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RANK-ONE PERTURBATION
OF TOEPLITZ OPERATORS AND REFLEXIVITY
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Abstract. It was shown that rank-one perturbation of the space of Toeplitz operators
preserves 2-hyperreflexivity.
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1. INTRODUCTION

Let H be a Hilbert space. By B(H) we denote the algebra of all bounded linear
operators on H.

It is well known that the space of trace class operators τc is a predual to B(H)
with the dual action 〈A, f〉 = tr(Af), for A ∈ B(H) and f ∈ τc. The trace norm in τc
will be denoted by ‖ · ‖1. Denote by Fk the set of operators of rank at most k. Every
rank-one operator may be written as x ⊗ y, for x, y ∈ H, and (x ⊗ y)z = 〈z, y〉x for
z ∈ H. Moreover, tr(T (x⊗ y)) = 〈Tx, y〉.

Let M ⊂ B(H) be a subspace (when we write subspace we mean a norm closed
linear manifold). By d(T,M) we will denote the standard distance from an operator T
to a subspaceM, i.e., d(T,M) = inf{‖T −M‖ : M ∈M}. It is known that whenM
is weak* closed d(T,M) = sup{|tr(Tf)| : f ∈ M⊥, ‖f‖1 ≤ 1}, where M⊥ denotes
the preannihilator ofM.

Recall that the reflexive closure of a subspaceM⊂ B(H) is given by

refM = {T ∈ B(H) : Tx ∈ [Mx] for all x ∈ H},

where [·] denotes the norm-closure. A subspace M is called reflexive if M = refM.
Due to Longstaff [14] we know that when M is a weak* closed subspace of B(H),
thenM is reflexive if and only ifM⊥ is a closed linear span of the set of all operators
of rank one contained in M⊥ (i.e., M⊥ = [M⊥ ∩ F1]). A subspace M ⊂ B(H)
is called k-reflexive if M(k) = {M (k) : M ∈ M} is reflexive in B(H(k)), where
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M (k) = M ⊕ · · · ⊕M and H(k) = H⊕ · · · ⊕ H. Kraus and Larson [12, Theorem 2.1]
proved that a weak* closed subspaceM⊂ B(H) is k-reflexive if and only ifM⊥ is a
closed linear span of rank-k operators contained inM⊥ (i.e.,M⊥ = [M⊥ ∩ Fk]).

In [2] Arveson defines an algebra A as hyperreflexive if there is a constant a
such that d(T,A) ≤ a sup{‖P⊥TP‖ : P ∈ LatA} for all T ∈ B(H). In [11] this
definition was generalized to subspaces of operators. A subspaceM⊂ B(H) is called
hyperreflexive if there is a constant a such that

d(T,M) ≤ a sup{‖Q⊥TP‖ : P, Q are projections and Q⊥MP = 0}

for all T ∈ B(H). As it was shown in [12] the supremum on the right hand side is
equal to sup{|〈T, g ⊗ h〉| : g ⊗ h ∈M⊥, ‖g ⊗ h‖1 ≤ 1}.

Recall after [10] the definition of k-hyperreflexivity. LetM⊂ B(H) be a subspace.
For any T ∈ B(H) denote

αk(T,M) = sup{|tr(Tf)| : f ∈M⊥ ∩ Fk, ‖f‖1 ≤ 1}.

A subspaceM is called k-hyperreflexive if there is a > 0 such that for any T ∈ B(H)
the following inequality holds:

d(T,M) ≤ aαk(T,M). (1.1)

Let κk(M) be the infimum of the collection of all constants a such that inequality (1.1)
holds, then κk(M) is a constant of k-hyperreflexivity. Operator T is k-hyperreflexive
if the WOT closed algebra generated by T and identity is k-hyperreflexive.

When k = 1 the definition above coincides with the definition of hyperreflexivity
and the letter k will be omitted.

2. REFLEXIVITY OF PERTURBATED TOEPLITZ OPERATORS

Let T be the unit circle on the complex plane C. Denote L2 = L2(T,m) and L∞ =
L∞(T,m), where m is the normalized Lebesgue measure on T. Let H2 be the Hardy
space corresponding to L2 and PH2 be a projection from L2 onto H2. For each φ ∈ L∞

we define Tφ : H2 → H2 by Tφf = PH2(φf) for f ∈ H2. Operator Tφ is called a
Toeplitz operator and T will denote the space of all Toeplitz operators.

The unilateral shift S can be realized as the multiplication operator by independent
variable Tz. Moreover, T = {Tφ : φ ∈ L∞} = {A : T ∗

z ATz = A} ([9, Corollary 1 to
Problem 194]). Hence T is weak* closed.

Let {ej}j∈N be the usual basis in H2. Denote byMlm the subspace T +C(el⊗em).
In [4, Theorem 3.1] the authors proved that the space of all Toeplitz operators is not
reflexive but it is 2-reflexive. We will show that the subspace Mlm has the same
properties.

Proposition 2.1. The subspace Mlm is not reflexive but it is 2-reflexive.

Proof. Notice that (Mlm)⊥ = T⊥∩(el⊗em)⊥. Since T⊥ contains no nonzero rank-one
operators, thenMlm is not reflexive.
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Notice that

T⊥ = span{ei ⊗ ej − Sei ⊗ Sej : i, j = 1, 2, . . . },

where S is the unilateral shift. Therefore,

(Mlm)⊥ = span{ei ⊗ ej − Sei ⊗ Sej : i, j = 1, 2, . . . , (i, j) �= (l,m)

and (i+ 1, j + 1) �= (l,m)}.

HenceMlm is 2-reflexive.

Recall after [5] the following definition.

Definition 2.2. SubspaceM⊂ B(H) has property A1/k ifM is weak* closed and for
any weak* continuous functional φ on M there is g ∈ Fk such that φ(M) = tr(Mg)
for M ∈M.

Proposition 2.3. The subspace Mlm = T + C(el ⊗ em) has property A1/4.

Proof. Let t ∈ τc. Since T has property A1/2 ([10, Proposition 4.1]), there is f ∈
F2 such that (t − f) ∈ T⊥. If (t − f) ∈ (Cel ⊗ em)⊥, then (t − f) ∈ (Mlm)⊥. If
(t − f) /∈ (Cel ⊗ em)⊥, then (t − f − λel ⊗ em + λel+1 ⊗ em+1) ∈ (Mlm)⊥, where
λ = PCel(t− f)PCem and PCei denotes the orthogonal projection on Cei. SoMlm has
property A1/4.

In [13] Larson proved that if M is k-reflexive, then any weak* closed subspace
L ⊂M is k-reflexive if and only ifM has property A1/k. It follows immediately from
Proposition 2.1 and Proposition 2.3 that:

Corollary 2.4. Every weak*-closed subspace of Mlm = T +C(el⊗em) is 4-reflexive.

On the other hand, due to [8] we know that the algebra of analytic Toeplitz
operators is hyperreflexive. Moreover, the space of all Toeplitz operators T is
2-hyperreflexive and κ2(T ) ≤ 2 (see [10,15]). We will show that the subspaceMlm is
2-hyperreflexive. In the proof we will use the projection π : B(H2) → T constructed
by Arveson in [1, Proposition 5.2], which has the property that for any A ∈ B(H2) the
operator π(A) belongs to the weak* closed convex hull of the set {T ∗

znATzn : n ∈ N}.

Proposition 2.5. Subspace Mlm = T +C(el⊗ em) is 2-hyperreflexive with constant
κ2(Mlm) ≤ 2.

Proof. Let A ∈ B(H2). For λ ∈ C define Aλ = A − λel ⊗ em. Notice that for any
λ ∈ C

d(A,Mlm) ≤ ‖A− π(A)− λel ⊗ em‖ = ‖Aλ − π(Aλ)‖.

Since the space of Toeplitz operators T is 2-hyperreflexive with constant at most 2,
we have that

d(Aλ, T ) ≤ ‖Aλ − π(Aλ)‖ ≤ 2α2(Aλ, T ) (for details see [10]).
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To complete the proof it is enough to show that for any A ∈ B(H2) there is λ ∈ C

such that
α2(Aλ, T ) = α2(A,Mlm). (2.1)

Note that

α2(Aλ, T ) = sup{|tr(Aλt)| : 2t = ei ⊗ ej − ei+k ⊗ ej+k, k ≥ 1, i, j = 0, 1, 2, . . . }.

If this supremum is realized by 2t = ei ⊗ ej − ei+k ⊗ ej+k for (i, j) �= (l,m) and
(i+ k, j + k) �= (l,m), then equality (2.1) holds. So, it is enough to consider the case
when

α2(Aλ, T ) = sup{|tr(Aλt)| : 2t = el ⊗ em − el+k ⊗ em+k, k ≥ min{−l,−m}} =
=sup{ 12 |alm − λ− al+k,m+k| : k ≥ min{−l,−m}}.

Suppose that α2(A,Mlm) = β > 0. Note that for any λ we have β ≤ α2(Aλ, T ).
If we choose λ = alm − al+1,m+1, then

α2(Aλ, T ) = sup{ 12 |al+1,m+1 − al+k,m+k| : k ≥ min{−l,−m}} ≤ β.

Hence α2(Aλ, T ) = α2(A,Mlm), which completes the proof.
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