Michał Bełdziński, Marek Galewski
On unique solvability of a Dirichlet problem with nonlinearity depending on the derivative
|
Opuscula Math. 39 (2019), 131-144 |
Pełny tekst/Article:
pdf (519kB)
|
|
Miguel de Benito Delgado, Jesus Ildefonso Díaz
Some remarks on the coincidence set for the Signorini problem
|
Opuscula Math. 39 (2019), 145-157 |
Pełny tekst/Article:
pdf (585kB)
|
|
Gabriele Bonanno, Giuseppina D'Aguì, Angela Sciammetta
Nonlinear elliptic equations involving the p-Laplacian with mixed Dirichlet-Neumann boundary conditions
|
Opuscula Math. 39 (2019), 159-174 |
Pełny tekst/Article:
pdf (534kB)
|
|
Anna Maria Candela, Addolorata Salvatore
Infinitely many solutions for some nonlinear supercritical problems with break of symmetry
|
Opuscula Math. 39 (2019), 175-194 |
Pełny tekst/Article:
pdf (586kB)
|
|
Roberta Filippucci, Chiara Lini
Existence results and a priori estimates for solutions of quasilinear problems with gradient terms
|
Opuscula Math. 39 (2019), 195-205 |
Pełny tekst/Article:
pdf (532kB)
|
|
Genni Fragnelli, Dimitri Mugnai
Controllability of degenerate and singular parabolic problems: the double strong case with Neumann boundary conditions
|
Opuscula Math. 39 (2019), 207-225 |
Pełny tekst/Article:
pdf (589kB)
|
|
Nikolaos S. Papageorgiou, Calogero Vetro, Francesca Vetro
On a Robin (p,q)-equation with a logistic reaction
|
Opuscula Math. 39 (2019), 227-245 |
Pełny tekst/Article:
pdf (556kB)
|
|
Patrizia Pucci
Existence and multiplicity results for quasilinear equations in the Heisenberg group
|
Opuscula Math. 39 (2019), 247-257 |
Pełny tekst/Article:
pdf (508kB)
|
|
Vicenţiu D. Rădulescu
Isotropic and anisotropic double-phase problems: old and new
|
Opuscula Math. 39 (2019), 259-279 |
Pełny tekst/Article:
pdf (574kB)
|
|
Monica Roşiu
Extremal length and Dirichlet problem on Klein surfaces
|
Opuscula Math. 39 (2019), 281-296 |
Pełny tekst/Article:
pdf (524kB)
|
|
Yang Yanbing, Md Salik Ahmed, Qin Lanlan, Xu Runzhang
Global well-posedness of a class of fourth-order strongly damped nonlinear wave equations
|
Opuscula Math. 39 (2019), 297-313 |
Pełny tekst/Article:
pdf (547kB)
|