to the discrete Lax representation (2.25),
which upon reduction on the group manifold MG, gives rise to the corresponding
nonlinear Lax integrable dynamical system on the discrete manifold M . Hence, all
Casimir invariant functions, when reduced on the manifold MG, are in involution
[27,28] with respect to the Poisson bracket (2.22).

Since the existence of an infinite hierarchy of mutually commuting conservation
laws is a characteristic of the Lax integrability of the nonlinear dynamical system
(1.1), this property can be effectively implemented into the scheme of our analysis.
Namely, we have the following result.

Proposition 2.1. The Lax equation (1.10) allows the following asymptotic (as
λ→∞) periodic solution ϕ(λ) ∈ T ∗(M(N)):

ϕn(λ) ∼ an(λ) exp[ω(t;λ)]

n∏
j=0

σj(λ), (2.28)

where for all n ∈ Z

an(λ) := (1, a(1),n[u;λ], a(2),n[u;λ], . . . , a(m−1),n[u;λ])
τ ,

a(k),n(λ) ∼
∑
s∈Z+

a
(s)
(k),n[u]λ

−s+ea, σj(λ) ∼
∑
s∈Z+

a
(s)
j [u]λ−s+eσ, (2.29)
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1 ≤ k ≤ m − 1 and ω(t; ·) : C → C, t ∈ R, is a dispersion function. Moreover,
the functional γ(λ) :=

∑
n∈ZN

ln(λ−σ̃σn[u;λ]) ∈ D(M(N)) is a generating function of

conservation laws for the dynamical system (1.1).

Proof. Lemma 1.3 and relationship (2.9) imply that the functional (2.5) is a conserva-
tion law for our dynamical system (1.1). Whence, expression (2.3) and equation (1.22)
lead to the solution representation (2.28) for the Lax equation (1.10). Now, making
use of the periodicity of the manifold M(N), it follows from the period translation of
(2.28) that the functional

γ(λ) :=
∑
n∈ZN

ln(λ−σ̃σn[u;λ]) ∼
∑
j∈Z+

γjλ
−j (2.30)

generates an infinite hierarchy of conservation laws to (1.1), which completes the
proof.

Thus, if we start the Lax integrability analysis of a given nonlinear dynamical
system (1.1), it is necessary, as the first step, to study the asymptotic solutions (2.28)
to the corresponding Lax equation (1.10). These solutions are then used to construct
a related hierarchy of conservation laws in the functional form (2.30), taking into
account expansions (2.29).

Remark 2.2. It is easy to observe that, owing to the arbitrariness of the period
N ∈ Z+ of the manifold M(N), all of the finite-sum expressions obtained above can
be generalized to the corresponding infinite-dimensional manifold M ⊂ l2(Z;Cm), if
the associated infinite series is convergent.

Since our dynamical system (1.1) induces a bi-Hamiltonian flow on the manifold
M(N) under the above circumstances, the next step is to analyze the related compat-
ible Poissonian or symplectic structures, satisfying, respectively, either equality (1.6)
or equality (1.7). Before doing this, we shall need the following useful result.

Lemma 2.3. All functionals γj ∈ D(M(N)) in the expansion (2.30) are mutually
commutative with respect to both Poissonian structures ϑ, η : T ∗(M(N)) → T (M(N))
satisfying the gradient relationship (2.31).

Proof. It follows from the representations (2.28) and (2.9) that the following asymp-
totic (as λ→∞) relationship holds:

ln γ̄(λ) 	 γ(λ). (2.31)

Since the generating function γ̄(λ) ∈ D(M(N)) satisfies the commutation rela-
tionships (2.11), the same also holds, owing to (2.31), for the generating function
γ(λ) ∈ D(M(N)). Thus, the proof is complete.

We proceed now with the construction of the Poissonian structures ϑ, η :
T ∗(M(N)) → T (M(N)) for the dynamical system (1.1). Note that these Poissonian
structures are also Nötherian for the whole hierarchy of dynamical systems

du/dtj := −ϑ grad γj [u], (2.32)
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where tj ∈ R, j ∈ Z+, are the corresponding evolution parameters, and which, owing
to (2.11), commute with each other on the manifold M(N). Therefore, it is possible
to apply Lemma 1.4 to any one of the dynamical systems (2.32) if the related vector
fields commuting with (1.1) are assumed known.

To solve equation (1.15) for an element ϕ ∈ T ∗(M(N)) one can, in the case of
a polynomial dynamical system (1.1), make use of the well-known asymptotic small
parameter method [6, 15]. When applying this approach, it is necessary to take into
account the following expansions at zero - element ũ = 0 ∈M(N) with respect to the
small parameter μ→ 0 :

u := μu(1), ϕ[u] = ϕ(0) + μϕ(1)[u] + μ2ϕ(2)[u] + . . . ,

d/dt = d/dt0 + μd/dt1 + μ2d/dt2 + . . . ,

K[u] = μK(1)[u] + μ(2)K(2)[u] + . . . ,

K ′[u] = K ′0 + μK ′1[u] + μ2K ′2[u] + . . . ,

grad L[u] = grad L(0) + μgrad L(1)[u] + μ2grad L(2)[u] + . . . .

(2.33)

After solving the corresponding set of linear nonuniform functional equations

dϕ(0)/dt0 +K ′∗0 ϕ
(0) = grad L(0),

dϕ(1)/dt0 +K ′∗0 ϕ
(1) = grad L(1) −K ′∗0 ϕ(0),

dϕ(2)/dt0 +K ′∗0 ϕ
(2) = grad L(2) −K ′∗1 ϕ(1) −K ′∗2 ϕ(0)

(2.34)

and so on, using Fourier transforms applied to the suitable N -periodic functions, one
can obtain the related Poissonian structure in the series form

ϑ−1 = ϕ(0),′ − ϕ(0),′∗ + μ(ϕ(1),′ − ϕ(1),′∗) + . . . (2.35)

and finally set μ = 1.
Another direct way of obtaining a Poissonian operator ϑ : T ∗(M(N))→ T (M(N))

for (1.1) is the following: First reduce the Nötherian equation (1.6) to the set of linear
nonuniform equations

d

dt0
(ϑ0ϕ

(0)) = K ′0(ϑ0ϕ
(0)),

d

dt0
(ϑ1ϕ

(0)) = K ′0(ϑ1ϕ
(0)) + ϑ0K

′,∗
1 ϕ(0) +K ′1ϑ0ϕ

(0),

d

dt0
(ϑ2ϕ

(0)) = K ′0(ϑ2ϕ
(0))− ϕ(0)′K1 + ϑ0K

′,∗
2 ϕ(0)+

+ ϑ1K
′,∗
1 ϕ(0) + ϑ2K

′,∗
0 ϕ(0) +K ′1ϑ1ϕ

(0) +K ′2ϑ0ϕ
(0),

(2.36)

and then solve using the above small parameter asymptotics. The analytical expres-
sions for actions ϑj : ϕ(0) → ϑjϕ

(0), j ∈ Z+ can now be used to retrieve them in
operator form from the expansion

ϑ = ϑ0 + μϑ1 + μ2ϑ2 + . . . , (2.37)
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by setting μ = 1 at the end of the calculations. Similarly one can also construct the
second Poissonian operator η : T ∗(M(N)) → T (M(N)) for the nonlinear dynamical
system (1.1).

Now the next result follows directly from all of the above analysis.

Proposition 2.4. Let a nonlinear dynamical system (1.1) on a discrete manifold
M(N) admit both a nontrivial symmetric solution ϕ ∈ T ∗(M(N)) to the Lax equation
(1.10) in the asymptotic as form (2.28) as λ → ∞, generating an infinite hierar-
chy of nontrivial functionally independent conservation laws (2.30), and compatible
nonsymmetric solutions ψ and φ ∈ T ∗(M(N)) to the Nöther equations (1.15) and
(1.19), respectively. Then this dynamical system is a Lax integrable bi-Hamiltonian
flow on M(N) with respect to two compatible Poissonian structures ϑ, η : T ∗(M(N))→
T (M(N)), whose adjoint Lax representation

dΛ/dt = [Λ,K ′,∗], (2.38)

where Λ := ϑ−1η, is the so-called recursion operator. This operator can be trans-
formed, in virtue of the gradient relationship (2.10), to the standard discrete Lax
form

dln/dt = [pn(l), ln] + (Dnpn(l))ln (2.39)

for some matrix pn(l) ∈ EndCr describing the temporal evolution

dfn/dt = pn(l)fn (2.40)

related to (1.22), for f ∈ l∞(Z;Cr).

Remark 2.5. Inasmuch as all Hamiltonian flows (2.32) commute with each other
and the dynamical system (1.1), and since they possess the same Poissonian and
compatible (ϑ, η)-pair, the analytical algorithm described above can also be applied
to any other flow commuting with (1.1).

Solutions to the discrete linear Lax problem (1.22) can be constructed by means
of the gradient-holonomic algorithm devised in [6,7,13] for studying the integrability
of nonlinear dynamical systems on functional manifolds. More specifically, by making
use of the preliminary analytical expressions for the related compatible Poissonian
structures ϑ, η : T ∗(M(N)) → T (M(N)) on the manifold M(N) and using the fact
that the recursion operator Λ := ϑ−1η : T ∗(M(N))→ T ∗(M(N)) satisfies the dual Lax
commutator equality (2.38), one can retrieve the standard Lax representation for it in
terms of algebraic formulas. As a corollary of Proposition 2.4, one has the existence
of a nontrivial asymptotic (as λ → ∞) solution to the Lax equation (1.10), which
provides an effective Lax integrability criterion for a dynamical system (1.1) on the
manifold M(N).

3. THE BOGOYAVLENSKY–NOVIKOV FINITE-DIMENSIONAL REDUCTION

In this section, we assume that our dynamical system (1.1) on the periodic manifold
M(N) is Lax integrable and possesses two compatible Poissonian structures ϑ, η :
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T ∗(M(N)) → T (M(N)). Thus, we have the nonlinear finite-dimensional dynamical
system

dun/dt := Kn[u] = −ϑ grad Hn[u] (3.1)

for indices n ∈ ZN , owing to its N -periodicity. The finite-dimensional dynamical
system (3.1) can be equivalently considered as that on the finite-dimensional space
M(N) 	 (Cm)N parameterized by an integer index n ∈ ZN . The Liouville integrability
of this system is our next concern. To study the flow (3.1) on the manifold M(N), we
shall make use of the Bogoyavlensky–Novikov [4, 16] reduction scheme [4,6, 8, 12].

Let Λ(M(N)) :=
⊕

j∈Z+
Λj(M(N)) be the standard finitely generated Grassmann

algebra [2, 6, 13] of differential forms on the manifold M(N). Then the differential
complex

Λ0(M(N))
d→ Λ1(M(N))

d→ . . .
d→ Λj(M(N))

d→ Λj+1(M(N))
d→ . . . , (3.2)

where d : Λ(M(N))→ Λ(M(N)) is the exterior differentiation, is finite and exact. Since
the discrete ‘derivative’ Dn := Δ−1 commutes with the differentiation d : Λ(M(N))→
Λ(M(N)), [Dn, d] = 0 for all n ∈ ZN , and for any element a ∈ Λ0(M(N))

grad
( ∑
n∈ZN

Dnan[u]
)
= 0, (3.3)

one can formulate the following Gelfand–Dikiy type [17] result.

Lemma 3.1. Let L[u] ∈ Λ0(M(N)) be a Fréchet smooth local Lagrangian functional
on the manifold M(N). Then there exists a differential 1-form α(1) ∈ Λ1(M(N)), such
that the equality

dLn[u] = 〈grad Ln[u], dun〉+Dnα
(1)
n [u] (3.4)

holds for all n ∈ ZN .

Proof. One can easily see that

dLn[u] =
N−1∑
j=0

〈∂Ln[u]
∂un+j

, dun+j

〉
=

N−1∑
j=0

〈∂Ln[u]
∂un+j

,Δjdun

〉
=

=
〈N−1∑
j=0

Δ−j
∂Ln[u]
∂un+j

, dun

〉
+Dn

(N−1∑
j=0

〈pj , dun+j〉
)
,

(3.5)

where

pk :=
N−1∑
j=0

Δ−j
∂Ln[u]

∂un+j+k+1
(3.6)

for k = 0, . . . , N − 1. Having defined the expression

grad Ln[u] :=
N−1∑
j=0

Δ−j
∂Ln[u]
∂un+j

, (3.7)
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one obtains the result (3.4), where

α(1)
n [u] :=

N−1∑
j=0

〈pj , dun+j〉 (3.8)

is the corresponding differential 1-form on the manifold M(N), thereby concluding the
proof.

Exterior differentiating expression (3.4), we obtain that

−Dnω
(2)
n [u] = 〈d grad Ln[u],∧dun〉 (3.9)

for any n ∈ Z, where the 2-form

ω(2)[u] := dα(1)[u] (3.10)

is nondegenerate on M(N) if the Hessian ∂2nL[u]/∂2un is also nondegenerate.
Consider the manifold

M̃(N) :=
{
grad L(Ñ)

n [u] = 0; u ∈M(N)

}
, (3.11)

where the Lagrangian functional is defined as

L(N̄) := −γN̄ +
N̄−1∑
j=0

cjγj , (3.12)

with γj ∈ D(M), j = 0, . . . , Ñ − 1, for some Ñ ∈ Z+, being suitable nontrivial
conservation laws for the dynamical system (1.1) as constructed above. Here cj ∈ C,
≤ j ≤ Ñ − 1, are arbitrary but fixed constants. It follows from (3.11) and (3.9) that
the closed 2-form ω(2) ∈ Λ2(M̄(N)) is invariant with respect to the index n ∈ ZN

on the manifold M̃(N). Moreover, the submanifold (3.11) is also invariant both with
respect to the index n ∈ ZN and the evolution parameter t ∈ R. In fact, for any
n ∈ ZN the Lie derivative

LKgrad L(N̄) = (grad L(N̄))′K +K ′,∗(grad L(N̄)) = 0, (3.13)

since the functional L(N̄) ∈ D(M(N)) is a sum of conservation laws for the dynami-
cal system (1.1), whose gradients satisfy the Lax condition (1.10). In addition, it is
easy to see that if the Lie derivative LK grad L(N̄)

n [u] = 0, n ∈ ZN , at t = 0, then
grad L(N̄)

n [u] = 0 for all t ∈ R and n ∈ ZN . Thus, the Bogoyavlensky–Novikov reduc-
tion of the dynamical system (1.1) upon the invariant submanifold M̄(N) is completely
invariantly defined.

At this point there is a natural question to ask: What is the relationship between
the dynamical system (1.1) restricted to the submanifold M(N) and the dynamical
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system (1.1) reduced on the finite-dimensional submanifold M̃(N) ⊂M(N)? To further
analyze the reduction, we consider the equation

〈grad L(N̄)
n [u],Kn[u]〉 = −Dnh

(t)
n [u], (3.14)

for a local functional h(t)[u] ∈ Λ0(M), which follows from the conditions (3.3) and
(1.10):

grad 〈grad L(N̄)
n [u],Kn[u]〉 = (grad L(N̄)

n [u])′,∗Kn[u] +K ′,∗n [u]grad L(N̄)
n [u] =

= (grad L(N̄)
n [u])′Kn[u] +K ′,∗n [u]grad L(N̄)

n [u] = LKgrad L(N̄)
n [u] = 0,

(3.15)

Since on the submanifold M̃(N) the gradient grad L(Ñ)
n [u] = 0 for all n ∈ ZN , we

deduce from (3.14) that the local functional h(t)[u] ∈ Λ0(M̄(N)) does not depend on
the index n ∈ ZN .

The properties of the manifold M̃(N) described above, make it possible to consider
it as a symplectic manifold endowed with the symplectic structure ω(2) ∈ Λ2(M̃(N))
given by expressions (3.8) and (3.10). From this point of view we can study the
integrability properties of the dynamical system (1.1) reduced on the invariant
finite-dimensional manifold M̃(N) ⊂M(N).

First, we observe that the vector field d/dt on M̃(N) is canonically Hamiltonian
[1, 2, 4] with respect to the symplectic structure ω(2) ∈ Λ2(M̃(N)), i.e.

−i d
dt
ω(2)(u, p) = dh(t)(u, p), (3.16)

where h(t)(u, p) := h(t)(u), ω(2)(u, p) := ω(2)[u] and (u, p)ᵀ ∈ M̄(N) are canonical vari-
ables induced on the manifold M̃(N) by the Liouville 1-form (3.8). More specifically,
from expression (3.14) one obtains that

di d
dt
〈grad L(N̄)

n [u], dun〉 = −Dndh
(t)
n [u],

which together with the identity (3.9) in the form

i d
dt
d〈grad L(N̄)

n [u], dun〉 = −Dni d
dt
ω(2)
n [u],

leads to
d

dt
〈grad L(N̄)

n [u], dun〉 = −Dn(dh
(t)
n [u] + i d

dt
ω(2)
n [u]). (3.17)

Since grad L(N̄)[u] = 0 = LK grad L[u] identically on M̃(N), from (3.17) one obtains
the result (3.16).

The same is true of any of the Hamiltonian systems (2.32) commuting with (1.1)
on the manifold M . Moreover, owing to the functional independence of invariants
γj ∈ D(M(N)), 0 ≤ j ≤ N − 1, in the Lagrangian functional (3.12), we can construct
a set of functionally independent functions h(j) ∈ D(M̃(N)), j = 0, . . . , Ñ − 1, as
follows:

〈grad L(Ñ)
n [u], ϑ grad γj,n[u]〉 = Dnh

(j)
n [u]. (3.18)
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It is easy to check that these functions h(j) ∈ D(M̄(N)), 0 ≤ j ≤ Ñ − 1, are invariant
with respect to indices n ∈ ZN and commute with each other and the Hamiltonian
function h(t) ∈ D(M̃(N)) with respect to the symplectic structure ω(2) ∈ Λ2(M̃(N)).
Thus, if the dimension dim M̃(N) = 2Ñ , the discrete dynamical system (1.1) reduced
upon the finite-dimensional submanifold M̃(N) ⊂ M(N) is Liouville integrable. If the
set of conservation laws γj ∈ D(M(N)), j = 0, . . . , N − 1, is functionally dependent
on M(N), the scheme can be modified using the Dirac reduction technique [1, 6, 8]
for determining a regular symplectic structure ω̃(2)[u] ∈ Λ2(M̃(N)) on an invariant
nonsingular submanifold.

4. EXAMPLES: DIFFERENTIAL-DIFFERENCE NONLINEAR
SCHRÖDINGER AND RAGNISCO–TU DYNAMICAL SYSTEMS
AND THEIR INTEGRABILITY

4.1. THE DISCRETE NONLINEAR SCHRÖDINGER DYNAMICAL SYSTEM

The discrete nonlinear Schrödinger dynamical system (1.2) is defined on the periodic
manifold M(N) ⊂ l∞(Z;C2). Its Lax integrability was proved in [5,11,14] making use
of the simplest discretization of the standard Zakharov–Shabat spectral problem for
the well-known nonlinear Schrödinger equation. We begin this section by applying the
gradient-holonomic integrability analysis described above to the discrete dynamical
system (1.2). First, we shall show the existence of an infinite hierarchy of functionally
independent conservation laws obtained by solving the determining Lax equation
(1.10) in the asymptotic form (2.28). The following is a key result for our analysis.

Lemma 4.1. The functional expression

ϕn :=

(
1

an(λ)

)
exp[it(2− λ− λ−1)]

n∏
j=0

σj(λ), (4.1)

where
σj(λ) ∼ λ

hj [u, ū]

(
1−

∑
s∈Z+

σ
(s)
j [u, ū]λ−s−1

)
,

an(λ) ∼
∑
s∈Z+

a(s)n [u, ū]λ−s,
(4.2)

is an asymptotic solution to the determining Lax equation

dϕn/dt+K ′,∗ϕn = 0 (4.3)

as λ→∞ for all n ∈ ZN with the operator K ′,∗ : T ∗(M)→ T ∗(M) of the form:

K ′,∗n =

⎛
⎜⎜⎝
iΔ−1D2

n − iūn(un+1 + un−1)−
−i(Δ +Δ−1) · ūnun iūn(ūn+1 + ūn−1)

−iun(un+1 + un−1)
−iΔ−1D2

n + iun(ūn+1 + ūn−1)+
+i(Δ +Δ−1) · ūnun

⎞
⎟⎟⎠ . (4.4)
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Proof. It suffices to find the corresponding coefficients of the asymptotic expansions
(4.2). To do this, we consider the following two equations that can be easily obtained
from (4.3), (4.4) and (4.1):

D−1
n

d

dt
[− lnhn + ln(1−

∑
s∈Z+

σ(s)
n λ−s−1)]+

+ iλ[h−1
n+1(1− ūnun)(1−

∑
s∈Z+

σ(s)
n λ−s−1)− 1]+

+
i

λ

[
(1− ūn−1un−1)hn(1−

∑
s∈Z+

σ(s)
n λ−s−1)−1 − 1

]
−

− iūn(un+1 + un−1) + iūn(ūn+1 + ūn−1)
∑
s∈Z+

a(s)n λ−s

(4.5)

and
( ∑
s∈Z+

a(s)n λ−s
)
D−1
n

d

dt

[
− lnhn + ln

(
1−

∑
s∈Z+

σ(s)
n λ−s−1

)]
+ 4i

( ∑
s∈Z+

a(s)n λ−s
)
+

+
[
iλhn+1(ūn+1un+1 − 1)

( ∑
s∈Z+

a
(s)
n+1λ

−s
)( ∑

s∈Z+

a
(s)
n+1λ

−s
)
−
∑
s∈Z+

a(s)n λ−s
]
+

+
i

λ

[
(ūn−1un−1 − 1)

( ∑
s∈Z+

a
(s)
n+1λ

−s
)
hn

(
1−

∑
s∈Z+

σ(s)
n λ−s−1

)−1

−
∑
s∈Z+

a(s)n λ−s
]
+

+
d

dt

∑
s∈Z+

a(s)n λ−s − iun(un+1 + un−1) + iun(ūn+1 + ūn−1)
∑
s∈Z+

a(s)n λ−s.

(4.6)

Now equating the coefficients of (4.5) at the same degrees of the parameter λ ∈ C,
we recursively obtain the functional expression for hn, σ

(s)
n and a(s)n , n ∈ Z, s ∈ Z+;

namely,

hn = (1− u∗nun), a(0)n = 0, a(1)n = β,

σ(0)
n = u∗n−1(un + un−2)− iΔ−1D2

n(lnhn)t,

σ(1)
n = i

d

dt
σ
(0)
n−1 + (hn−1hn−2 − 1) + a

(1)
n−1u

∗
n−1(un + un−2),

a(2)n = −3a(1)n−1 + i
d

dt
σ
(1)
n−1 − ia(1)n−1D

−1
n (lnhn−1)t+

+ a(1)n σ(0)
n − un−1(u

∗
n + u∗n−2)a

(1)
n−1,

dhn/dt = iDn(u
∗
n−1un − u∗nun−1), . . . ,

(4.7)

whence

σ(0)
n = −(u∗nun−1 + u∗n−1un−2),

σ(1)
n = i

d

dt
σ
(0)
n−1 + (1− u∗n−1un−1)(1− u∗n−2un−2) + βu∗n−1(un + un−2), . . . ,

(4.8)



Isospectral integrability analysis of dynamical systems on discrete manifolds 57

and so on. Thus, the corresponding recursion formulas are solvable for all s ∈ Z+, so
it follows that the expression (4.1) is a true asymptotic solution to the Lax equation
(4.3), and the proof is complete.

Recalling now that the expression

γ(λ) := −
N−1∑
n=0

lnhn +

N−1∑
n=0

ln
(
1−

∑
s∈Z+

σ(s)
n λ−s−1

)
(4.9)

as λ → ∞ is a generating function of conservation laws for the dynamical system
(1.2), one finds that functionals

γ̄0 =

N−1∑
n=0

ln(1− ūnun), γ0 = −
N−1∑
n=0

σ(0)
n ,

γ1 = −
N−1∑
n=0

(σ(1)
n +

1

2
σ(0)
n σ(0)

n ),

γ2 = −
N−1∑
n=0

(σ(2)
n +

1

3
σ(0)
n σ(0)

n σ(0)
n + σ(0)

n σ(1)
n ), . . . ,

(4.10)

and so on, make up an infinite hierarchy of exact conserved quantities for the discrete
nonlinear Schrödinger dynamical system (1.2).

A few remarks are in order concerning the complete integrability of the discrete
nonlinear Schrödinger dynamical system (1.2). First, we can easily show using the
standard asymptotic small parameter approach [6, 7, 13] that the Nöther equation
(1.6) on the manifold M(N) possesses [11,12] the exact Poissonian operator solution

ϑn =

(
0 ihn

−ihn 0

)
, (4.11)

for n ∈ ZN , subject to which the dynamical system (1.2) is Hamiltonian via

d

dt
(u, u∗)ᵀ = −ϑ grad Hϑ[u, u

∗] (4.12)

on the periodic manifold M(N), where the Hamiltonian function is

Hϑ :=
N∑
n=0

lnh2n −
N∑
n=0

(ūnun+1 − ūnun+1) = 2 ln |γ0| − 1

2
(γ0 + γ̄0). (4.13)

Similar, but more cumbersome, calculations can be employed to find a second Pois-
sonian operator solution to the Nöther equation (1.6) in the matrix form:

η =

(
(hn − unD−1

n un)Δ (u2n + unD
−1
n un)Δ

−1

u∗nD
−1
n u∗nΔ −(1 + u∗nD

−1
n un)Δ

−1

)
×

×
(

unD
−1
n un (hn − unD−1

n u∗n
1 + u∗nD

−1
n un −(u∗n + u∗nD

−1
n u∗n)

)
,

(4.14)
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where the operation D−1
n (·) := (1/2)[

∑n−1
k=0(·)k −

∑N−1
k=n (·)k] is quasi-skew-symmetric

with respect to the usual bilinear form on T ∗(M(N))×T (M(N)), satisfying the operator
identity (D−1

n )∗ = −Δ−1D−1
n Δ, n ∈ Z.

The Poissonian operators (4.11) and (4.14) are compatible, so we can obtain the
related Lax representation for the dynamical system (1.2) by means of the algebraic
gradient-holonomic algorithm. The corresponding result is as follows: the discrete
linear spectral problem

Δfn = ln[u, u
∗;λ]fn, (4.15)

where f ∈ l∞(Z;C2) and for n ∈ Z

ln[u, u
∗;λ] =

(
λ un
u∗n λ−1

)
, (4.16)

allows the linear Lax isospectral evolution

dfn/dt = pn(l)fn (4.17)

for some matrix pn(l) ∈ EndC2, n ∈ Z, which is equivalent to the Hamiltonian flow

dfn/dt = {Hϑ, fn}ϑ, (4.18)

where {·, ·}ϑ is the Poissonian structure on the manifoldM(N) corresponding to (4.11).
The equivalence of (4.11) and (4.18) can be easily demonstrated by constructing
the monodromy matrix Sn(λ), n ∈ ZN , for all λ ∈ C corresponding to (4.15) and
calculating the Hamiltonian evolution

d

dt
Sn(λ) = {Hϑ, Sn(λ)}ϑ = [pn(l), Sn(λ)], (4.19)

giving rise to the same matrix pn(l) ∈ End C
2, n ∈ Z, as in equation (4.17).

Thus, we have shown that the nonlinear discrete Schrödinger dynamical system
(1.2) is a Lax integrable bi-Hamiltonian flow on the manifoldM(N). Since the solution
ϕ(λ) ∈ T ∗(M(N)) constructed above satisfies the gradient-like relationship

λϑ ϕ(λ) = η ϕ(λ) (4.20)

for all λ ∈ C, we showed that the conservation laws are mutually commuting with
respect to both Poisson brackets {·, ·}ϑ and {·, ·}η. From whence follows the classical
Liouville integrability [2, 15] of the discrete nonlinear Schrödinger dynamical system
(1.2) on the periodic manifold M(N). A detailed analysis of the integrability proce-
dure via the Bogoyavlensky–Novikov reduction [4,16] and an explicit construction of
solutions to the dynamical system (1.2) are planned for a later paper.

4.2. THE DISCRETE NONLINEAR RAGNISCO–TU DYNAMICAL SYSTEM

We now consider the Ragnisco–Tu differential-difference dynamical system (1.3) de-
fined on the periodic manifold M(N) ⊂ l∞(Z;C2), and construct first the correspond-
ing asymptotic solution to the Lax equation (1.10). The following result is quite useful.
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Lemma 4.2. The functional expression

ϕn :=

(
an(λ)

1

)
exp(λt)

n∏
j=1

σj(λ), (4.21)

is an asymptotic (as λ→∞) solution to the determining Lax equation (1.10) for all
n ∈ ZN with the operator K ′,∗ : T ∗(M(N))→ T ∗(M(N)) of the form:

K ′,∗n =

(
Δ−1 − 2unvn

−u2n
v2n

−Δ+ 2unvn

)
, (4.22)

where, by definition,
σn(λ) ∼ λ(1−

∑
s∈Z+

σ(s)
n [u, v]λ−s),

an(λ) ∼
∑
s∈Z+

a(s)n [u, v]λ−s,
(4.23)

and the following analytical expressions

σ(0)
n = 0, a(0)n = 0;σ(1)

n = −2un−1vn−1, a
(1)
n = −v2n,

σ(2)
n = 2un−1vn−2 − u2n−1v

2
n−1, a

(2)
n = 2vn(v−n−1 − v2nun),

σ(3)
n = −2un−1vn−2 −D−1

n (dσ(2)
n /dt+ σ(1)

n dσ(1)
n /dt),

a(3)n = −da(2)n /dt− 2(un−1vn−2v
2
n − unvnv2n−1), . . . ,

(4.24)

and so on, hold.

Proof. It is easy to calculate that local σ- and a-functionals on M(N) satisfying the
following functional equations:

λ(1− σn(λ)) +D−1
n

d

dt
lnσn(λ)− u2nan(λ) + 2unvn = 0,

dan(λ)/dt+ λan(λ) + an(λ)D
−1
n

d

dt
lnσn(λ)−

− 2unvnλ
−1an−1(λ)σn(λ)

−1 + v2n = 0,

(4.25)

which allow the asymptotic (as λ → ∞) solutions in the form (4.23). Then, solving
the corresponding recurrence relations inductively, one obtains the exact analytical
expressions (4.24). Taking now into account that for each n ∈ Z+ there exists a local
functional ρn(λ) such that the expression d

dt lnσn(λ) = Dnρn(λ) holds on M(N), we
obtain the functional expression (4.21) solving the Lax equation (1.10), which proves
the lemma.

As a simple corollary of Lemma 4.2, we find that the expression

γ(λ) :=

N∑
n=1

ln(1−
∑
s∈Z+

σ(s)
n λ−s−1) ∼

∑
j∈Z+

γjλ
−j (4.26)
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is a generating functional for the infinite hierarchy of conservation laws γj ∈
D(M(N)), j ∈ Z+, of the Ragnisco-Tu differential-difference dynamical system (1.3).

Now we show that the Ragnisco–Tu differential-difference dynamical system (1.3)
is a bi-Hamiltonian dynamical system on the functional manifold M(N). To this end,
we observe that it follows from Lemma 1.4 that the element ψ := 1

2 (vn,−un)ᵀ ∈
T ∗(M(N)) satisfies the functional equation (1.15):

dψ/dt+K
′,∗
ψ = grad L, L = −1

2

N−1∑
k=0

u2nv
2
n, (4.27)

giving rise to the first Poissonian structure

ϑn := ψ′n − ψ′,∗n =

(
0 1

−1 0

)
(4.28)

on the manifold M(N) with respect to which the differential-difference dynamical
system (1.3) is Hamiltonian. In particular,

d

dt
(un, vn)

ᵀ = −ϑn grad Hϑ,n[u, v], (4.29)

where the Hamiltonian function, owing to the relationship (1.21), equals

Hϑ := (ψ,K)− Lψ) =
N−1∑
k=0

(u2nv
2
n/2− unvn−1) = −1

2

N−1∑
k=0

σ(2)
n . (4.30)

In the same way one can find the second compatible with (4.28) Poissonian operator

ηn :=

( −u2n + 2unD
−1
n Δun Δ− 2unD

−1
n Δvn

−Δ−1 + 2unvn − 2vnD
−1
n Δun −v2n + 2vnD

−1
n Δvn

)
, (4.31)

for which
d

dt
(un, vn)

ᵀ = −ηn grad Hη,n[u, v], (4.32)

where the Hamiltonian function is

Hη := −
N∑
k=1

unvn =
1

2

N∑
k=1

σ
(1)
n+1. (4.33)

We claim that the hierarchy of conservation laws (4.26) satisfies as λ→∞ the gradient
relationship

λϑ grad γ(λ) = η grad γ(λ), (4.34)

implying their mutual commutation with respect to both Poissonian structures (4.28)
and (4.31). Accordingly the Ragnisco–Tu differential-difference dynamical system
(1.3) is a completely integrable bi-Hamiltonian dynamical system on the manifold
M(N).
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The gradient relationship (4.34) gives rise to the following ‘adjoint’ Lax represen-
tation

dΛ/dt = [Λ,K
′,∗
], (4.35)

where, by definition, the expression Λ := ϑ−1η : T ∗(M(N)) → T ∗(M(N)) is called
a recursion operator. Based on the gradient relationship (4.34) and expression
(2.9), we conclude using the gradient holonomic approach that the Ragnisco–Tu
differential-difference dynamical system (1.3) is also Lax integrable, with an associated
standard linear shift Lax spectral problem of the form

Δfn = ln[u, v;λ]fn, ln[u, v;λ] =

(
λ+ unvn un

vn 1

)
, (4.36)

for all n ∈ Z, λ ∈ C, where (u, v) ∈M(N) and f ∈ l∞(Z;C2).

5. CONCLUSION

The gradient-holonomic scheme for studying Lax integrability of differential-difference
nonlinear dynamical systems devised here appears to be effective for applications in
the one-dimensional case similar to that of nonlinear dynamical systems defined on
spatially one-dimensional functional manifolds [6,7,13,15]. The algorithm, which was
suggested in [11, 12], makes it possible to readily construct an infinite hierarchy of
conservation laws as well as to calculate their compatible co-symplectic structures.
As was also shown, the Bogoyavlensky–Novikov reduction to integrable Hamiltonian
dynamical systems on the corresponding invariant periodic submanifolds generates
finite-dimensional Liouville integrable Hamiltonian systems with respect to the canon-
ical Gelfand–Dikiy type symplectic structures. As an example, an almost complete
integrability analysis of the nonlinear discrete Schrödinger dynamical system was
presented in detail.

As for different indirect approaches to studying the integrability of
differential-difference dynamical systems on discrete manifolds, it is worth mentioning
the works [19–23,35] based on the inverse spectral transform and related Lie-algebraic
methods, where a priori Lax integrable Hamiltonian flows possessing infinite hi-
erarchies of conservation laws are constructed. Many important analytical proper-
ties of these other approaches were constructively incorporated into the algorithmic
gradient-holonomic scheme presented above.

In this vein, the interesting differential-algebraic approaches [31, 36, 37] pro-
posed for analyzing the integrability both of differential and differential-difference
dynamical systems should also be noted. For example, in [31–33] these types of
differential-algebraic tools were used to study the integrability of a generalized (owing
to D. Holm and M. Pavlov) Riemann hydrodynamical hierarchy of dynamical systems
of the form

Ds
tu = 0, Dt := ∂/∂t+ uDx, Dx := ∂/∂x, (5.1)

on a smooth functional manifoldM ⊂ C∞(R;R) for any integer s ∈ Z+. It was proved
that these systems are Lax integrable and possess a bi-Hamiltonian structure. By
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replacing the spatial differentiation Dx, x ∈ R, by its discrete analog Dn = Δ−1, n ∈
Z, in these systems, one can similarly construct a generalized Riemann type hierarchy
of the following discrete dynamical systems

Ds
tun = 0, Dt := ∂/∂t+ un(Dn +Dn−1)/2, (5.2)

for any integer s ∈ Z+ on a suitable discrete manifold M ⊂ l2(Z;R). And like
their counterparts analyzed above, the integrability properties of (5.2) are impor-
tant for several practical applications. Naturally, it would be interesting to apply our
direct gradient-holonomic integrability approach to the hierarchy (5.2) and find its
differential-difference analog using the known [31,32,34] corresponding Lax represen-
tations. As one can easily check, one of the discrete analogs of the corresponding linear
Lax “spectral” problem for (5.1) for s = 2 has the form

Δfn = ln[u, z;λ]fn, ln[u, z;λ] :=

(
1− λDnun −Dnzn

2λ2 1 + λDnun

)
, (5.3)

where zn := Dnun for any n ∈ Z. Unfortunately, the strongly singular nature of
the spectral problem (5.3) does not seem to allow the construction of the related
Poissonian structures in a reasonable closed form. On the other hand, this is not the
case for the following inviscid discrete Riemann–Burgers dynamical system (5.2) for
s = 1:

Dtwn = 0⇒ dwn/dt = −(wn+1 − wn−1)/2 := Kn[w], (5.4)

which is defined on an N -periodic discrete manifold M ⊂ l∞(ZN ;R). Following
the gradient-holonomic scheme developed for the earlier examples, we first show
the existence of an infinite hierarchy of conservation laws and the corresponding
bi-Hamiltonian formulation for (5.4).

From Proposition 2.1 we have the determining equation (1.10)

dϕ
n
/dt+ [(Δ−Δ−1)wn/2 + (wn+1 − wn−1)/2]ϕn

= 0 (5.5)

and its asymptotic solution ϕ ∈ T ∗(M) in the form (2.28):

ϕ
n
=
n−1∏
j=0

σj [w;λ], (5.6)

where n ∈ Z and the local functionals σj [w;λ], j ∈ Z+, possess as λ → ∞ the
expansions

σj [w;λ] ∼
∑
s∈Z+

σ
(s)
j [w]λ−s. (5.7)

Upon recursively solving the resulting functional equations

D−1
n (lnσn)t − (wn−1/σn−1 − wn+1σn)/2− (wn+1 − wn−1) = 0, (5.8)
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one easily obtains the infinite hierarchy (4.26) of conservations laws

γ0 =

N−1∑
n=0

(wn + wn−1), γ1 = 0,

γ2 =
N−1∑
n=0

[(wn + wn−1)
2 + wn(wn−1 + wn+1)], . . . , γ2j+1 = 0

(5.9)

for all j ∈ Z+. Then, applying to the hierarchy of conservation laws the approach
of Lemma 1.4, one can find by straightforward but lengthy calculations the following
pair ϑ, η : T ∗(M)→ T (M) of compatible Poissonian operators on the manifold M :

ϑn := wn(Δ−Δ−1)wn, ηn := (wnwn+1Δ
2 − wnwn−1Δ

−2)(wn + wn−1Δ
−1). (5.10)

In particular, the Hamiltonian representation of the Riemann-Burgers system (5.4) is
easily seen to be

dwn/dt = −ϑngrad Hϑ, Hϑ := −
N−1∑
n=0

(wn + wn−1)/2. (5.11)

Moreover, the first Poissonian structure of (5.10) allows the continuous limit
lim

Δx→0
n→∞

wn := w(x), if nΔx := x ∈ R, to the well-known [30] correct continuum form

ϑ := (w∂ + ∂w)(w + ∂−1w∂)/2. (5.12)

Making use of the Poissonian pair (5.10), one can use the gradient holonomic scheme to
find a Lax representation related to the inviscid discrete Riemann–Burgers dynamical
system (5.4), whose l-operator is given by the matrix expression

ln[w;λ] =

(
λ −wn
1 0

)
(5.13)

for n ∈ Z and λ ∈ C. It should be noted that the higher flows generated by the inviscid
Riemann–Burgers dynamical system (5.4), have nothing to do with the generalized
Riemann hydrodynamic systems (4.21) and their discrete approximations. Thus, it
is necessary to develop a different approach to constructing their integrable discrete
Lax representations so that they are compatible with the related continuous limits.
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